Austin Aquatic Master Plan

Public Input

Reviow and Anclysis

Implementafion

City of Austin, Texas
February 1, 2018

BRANDSTETTER CARROLLINC

ACKNOWLEDGMENTS

City of Austin Mayor and City Council

Stephen Adler, Mayor
Kathie Tovo, District 9, Mayor Pro-Tem
Ora Houston, District 1
Delia Garza, District 2
Sabina "Pio" Renteria, Distric† 3
Gregorio "Greg" Casar, District 4
Ann Kitchen, District 5

Administration

Elaine Hart, Interim City Manager

Parks and Recreation Board

Jane Rivera, Chair
Richard DePalma, Vice Chair
Michael Casias
Rick Cofer
Tom Donovan
Francoise Luca
Randy Mann
Fred Morgan
Dawn Lewis

Parks and Recreation Department (PARD)

Kimberly McNeeley, Acting Director
Reynaldo Hernandez, PLA, Project Management Supervisor
Jodi Jay, Aquatic and Nature Based Programs Division Manager

Consultant Team

2360 Chauvin Drive
Lexington, Kentucky 40517
(859) 268-1933 VOICE
(859) 268-3341 FAX

Architect's Project No. 15092
February, 2018

Jimmy Flannigan, District 6
Leslie Pool, District 7
Ellen Troxclair, District 8
Allison Alter, District 10

Parks and Recreation Task Force

Rick Cofer, Task Force Chair
Richard Depalma
Vane Rivera
Dawn Lewis, Task Force Vice Chair

Wayne Simmons, Aquatic Program Manager Cara Welch, PARD Public Information Office

Benjamin E. Brandstetter , P.E., President Patrick D. Hoagland, ASLA, Project Manager Keith Rodenhauser, AICP, SITES AP, Planner
Charles L. Schneider, P.E., Aquatics
Lynda Gates, Administrative Assistant
Joseph Elder, Intern

Sub-Consultants
Architecture Plus

Chan \& Partners Civil Engineering
JLJ Enterprises
Adisa Communications

Advisory Groups

Aquatic Advisory Board

Kata Carbone
Terri Mitchell
Pam O'Conner
Alan Pease
Dorothy Richter
Maria Shield
DJ Stamp

District Representatives Group

Ed Danehy
Pete Rivera
Devin Oliver
Sally Baulch
Kata Carbone
Jeff Rudy
Arlene Youngblood
Kathy Ellins
Jeff Archer

Betty Trent, AIA, Principal
Mac Ragsdale, AIA, Principal
Patricia Hunt
John King, P.E.
Judith Leblein Josephs
Shuronda Robinson, President

Technical Advisory Group

Chris Herrington, Supervising Engineer Watershed Protection Department
Francis Reilley, Planner, Planning and Zoning Department, (Code Next, Imagine Austin)
Charles Logan, University of Texas - Lee and Joe Jamail Texas Swimming Center Scott Stites, Bartlett Cocke General Contractors Lewis Leff, Office of Sustainability
Rene Avila, Watershed Protection Department
Deborah Gonzales, Planner II, Planning and Zoning Department

PARD Technical Team

Reynaldo Hernandez, PLA
Jodi Jay
Wayne Simmons
Paul Slutes
Pedro Patlan
George Maldanado
Aaron Levine
Ashley Wells
Wayne Lunzmann
Juan Hernandez
Jonathan Tapscott
Devin Jimenez
Joseph Robinson

- Parks Board - July 25, 2017 Recommendation to City Council
- City Council - August 10, 2017 Recommendation of Approval
- Parks Board - August 22, 2017 Task Force Identified

Parks Board and Council Meeting Dates:

- Parks Board - December 5, 2017 Recommendation to City Council
- Council Work Session December 12, 2017
- Council Work Session January 30, 2018
- Council Session February 1, 2018

EXEC UIIVE SUMMARY

INIRODUCTION

The Austin Parksand Recreation Department's(PARD) Aquatic Division is charged with the daunting task of managing 51 public aquatic facilities and providing quality programs and services to the residents of the City of Austin. These facilities include seven (7) municipal pools, 28 neighborhood pools, three (3) wading pools, 11 splash pads, one (1) rental facility at Commons Ford Ranch, and Barton Springs Pool. However, four city pools were closed for the season due to leaking and aging conditions in 2017.

An inventory of an aging aquatic infrastructure, rapid population growth, demographic changes, funding considerations, and regulatory requirements are not only challengesfaced by the City of Austin's Aquatic Management Team but have served as the catalyst for examination and planning for the future of the City's aquatic facilities.

MASTER PLAN PURPOSE

The purpose of this plan is to recognize facility management opportunities system-wide and to provide recommendationson the current, expanded or reduced aquatic facility system that would be both more equitable and more sustainable into the future.

The recently completed Aquatic Facilities Needs Assessment included the inspection, evaluation, and recommendation for renovation, redevelopment and/or replacement with new facilities on existing or a Itemative sites. This plan, which builds upon and serves as a continuation of the Needs Assessment, is intended to provide PARD with a comprehensive Master Plan that evaluates existing management opportunities, develops a sustainable management model, and provides recommendations for developing an equitable, sustaina ble a quatic system that addresses the present and future needs of the City. Additionally, this master plan must be treated as a living document that needs to be reviewed and revised every 5 years (minimum) or as needed to respond to changing demographics and urban growth pattems of the City of Austin.

PUBUC ENGAGEMENT- 3 PHASES

The public engagement forthis MasterPlan consisted of a review of the input gathered during the Needs Assessment and the SWIM512 campaign held in the summer of 2015 and was followed by public workshops held during three phases of the Master Plan process.

Needs Assessment Input

The public input process began during the Aquatic Fa cilities Needs Assessment in 2014, which consisted of 11 regional meetings, a statistic ally valid, random sample survey of 500 residents, over 2,500 surveys collected at the pools, and a Television Town Hall. The process engaged over 13,000 residents.

Recuring themes included:

- Keep the poolsopen and affordable
- Increase the hours and swim sea son length
- Improve restrooms, bathhouses, and seating areas
- Improve cleanliness of pools, bathhouses, restrooms, etc.
- Provide shade

The most important actions the City could take to improve pools (from the surveys):

- Increase the swim season (67\%)
- Provide additional shade (63\%)
- Upgrade pool and bathhouses (33\%)
- Add more lap lanes (28\%)
- Insta ll zero depth entry (28\%)
- Provide more seating areas (23\%)

SWIM 512: Public Engagement Synopsis

Between the Needs Assessment and this Master Plan, the City completed the SWIM512 campaign to take adva nta ge of usersat the poolsin the summerof 2015, utilizing on-site community conversations at three (3) Municipal Pools and eight (8) Neighborhood Pools, plusNeighborhood Talksatneighborhood association and organization meetings and Community Focus Groups at recreation centers.

The results of this process include:

- Generally strong support for larger family aquatic centers and the development of indoor, year-round facilities
- A large percentage of the survey respondents are willing to pay a fee to use pools
- Preferred features, among the children polled through the summer camp and after school program, included tall slides, climbing walls, lazy rivers, indoor pools, diving boards, a nd shade
- Strong need for pools in some underserved neighborhoods, especially where geographic ba miers such as major highways limit access to pools (ex., Colony Park)

Master Plan Engagement

As part of the Master Plan process, two rounds of public meetings were conducted in 2016. In addition, the City and Consultants participated in neighborhood association meetings to promote the public workshops and the survey. Follow-up workshops were held in 2017.

Survey Results

What to Do with Poolsthat are Beyond Repair.

- Repairing pools that are in good condition (41\%)
- Closing the pool and replacing it with a family friendly option (30\%)

Prionities

- Closing poolsthat are beyond repair (34\%)
- Making necessary renovations to remaining pools (34\%)
- Closing pools that are beyond repair and add a series of larger swimming pools to serve all a reas of the city (32\%)

Criteria for Action

- Curent annual visits to the pool (51\%)
- Proximity to other pools - distance to other pools (47\%)
- Population size within a mile of the pool (47\%)
- Costs to upgrade (44\%)

Potential Distribution

Three potential systems of distribution were presented and discussed with participants.

- Neighborhood Pool Focused, which included primarily smaller neighborhood pools and would require a much larger quantity to serve the City
- Regional/Community Centered, which included a smaller number of more regional and community pools of a larger size
- Combination Concept, which included all pool types in a system with fewer pools than existing but more evenly distributed

The Combination Concept was generally accepted as the most realistic to serve Austin.

CURRENTSTATE OF AUSIIN AQUATICS

A review of the current state of Austin aquatic s must be part of the effort to determine the improvements necessary to yield a more sustainable and equitable aquatic system to serve Austin residents a nd visitors.

Aquatic Facilities Needs Assessment Summary

Most of Austin's aquatic fac ilities were built between 1927 and 1990 with an average age of over 50 years old. The typical useful life span of a standard pool is $25-30$ years. Asa result, many pools are physic ally a nd functionally obsolete, lacking popular features, such as zero-depth entry, interactive play areas, slides, program space, and spray features. Additionally, many do not meet current health or accessibility guidelines orcodes.
Many areas of the City are not served or are underserved, and many have overlapping service areas. Many of the pools in Austin are located close to other pools, and many areas have no pools nearby. In addition, some communities, most notably Colony Park and northeast Austin, have worked with the Parks and Recreation Department to develop a community master plan that includes a new aquatic facility as acknowledgment of the need to add and enhance recreational opportunities to the Colony Park area. Few pools are located in the northem and southem portions of the city, while in the central part of the city, most nota bly east of $1-35$, several pools are located within a mile of a nother pool.

Attendance and Budget

The overall average annual attendance of the pools (not including Barton Springs) over the 20022015 period was 743,905 , with over 298,000 at the
seven Municipal pools, nearly 434,000 at the 25 Neighborhood Pools, and just under 12,000 at the Wading Pools.

Austin operates the pools at an annual average cost of approximately $\$ 6.4$ million, not including budget for Barton Springs. Costs (overall and by partic ipant) vary greatly by pool. All revenues go to the City's General Fund.

Of the c urrent budget, only $\$ 2.1$ million isused to cover maintenance, most of which is allocated for utilities. The maintenance budget has been consistently exceeded, resulting in reductions to other PARD programs/improvements.

Over the past ten-years, the City of Austin has expended $\$ 29.2$ million forc apital projec ts related to the Aquatic system or approximately $\$ 3$ million per year.

AQUATIC VISION

The Aquatic Division mission a nd vision wasdeveloped through the extensive public engagement in the Needs Assessment, SWIM512, and Master Plan processes as well as input from the Aquatic Division Staff, Master Plan Team consisting of the Aquatic Advisory Board, Technical Advisory Group, and District Representatives Group.

Aquatic Division Vision

(What we strive to be)

Lead the Aquatic Industry with the highest quality aquatic standardsfor safety, programming, facilities, and staffing

Aquatic Division Mission

(Our Fundamental Purpose)

Provide a sustainable and equitably distributed system of outstanding aquatic facilities and programs

Goals \& Objectives

Goal 1: Financially Sustainable System

Develop a sustainable management model for existing facilities and develop a city-wide sustainable facility model that addresses the present and future needs of the City.

Objectives:

1. Provide an equitable distribution of aquatic facilities throughout the City of Austin, including but not limited to:

- Support research and development in areas
identified as deficient in aquatic facilities such as the Colony Park/Lakeside area in the northeast quadrant of the City
- Implement the recommendations of this Plan regarding the short- and long-term improvements, upgrades, consolidations, and decommissioning
- Utilize current demographic analysis as a key factor in the process to determine locations of upgraded, expanded, new, ordecommissioned facilities

2. Identify a variety of facility types to meet the diverse needs of residents, such as:

- Provide aquatic facilities to offer year-round programming (see Goal 3)
- Provide a balance of "neighborhood-based" and value driven aquatic "community" (multineighborhood) facilities that offer family and fitness oriented aquatic opportunities

3. Establish a system of aquatic facilities and programs at a higher level of management and economic al susta inability over the long-term
4. Esta blish an organizational and support struc ture to maintain a more susta inable system
5. Establish closer relationships with the permitting agencies and departments to streamline the development process

Goal 2: Diverse Facilities

Provide a modem and safe aquatic system throughout the City.

Objectives:

1. Reduce pool closure occurrences due to maintenance issues as a result of the age of facilities, such as:

- Bring all facilities, inc luding a ssoc iated build ings, parking, decks, etc. up to current standards and codes, such as ADA, health, safety and poolcodes

2. Provide suitable aquatic facility infrastructure for use by public or private events, including:

- Bathhouse facilities
- Qualifying pool length(s)
- Ample deckspace
- Mobility access to facility
- Covered/shaded gathering spaces
- Climate controlled staff areas
- Upgraded restrooms and pool houses

3. Modemize existing facilities and develop new facilities to include features identified most in the community engagement process, such as, but not limited to:

- Improved restrooms/pool houses
- Shade
- Wi-Fi
- Slides
- Shallow water play areas
- Lap lanes
- Climbing walls
- Diving boards

Goal 3: Year-Round Facilities

Establish and maintain year-round facilities in key demographic service areas that provide maximum equitable access to aquatic environments and opportunities

Objectives:

1. Prepare a feasibility study to determine the scope, size, programming, and financial impact of indoor fac ility(s)
2. Provide year-round, heated outdoor recreation/ lap pool facilities. Example:

- Identify locations which will best support yearround outdoor programs, lessons, and lifeguard training

3. Develop indoor aquatic facilities to:

- Enhance lifeguard training opportunities
- Cultivate partnerships with educational organizations, such as AISD and other school districts serving Austin
- Support local competitive swimming, water polo, synchronized swimming, diving, etc.
- Provide year-round programming (all ages)
- Expand drowning prevention and other water safety programs
- Reduce and limit weather-related impacts on aquatic programs

Goal 4: Progressive, Responsive Programming

Provide enhanced programming that responds to community input and that appeals to all user groups

Objectives:

1. Provide an equitable and enhanced distribution of aquatic programsthroughout the City
2. Deliverenhanced aquatic programming services, such as:

- Expand programs related to water safety, swim lessons, fitness, and leisure recreation.
- Provide new and trending programs as desired by the community (examples: scuba, ka yaking, paddle boarding, yoga, etc.)

3. Expand year-round programming at an indoor facility
4. Increase swim event opportunities for aquatic events a nd competitions
5. Maintain and expand community outreach relating to Aquatic Programsoffered city-wide
6. Develop an annual survey to assist in determining what future programming may be desired

Goal 5: Enhanced Operational Support

Provide aquatic focused maintenance facilities and develop operational procedures to support a susta inable aquatic system

Objectives:

1. Standardize mechanical components and equipment for renovated and proposed facilities throughout the system to achieve ease of maintenance and operation procedures of aquatic facilities and to reduce cost for inventory, such as:

- Create an inventory of standard mechanical components and aquatic equipment for ease of replacement, maintenance, and repair

2. Allocate and designate a central aquatic system facility that would provide an opportunity to store aquatic equipment, make repairs, and house aquatic maintenance staff, while also providing a closer connection between aquatic and maintenance staff
3. Mentor, train, and support existing and future aquatic mechanic/maintenance staff
4. Procure and support the acquisition of additional aquatic mechanic staff
5. Support, develop, cross-train, and mentoraquatic staff in the maintenance and operations of aquatic facilities

Goal 6: Foster Partnerships

Foster partnership opportunities to complement and enhance the aquatic system

Objectives:

1. Develop and expand aquatic partnerships with local educational entities and organizations who may want to include aquatics as part of their curic ulum or activities offered
2. Expand partnershipsto inc rease swimming a bilities and water safety
3. Increase and enhance outreach to promote aquatic programsand water safety

Goal 7: Recruit \& Retain High Performance Staff

 Hire, train, and secure retention of developed aquatic staff
Objectives:

1. Train, mentor, and maintain a dedic ated aquatic staff at all levels
2. Continually evaluate hiring practices and procedures to improve and expand the Aquatic Staff, such as:

- Develop and foster relationshipswith Corporate City of Austin Human Resources and PARD Human resources in the hiring of lifeguards and other aquatic staff as needed
- Automate administrative hiring practices for sea sonal lifeguards

3. Esta blish a nd hire the needed qua ntity of full time lifeguard employees to support a year-round aquatic system
4. Implement procedures and policies to enhance recruitment of lifeguard staff, such as:

- Continue to sponsor and provide non-fee based lifeguard training
- Sponsor and provide a no-cost altemative to supply lifeguards with uniforms and equipment
- Consider paying or reimbursement for lifeguard training

5. Adapt and procure permanent 'front line' staff for utilization at aquatic facilities and to omit the demand for lifeguards from performing other duties
6. Improve lifeguard staff experience and retention during the operating season by improving environmental conditions and amenities at each aquatic facility, such as:

- Provide lifeguard break/safety rooms with environmental controls
- Improve quality and quantity of shading at fac ilities for lifeguards
- Provide free of charge, sun protection material and apparel
- Provide access to ice and cold water

Goal 8: Environmental Sustainability

Provide facilities that maximize environmental sustainability and energy efficiency

Objectives:

1. Upgra de and stand a rdize fac ilitiesa nd procedures with more efficient aquatic facility design which takes advantage of technology, such as:

- Auto-fill
- Variable speed pumps
- Improved chemic al controllers

2. Design facilities using Leadership in Energy and Environmental Design (LEED) and/or Sustainable Sites Initiatives (SITES) principles, such as:

- Upgrade systems to provide a potential reduction of water use
- Design landscapes for low water use and low maintenance levels
- Utilize stormwater best management practices

POOLCLASSIRCATIONS

Austin currently has five categories of aquatic facilities: Neighborhood Pools, Municipal Pools, Wading Pools, Waterfront, and Spraygrounds. The table below identifies the recommended pool classifications.

Classification	Senice Area	Pool Square Feet	Features
Neighborhood Pool	20-minute walk 5-minute drive	$3,000-5,000$ S.F. Zero depth entry. 25 m or $75^{\prime} \times 6-8$ lanes	Recreation and Activity Pools
Community Pool	10-minute drive	5,000-7,000 S.F. Zero depth entry. $25 \mathrm{~m} \times 6$-12 lanes	Recreation and Activity Pools
Regional Aquatic Center	15-minute drive	7,000-12,000 S.F. $25-50 \mathrm{~m}$ long $\times 6-8$ lanes	Interactive water plan features, party/staff training room, youth fitness, may have 50 m length
Year-Round Community Indoor Facility	15-minute drive	$\begin{gathered} 5,000-7,000 \text { S.F. } \\ 25 \text { yards x 6-8 lanes } \end{gathered}$	Designed for training, fitness, and program use
Year-Round Premier Indoor Facility	30 minute drive	Over 15,000 S.F. $50 \mathrm{~m} \times 25$ yards, Warm water pool, diving well	Designed foroptimum training, fitness, competition, and program use

The public engagement process identified community desires for a variety of facility types,
sizes, and features. Participants reviewed the facility classifications at public meetings and used templates to identify potential arrangements throughout the City to represent an equitable distribution of facilities to serve the growing participation. A mixture of Neighborhood, Community, and Regional Pools was identified with a clear need for indoor facilities foryearround programs and training. These classifications are intended to help start a conversation, when a new facility is to be developed. Public engagement will be necessary to identify the type, size, and features most desired for a specific location.

SUSTAINABLE AQUATIC SYSTEMS

The City of Austin - Office of Sustainability defines three goals for susta ina bility:

- Prosperity and jobs
- Conservation and the environment
- Community health, equity, and cultural vitality

In relation to the Austin Aquatic System, sustainability should be applied on several fronts, including the following:

- Facilities
- Budget/Cost
- Staffing
- Maintenance/Operations
- Programming

The following five categories should be used to benchmark a sustainable system:

- Water Use
- Attendance
- Annual Maintenance Repairs
- Demographics
- Actual Cost per Patron (Future)

Baseline values must be established for each benchmark category, and these values should be updated annually as new data becomes available. The actions recommended in the Aquatic Facility Susta ina bility table below apply when a pool reaches the indic ated deviation in any benchmark category. The Site Suitability Ranking Process described next should be utilized as part of the decision-making process once the highest threshold is reached.

SIIE SUITABIUTY RANKING PROCESS

The purpose of the Site Suitability Ranking Process was to establish a methodology to rank the suitability of existing and future aquatic sites for development, renovation, expansion, consolidation, ordecommissioning.

This process will be used as a guide for future decision-making with regard to the status of aquatic facilities. The flow chart below summarizes the steps of the process, which incorporates input gathered from the public plus an extensive amount of data relevant to the assessment of a site for development or redevelopment as an aquatic facility.

Classification \% Deviation Above Baseline

216-946 cyicion

Site Suitability Rating Scores were determined for each pool site, including separate scores for the Neighborhood and Community/Regional scenarios. The Site Suitability Rating Score represents the summation of criteria scores multiplied by the criteria weights. Scores could theoretically range from 0 to 100. Actual results ranged from 42 to 81 for Neighborhood Pool and 46 to 71 for Community or Regional Pool.

Using the scores from this site suita bility process, pool sites were then ranked (against each other) by pool classification. The top ten aquatic sites for Community Pools and top five for Regional Pools are listed below.

Community Pool

- Bartholomew
- Ga mison
- Mabel Davis
- Balcones
- Walnut Creek (tied)
- Dick Nichols (tied)
- Northwest (tied)
- Dove Springs (tied)
- Givens
- Montopolis

Regional Pool

- Bartholomew
- Garison
- Mabel Davis
- Balcones
- Walnut Creek (tied)
- Dick Nichols (tied)

AQUATIC SYSTEM RECOMMENDATIONS

This Master Plan provides aquatic system recommendations to facilities, operations, policies, and programs in Austin. The implementation of these recommendations should include follow-up public input processesto ensure that any proposed changes meet the aquatic needs of the local community.

No public pools may be decommissioned absent an affirmative vote of the Austin City Council. Prior to Council decision regarding the potential initiation of a decommissioning process, Council must receive a staff presentation and conducta public hearing.

Aquatic Facilities and Distribution

The Austin residents and the Parks and Recreation Department indicated a need fora more sustainable and equitable system. To accomplish this end, an aquatic system should be implemented using the pool classifications outlined on the previous pages. The map on the next page (x), Aquatic Service Areas - 20 Year Plan, identifies the distribution of this system.

Regional Aquatic Centers

Pools would be upgraded to Regional Aquatic Centers at the following sites:

- Balcones
- Bartholomew
- Garison
- Northwest
- Deep Eddy (servesasa unique regional facility)

Community Pools

Pools would be upgraded to Community Pools at the following sites:

- Dick Nichols
- Dittmar
- Dove Springs
- Givens
- Montopolis
- Springwoods
- Walnut Creek

Neighborhood Pools

Gaps between Regional and Community facilities will be filled by the existing Neighborhood Pools. The Site Suitability Ranking Process and Susta inability thresholds should be utilized to guide decisions at these locations.

New Aquatic Facilities

1. Colony Park/Lakeside Community - To serve this underserved area
2. Northeast (new) - To serve an underserved area (east of I-35 and north of Highway 290)
3. Northwest (new) - Long-tem replacement of Canyon Vista
4. Southeast (new)
5. Southwest (new)

The Site Suitability Ranking Process was applied to the potential Colony Park site, and the site scored fairly well for suitability as a Neighborhood Pool (score of 62 of 100). Much of the infrastructure has not yet been built for the planned aquatic facility at this location. As a result, the site's score will likely increase as infrastruc ture is added at the park, since infrastructure represented its lowest scoring criteria. The site received high scores for several other c riteria.

New Indoor Facilities

The map also shows two indoor facilities: a Premier Indoor Facility, located within a triangle east of I-35, south of Highway 183, and north of Highway 290, and a Community Indoor facility to serve the southem portion of the City.

Operations

General

1. Establish a central Aquatic Maintenance Facility
2. Synchronize supply inventory control and procurement policies
3. Include Wi-Fi and internet (fiber) capabilities for greater efficiency
4. Utilize online applications to improve efficiency of the large and aging aquatic system

Marketing

1. Increase the use of social media and the marketing budget
2. Promote new programstargeted to Active Adults and Seniors
3. Create new special events and networking opportunities through aquatic programming targeted at young adults without child ren
4. Get creative in partnering with fitness centers, physical therapists, hospitals, health insurance providers, fitness non-profit organizations, and clubs for sponsorships, leases, and rentals

Lifeguard Retention

1. Improve staff areas when facilities a re selected for improvement or replacement
2. Provide Support Staff to assist Lifeguards with additional ta sks (ja nitorial, c ustomer service)
3. Expand tuition reimbursement or scholarship aid for Lifeguards who successfully earn certification
4. Reduce ja nitorial obligations for the Lifegua rds
5. Consider financial assistance for transportation due to the size of the City and long commutes
6. Focus recruitment efforts, afforda ble or subsidized training, and employment incentives in neighborhoods where Lifeguard applicants have been limited
7. Incorporate online scheduling and payroll programs
8. Consider an indoor facility to increase In-Service and Pre-Season Tra ining opportunities
9. Hire more Full-Time Head Lifeguards for a higher level of professiona lism

Policies and Partnerships

1. Make Free Life Vests (PFDs) available at all locations for children who cannot pass the swim test
2. Increase availability of Leam to Swim programs forchildren and adults with unique needsthrough partnerships and sponsors
3. Beginto search outpotential partnersand sponsors for the development of an indoor aquatic facility
4. Develop partnershipswith club tea ms, high school teams and other groups, including competitive divers and synchronized swimmers, who might rent pool space at a premier indoor facility

Environmental Sustainability

1. Design a nd operate all new facilities to LEED Silver level guidelines as required for all large capital projects for the City
2. Utilize efficient equipment
3. Utilize rainwater and reclaimed waterfor inigation
4. Monitor water use to respond quickly to a ny leaks
5. Specify grasses a nd landscape planting betterfor Austin's climate
6. Locate pools near public transportation for ease of access
7. Reduce paperwaste through digitalconnections, improved by providing Wi-Fi
8. Ensure that pool backwash flows to sanitary sewer lines ratherthan into creeks ordrainage corridors
9. Coordinate Best Management Practices with the Offices of Sustainability, Watershed Protection, etc.
10. Utilize natural light and/or LED fixtures in structures
11. Utilize low-flow plumbing fixtures
12. Consider the long-term use of a pool during the design process with consideration to ease of maintenance, energy use, and impact on the environment

Revenue Generation

Revenue generation would contribute to a more sustainable aquatic system. The following opportunities should be further explored to generate revenue.

Fees and Charges

The new a quatic system providesa variety of aquatic opportunities with Neighborhood Pools remaining free and fees for Community and Regional pools (based upon the socio-economic conditions of the surrounding market area).

Concessions

All Regional Aquatic Centers (and potentially Community Pools) should have concession offerings with a shaded area. PARD could operate concessions at a substantial profit.

Naming Rights/Sponsorship and Partnerships

The quality of the new facilities offers an attractive opportunity for naming rights and sponsorships. Events and programs could also be sponsored. PARD should explore partnerships with healthcare providers, commercial entities, and .

Inc reased Programming

The upgraded facilities will offer an opportunity to expand program offerings, and thereby increase revenue.

Programs

1. Utilize videos for parents to determine skill level for correct class placement for swim lessons
2. Emphasize the need for drowning prevention programs and swim lessons
3. Provide promotionalmaterialsto worship, medical offices, and social services agencies to get more children enrolled
4. Consider evening and weekend lessons to accommodate the needs of working parents
5. Provide more "teachable" and "swimmable" water at new facilities considered including heating for early season lessons and active adult eally moming programs
6. Place the focus on drowning prevention and safety as a necessary lifetime skill
7. Create new programs targeted to Active Adults and Seniors

IMPLEMENTATION

Capital Costs

Capitalcostsforaquatic improvementsare estima ted in the range of $\$ 152$ to $\$ 193$ million, depending on how many of the current Neighborhood Pools are kept in operation.

Staffing

The pool staffing requirements for the new system will be approximately 980 staff (2016 staff included 768 total staff), including lifeguards, pool managers, attendants, etc .

Revenue

This new system has great potential for increased income generation from concessions, entrance fees (an increase of approximately $\$ 1.5$ to $\$ 2$ million per year), and programming.
The indoor pools would generate revenues from increased programs, pool and lane rentals, swim meets, concessions, and other sources. In addition, similar indoor facilities throughout the country have benefited from both capital and operating funds from hotel taxes, tounism funds, sponsorships, na ming rights, and partnerships.

Operations Costs

Once the recommendations are fully implemented, PARD should experience lower costs for operation per pool due to the newer condition of facilities, more energy efficient mechanical systems, reduced maintenance repairs, and the benefits of a LEED Certified and more environmentally sustainable system. Staffing costs will be higher due to the increased number of staff (primarily Lifeguards) required to operate the system as mentioned earlier in this chapter.

Maintenance Repairs

Continuous maintenance repairs, both scheduled (known) and unscheduled (unknown), will remain constant until all of the pools are upgraded. The process outlined in Chapter 6 should be followed to examine the Sustainability of a pool going forward. In addition, PARD should not spend more than $\$ 200,000$ on a pool to keep it in operation unless the repairs will keep the pool operating for another $3-5$ years and/or the repairs will be incorporated into the pool upgrade process.

Potential Funding Scenarios and Fiscal

Expenditures Priorities

The City would need at least $\$ 8$ to $\$ 10$ million peryear over the next 20 years to implement all of the capital facility improvements recommended in this plan (not including inflation). These capital improvements mus \dagger be weighed against the other needs of the City.
A goal of this plan is to provide the City with the tools necessary to develop a more sustainable and equitable system of aquatic facilities and programs. Accordingly, PARD and the City should use thisplan to develop a capital improvement plan that considers other fiscal expenditure priorities.

Recommendations for Prioritization:

- Address the critical pools in danger of failing ba sed on Susta ina bility thresholds in conjunction with Site Suitability Rankings
- Make geographic ally located improvementsto ma inta in quality fac ilities throughout the City
- Prionitize development of at least one indoor facility to assist in Lifeguard recruitment and training and meeting a growing need for yearround programming and lap swimming
- Develop new pools based on population growth and to serve underserved areas, such as the Colony Park/Lakeside Community, as indicated in this plan

TASK FORCE RNDINGS AND RECOMMENDATIONS

The Austin City Council a ppointed a Task Force of the Parks and Recreation Board membership on August 22, 2017. The City Council formed the Task Force to conduct public meetingsand solic it additional public feedback on the draft planning tool known as the Draft Aquatic Master Plan (Plan).

The Task Force held six public meetings beginning in September through November 2017 at five different locations, providing citizen communication and input and one formal Community Public Input event. The community input event regarding the Aquatic Master Plan washeld on October 23, 2017 at the Gus Garcia Recreation Center. All Task Force members attended this event.

The Task Force supports the recommendations made in the Aquatic Master Plan with the modifications noted in their report, which is included as Chapter 9 of this report.

Task Force Recommendations

1. 2018 Bond - On the November 2018 general election ballot, include a stand-alone bond proposition exclusively for aquatic sfacilities in the amount of $\$ 124,000,000$. The bond proposition should include all end-of-functional life pool replacements for pools listed in years 0 through 5 within the Draft Aquatic Master Plan.
2. Pool Replacement - The costs for the pool replacements should be the total cost detailed in the Draft Aquatic Master Plan to bring existing pools up to modem, environmentally sustainable, energy and water efficient, ADA, health, and safety standards.
3. New Pools - Funding identified by staff to add four additional new pools that would provide public swimming opportunities to populations not currently adequately served by a city pool Colony Park (NE Austin), NW Austin, SE Austin, and SW Austin.
4. Maintenance Funding - Funding needs to be sec ured, either as M\&O or bond, for capital costs associated with maintenance for pools listed in years 6 through 20 within the Aquatics Master Plan.
5. Public Private Partnerships - A Request for Information (RFI) and subsequent Request for Proposals (RFP) to be released for a publicprivate partnership in the creation of a premier indoor aquatic center on city-owned property as identified by the City Manager's office.
6. Future Maintenance and Operations Funding Additionally, in the event maintenance and operations savings resulting from the renovated pools do not entirely offset the expense of the additional new pools, the Task Force recommends that the Parks and Recreation Department annual operating budget be increased by the amount needed to maintain each new pool plus all the existing pools as each pool is opened to the public. Further, expanded pool hours require new fundsfor additional staff and operating expenses.
7. Public Process on Any Future Decommissioning The Task Force recommendsthatno individual pool ever be decommissioned without an affirmative vote of the Austin City Council. If in the future, if it is ever impossible to repairor renovate an existing facility and pemanent closure appears to staff to be the only altemative, then staff must present the City Council with a request to hear about the pool conditions and receive public input. Council will then make a decision either to close the pool
or will identify and allocate additional funds to keep the poolopen.
8. Historic and Cultural Factors - The Task Force also recommendsthathistoricala nd culturalfactors be considered asa high priority when a pool facility is at point of replacementordecommissioning. Staff recommends the following pools be considered of unique historic and cultural importance:

- Barton Springs
- Deep Eddy
- Big Stacy
- Rosewood
- Parque Zaragoza

9. Increased Pool Funding - Three items were identified by the Task Force that could potentially increase pool funding to help offset costs.
a. Since the public pools clearly serve a public interest (providing exercise and cooling during hot summer months), we recommend that Austin Energy \& Austin Water grant "at cost" rates for water and electricity used to run the public pools. Parks and Recreation Department currently pays full rate for utilities at all facilities, and this reduction could result in positive savingsfor pool expensesthat could be diverted to maintenance. New facilities should also include solar panels to reduce electricity use. This will be particularly helpful with the natatorium.
b. Rather than automatically tuming over all fees for pool usage to the City's General Fund, retum all fees for pool usage to the Park and Recreation Department Aquatics capital improvement fund or for use on pool maintenance or operations. Directing pool fees to the Park and Recreation Department should not be in lieu of a ny existing funding or future allocation to the Park and Recreation Department.
c. Through the input process conducted by the Task Force, Austinites generally a ppear willing to pay individual fees for an expanded swim season and forearly and late hours at existing pools.

Additional Rationale

- Modemizing the City of Austin Aquatics System will eliminate emergency closures and pool replacementsthat have come up overthe past decade due to the age of pools.
- The modemization will reduce maintenance
and operations costs while addressing the substantial facility condition issues resulting from long standing unmet maintenance and operational needs of the pools.
- The maintenance savings should be allocated foroperating the new pools.
- A city natatorium is requested by staff to enable training of lifeguards year-round so that many pools can be kept open either for extended months of operation or year-round. In fact, Aquatics Division staff note that the natatorium is a pre-condition for any extension of pool hours within the system. Such a facility would be indoor, climate controlled, include public access, and be open year-round. The facility could include outdoorswimming aswell.
- To serve the entire aquatic system, a centrally located pool maintenance facility is needed to house standard frequently needed parts and supplies, and where maintenance staff have access to planning and workspace environments.
- It will take a comprehensive aquatics bond to win enough support from City of Austin voters and therefore new pools included in years 6-10 are brought forward to gain the support citywide.

TABIE OF CONIENIS

1 INIRODUCTION 1
1.1 Background 1
1.2 Master Plan Purpose 2
1.3 Master Plan Objectives 2
1.4 Master Plan Process 2
2 PLANNING CONIEXT 5
2.1 Introduction 5
2.2 Demographics 5
2.3 Aquatic Needs Assessment Summary 12
2.4 Current Aquatic System Status 15
2.5 National Trends 25
2.6 Aquatic Operations Observations and Analysis 27
2.7 Health, Safety, Welfare, Environmental, and Regulatory Conditions 41
2.8 Staff Strengths, Weaknesses, Opportunities, and Challenges (Swoc) Exercise 57
3 PUBLC ENGAGEMENT 61
3.1 Introduction 61
3.2 Needs Assessment Input 61
3.3 SWIM 512: Public Engagement Synopsis 62
3.4 Spring and Summer 2016 Workshops 64
3.5 Preliminary Recommendations Public Workshops (June 2017) 66
4 AQUATIC DIVISION VISION, MISSION, GOALS, \& OBJ ECTIVES 69
4.1 City of Austin Mission, Vision \& Pride Values 69
4.2 Parks and Recreation Department Strategic Plan 70
4.3 Aquatic Division Vision, Mission, Goals, \& Objectives 70
5 POOLCLASSIRCATIONS 75
5.1 Introduction 75
5.2 Current Pool Classifications and Characteristics 75
5.3 Recommended Pool Classifications and Descriptions 76
6 SUSTAINABLE AQUATIC SYSTEM 85
6.1 Introduction 85
6.2 Sustainable Aquatic System 85
6.3 Benchmark Categories 87
7 SITE SUITABIUTY RANKING PROCESS 95
7.1 Introduction 95
7.2 Data Sources and Descriptions 96
7.3 Criteria and Elements 99
7.4 Process and Weighting 118
7.5 Analysis 122
7.6 Implementation 127
8 RECOMMENDATIONS 129
8.1 A Sustalnable and Equitable Aquatic System 129
8.2 Aquatic Faclitites and Distribution 129
8.3 Austin's Unique Aquatic Facilities 133
8.4 Aquatic Programming Recommendations 140
8.5 Operations, Use Agreements, and Partnershilps 141
8.6 Malitienance Recommendations 146
8.7 Environmental Sustainablity Recommendations and Best Management Practices 147
8.8 Industry Standards and Common Facility Recommendations 148
8.9 Marketing Recommendations 149
8.10 Potental Increased Revenue Generation Methods 149
8.11 Probable Cost Projections (Capital, Revenues, and Operations) 151
8.12 Potential Funding Scenarios and Fiscal Expenditures Priorities 152
8.13 Potential Lifeguard Recruitment and Retention Methods 153
APPENDIX A - SITE SUITABILIY RATINGS BY POOL A-1
APPENDIX B - SOCIAL NEEDS AND CONDIIONS ANALYSIS B-1
APPENDIX C -PUBLIC ENGAGEMENTSUMMARIES C-1
C. 1 Summary Of Public Meetings C-1
APPENDIX D - PUBLIC INVOLVEMENTPLAN (PIP) D-1
APPENDIX E - INDIVIDUAL POOL RECOMMENDATIONS AND COSTS E-1
E. 1 Introduction E-1
E. 2 Regional Aquatic Centers E-2
E. 3 Indoor facilities E-17
E. 4 Community Pools E-21
E. 5 Neighborhood Pools E-49
APPENDIX F - STE COSTS F-1
APPENDIX G - PARKS AND RECREATION TASK FORCE RECOMMENDATIONS G-1
List of Tables
Table 2.1: Austin Population (1960-2040) 5
Table 2.2: Household and Fa mily Size (2000-2022) 6
Table 2.3: Median Age (2000-2022) 6
Table 2.4: Population Age 65 and over (1990-2017) 6
Table 2.5: Population Under 18 (1990-2017) 7
Table 2.6: Aquatic Facilities Characteristics 12
Table 2.7: Aquatic Facility Issues Summary 17
Table 2.8: Average Annual Attendance at Pools (2002-2014) 21
Table 2.9: Average Annual Attendance and Cost Per Partic ipant by Pool 21
Table 2.10: Admission Fees 22
Table 2.11: Austin Aquatic Budget (Exc luding Barton Springs) 23
Table 2.12: Average Annual Operations Costs 24
Table 2.13: Average Cost Per Partic ipant 24
Table 2.14: Top Ten Lowest Cost Per Participant Pools 24
Table 2.15: Top Ten Highest Cost Per Participant Pools 24
Table 2.16: Ten Year Pool Capital Funding 25
Table 2.17: Population and Staff by Aquatic District 28
Table 2.18: Population and Staff Within 1 Mile of City of Austin Pools 31
Table 3.1: Criteria forAction 65
Table 5.1: Aquatic Facility Classifications 76
Table 6.1: Water Use Thresholds 89
Table 6.2: Attendance Thresholds 90
Table 6.3: Annual Maintenance Repair Thresholds 91
Table 6.4: Demographic Thresholds 92
Table 7.1: Site Suitability Ratings Key 97
Table 7.2: Demographics 100
Table 7.3: Capacity 101
Table 7.4: Site Conditions 104
Table 7.5: Health and Safety Issues 105
Table 7.6: Location 107
Table 7.7: Accessibility 108
Table 7.8: Infrastructure 110
Table 7.9: Environmental 112
Table 7.10: Regulatory 115
Table 7.11: Operations 117
Table 7.12: Importance Factors 119
Table 7.13: Site Suitability Ranking Sc ore 122
Table 7.14: Site Suitability Ranking Summary 123
Table 7.15: Site Suitability Ranking Summary for Neighborhood Pools 124
Table 7.16: Community Pool Ranking 126
Table 7.17: Regional Pools Ranking 126
Table 8.1: Colony Park Site Suita bility 131
Table 8.2: Capital Improvement Schedule (See Appendix E for More Detail) 143
Table A.1: Balcones A-1
Table A.2: Bartholomew A-3
Table A.3: Big Stacy A-5
Table A.4: Brentwood A-7
Table A.5: Canyon Vista A-9
Table A.6: Civitan A-11
Table A.7: Colony Park A-13
Table A.8: Deep Eddy A-15
Table A.9: Dick Nic hols A-17
Table A.10: Dittmar A-19
Table A.11: Dottie J ordan A-21
Table A.12: Dove Springs A-23
Table A.13: Ga mison A-25
Table A.14: Gillis A-27
Table A.15: Givens A-29
Table A.16: Govalle A-31
Table A.17: Kennemer A-33
Table A.18: Little Stacy A-35
Table A.19: Mabel Davis A-37
Table A.20: Martin A-39
Table A.21: Metz A-41
Table A.22: Montopolis A-43
Table A.23: Murchison A-45
Table A.24: Northwest A-47
Table A.25: Parque Zaragoza A-49
Table A.26: Patterson A-51
Table A.27: Ramsey A-53
Table A.28: Reed A-55
Table A.29: Rosewood A-57
Table A.30: Shipe A-59
Table A.31: Springwoods A-61

Table A.32: Walnut Creek A-63
Table A.33: West Austin A-65
Table A.34: Westenfield A-67
Table G.1: Aquatic Master Plan Projects Years 0-5 and System Expansion Projects G-4

List of Figures

Figure 2.1: Social Needsand ConditionsMethodology 10
Figure 2.2: Social Needsand ConditionsIndex 11
Figure 2.3: Existing Aquatic Service Areas with Underserved Areas 16
Figure 2.4: Instructional Swim Program Participation (2007-2015) 19
Figure 2.5: Aquatic Staff Locations 29
Figure 2.6: Staff by Aquatic District 30
Figure 2.7: Core Transit Comidor with Underground Utilities 44
Figure 5.1: Neighborhood Pools 79
Figure 5.2: Community Pools 80
Figure 5.3: Regional Center with 25 Yard Pools 81
Figure 5.4: Regional Centers with 50 Meter Pools 82
Figure 5.5: Community Indoor Pool 83
Figure 5.6: Premier IndoorAquatic Centers 84
Figure 6.1: Aquatic Facility Sustainability 87
Figure 7.1: Site Suitability Flow Chart 95
Figure 7.2: \quad Capital Improvement Schedule (Based on the site Suitability Ranking Process) 125
Figure 8.1: Aquatic Service Areas-20 Year Plan 132
Figure 8.2: Rosewood Pool Artic les 136
Figure 8.3: Zaragosa ParkArticle 137
Figure 8.4: Excerpt from the 1928 Master Plan 137
Figure 8.5: PARD Pools Locations and Dates 139
$\begin{array}{lll}\text { Figure B.1: Total Population - Population Density } & \text { B-5 }\end{array}$
Figure B.2: Total Population - Social Needs and Conditions B-6
Figure B.3: Target Population - Children Ages 0-14 - Population Density B-7
Figure B.4: Target Population - Children Ages 0-14-Social Needs and Conditions B-8

1.1 Background

The Austin Pa rks a nd Recreation Department'sAquatic Division ischarged with the da unting task of ma na ging 51 public aquatic facilities and providing quality programs and services to the residents of the City of Austin. In order to provide these services in a safe and effective manner, their year-round and seasonaloperations require the recruitment, tra ining a nd supervision of over 750 lifeguards to fully staff its lifeguarded sites. These facilities include seven (7) municipal pools, 28 neighborhood pools, three (3) wading pools, 11 splash pads, one (1) rental facility at Commons Ford Ranch, and Barton Springs Pool.

This inventory of aging aquatic infrastructure, combined with rapid population growth, demographic changes, funding considerations, and regulatory requirements, presents a challenge for the City of Austin's Aquatic Management Team butalso servesasthe catalyst forexamination and planning forthe future of the City's a quatic facilities.

With approximately 1.25 million annual visitors to these facilities, the Aquatic Division is not only charged with providing a safe, clean and healthy environment but also the management, fiscal accountability, and maintenance of the mechanical operations. The C ity of Austin has an exceptional reputation in the aquatic ind ustry a nd operates two facilities that are considered historic ally relevant to the development of America's public sector pools: Deep Eddy Pool and Barton Springs Pool.

However, in the summer of 2017, four city pools were closed for the season due to leaking and aging conditions (Shipe, Govalle, Givens, and Mabel Davis). In 2014, City officials allocated $\$ 3$ million dollars for both Shipe and Govalle to be rebuilt and retumed to the a quatic center inventory in 2019. With the closure of the Mabel Davis Pool (and later Givens), the Austin Parks and Recreation Department proposed providing a shuttle service to the Ga rison Pool in south Austin throughout the summer months, exemplifying PARD efforts to ensure aquatic access to residents.

Community memberswho frequent the City of Austin's public a quatic fa cilitieslove theirpoolsand over13,000 residents actively participated in a three-part, comprehensive public education and consensus building process called SWIM512. The methodology and results a re detailed in Chapter 2 of this Aquatic Master Plan. Working with industry professionals, professional staff, a citizen's advisory board, and community members of Austin, the completion of this 20-30 year vision for Austin's aquatic facilities will serve as a guide for Austin's a quatic future. This effort a lone has exhibited the Austin Parks a nd Rec reation Department's commitment to aquatics.

1.2 Master Plan Purpose

In 2015, the City of Austin (City) Parks and Recreation Department (PARD) issued a Request for Proposals and selected the Team of Brandstetter Carroll Inc., Adisa Communic ations, Architecture Plus, J LI Enterprises, and Chan and Partnersto provide consulting servicesforthe creation of a masterplan to guide the current usage and future development of the City's public swimming poolsand related facilities. The goal wasto recognize facility management opportunitiessystem-wide and to provide recommendationson the curent, expanded or reduced aquatic facility system that would be both more equitable and more susta inable into the future.

The City of Austin commenced construction of aquatic facilities in the early 1930s. In principle, PARD's existing aquatic facilities were planned to operate for fifty years and most facilities are approaching, or have exceeded their operating life span. The Parks and Recreation Department (PARD) and Brandstetter Carroll Inc. completed an Aquatic Facility Needs Assessment in 2014, which included the inspection, evaluation, and recommendation for renovation, redevelopment and/or replacement with new facilities on existing or altemative sites. The assessment also included a Qualitative Assessment of each pool facility. The Aquatic Division intended to expand on the findings of the Aquatic Assessment by developing this Aquatic Master Plan. The process of developing this Master Plan was a top priority for PARD and the City of Austin. The geographical, environmental, rec reational, historic al, and cultural qualities of the existing facilities provide an opportunity to enhance the aquatic program for PARD and the City.

The plan, which buildsupon and servesasa continuation of the Aquatic Facility NeedsAssessment, is intended to provide PARD with a comprehensive Master Plan that addresses existing management opportunities and constraints, developsa sustainable management model for existing facilities a nd provides recommendations in developing an equitable, city-wide sustainable facility model that addresses the present and future needs of the City. Additionally, this master plan must be treated as a living document that needs to be reviewed and revised every 5 years (minimum) orasneeded to respond to changing demographicsand urban growth pattems of the City of Austin.

1.3 Master Plan Objectives

The MasterPlan effortsfocus on thirty-three (33) existing aquatic facilities and one potential pool site, inc lud ing but not limited to the pool, the bathhouse, the mechanical room, parking lot, and other support facilities. The emphasis is on addressing aquatic facility system management issues, including aquatic user facility programs, facility operation and maintenance, facility environmental sustainability, aquatic health codes, and aquatic program fiscal efficiencies aquatic facilities.

The recommendations of the Master Plan are intended to be used as a guide for sustainable and equitable management of City of Austin aquatic facilities and associated attributes. The recommendations may be utilized as marketing tools to generate public interest, support, funding, and design efforts for future development of aquatic facilities and associated uses.

1.4 Master Plan Process

The Brandstetter Carroll Inc. Team (BCI Team) utilized an approach, which built upon the Team's prior knowledge of the Austin Aquatics System and which provided a logical sequence of reviewing the existing conditionsand direction, development of a vision based upon sta keholderengagement, outlining altemative scenarios for the aquatics system, and finally developing an Action Plan to implement the recommendations. The following phases were implemented as part of the Master Plan process:

- Process Development Phase to refine the scope of work and prepare a Public Engagement Plan
- Planning Context Phase to review existing conditions and practices, identify key issues and concems, and summarize the findings which provided the background framework for the remaining tasks
- Strategic Vision, Goals and Objectives Phase, which included the first round of stakeholder discussions which were used along with the Planning Context to develop the Vision, Mission, Goalsand Objectives
- Analysis and Preliminary Recommendations Phase to identify altemative scenarios for the overall system and then analyze and provided recommendations for implementation of an expanded or contracted aquatic s system

Various types of aquatic facilities were identified to serve the diverse needs of Austin. The public enga gement assisted to identify the priorities for criteria to be used in the process of rating the existing pools for their ability to be maintained and/or upgraded. The Consultants used these prionities to a nalyze 78 elements (within 8 criteria) for each existing pool site and one proposed site and then to rank the sites for their ability to serve into the future.

- Action Plan Phase which refines the preliminary recommendations based upon review comments; establishes long term goals, objectives, and strategies; and provides an Action Plan for implementation which identifies projects, programs, policies, funding sources, and responsible parties in a time sequence format. This phase addressed programs, use agreements, partnerships, operations, sustainability, Best Management Practices, potential revenue generation, proposed facility improvements, and personnel.
- Final Master Plan Phase to bring all of the previousphases into one comprehensive report. The process on reviewing the draft included reviewing the project scope, responding to issues and concems as they were presented during the development of the masterplan, and addressing comments/concems related to the master plan ascollected from Boards and Commissions, TAG, Aquatic Advisory Board the PARD Technic al Team and District Representatives.

Throughout the process, the Consultants coordinated closely with a Team of PARD Administration, Park Development Division, and Aquatic Division. These committees were also engaged as sounding boards throughout the process of developing the Master Plan.

- The Technical Advisory Group (TAG) of primarily City staff, which included representatives from the following groups/agencies/departments:
- Watershed Protection to address water qual lity issues and City of Austin existing conditions, such as regulatory and ordinances and emptying to creeks
- The Land Development Group, part of Public Works and is involved in the City of Austin permitting process
- Imagine Austin and Code Next, a big picture organization with emphasis on codes and zoning
- The Austin Office of Sustainability with a role of environmental a wareness
- University of Texas Aquatics and Charles Logan to provide their technical expertise on pool operations and would be a possible renter of facilities
- AISD, a potential partner in the use of the pools
- A pool aquatics specialist from the construction industry
- The Aquatic Advisory Board (AAB) is an existing committee of intemal stakeholders with a thorough understanding and history of engagement with the pools and programs.
- Technical Team (TT) is prima rily the PARD Aquatics Division staff, a representative of the PARD Public Information Office, and the Project Manager from Park Development which provided oversight of the overall process and reviewed the details and operations of maintenance part of the planning.
- District Representatives Group (DRG) is c omprised of representatives from Council Distric ts.
- BCI ConsultantTeam-The contrac ted consulting tea m consistsof Bra ndstetterC a rroll Inc., Arc hitec ture Plus, Adisa Communications, J L Enterprises, and Chan \& Partners யC.

Three Technical Memoswere prepared by the Consultant and delivered to the TAG. These documentsserved to keep the group updated with regard to the completion of various tasks of the planning process. These Technical Memos were later incorporated into the text of this Master Plan.

Technical Memo 1

This memo included the following:

- A summary of the Public Involvement Plan - Now part of Chapter 3 (full text in Appendix D)
- A summary of the March 2016 Public Workshops - Now part of Chapter 3
- A discussion of the survey to be used at July 2016 Public Workshops

The full text of this memo with referenced documents is located in Appendix C.

Technical Memo 2

This memo included the following:

- A summary of the staff SWOC (Strengths, Weakness, Opportunities, and Challenges) - See Chapter 2
- A summary of Austin Aquatic Programs, Attendance, and Budget - Now part of Chapter 2
- Interviewsofthe Technic alAdvisory Group - Utilized aspartofthe Health, Sa fety, Welfare, Environmental, and Regulatory analysis in Chapter 2

All elements of this memo have been integrated into this document. As a result, it was not necessary to duplic ate this information in the appendix of this Master Plan.

Technical Memo 3

This memo included the following:

- A summary of the Public Input to date - Now part of Chapter 3
- The results of the survey referenced in Technical Memo 1 - Now part of Chapter 3
- A discussion of the survey to be used at July 2016 Public Workshops-Included in Chapter 3

The full text of this memo, including full survey results, is located in Appendix C.

2.1 Introduction

The Planning Context chapter provides an overview of the factors and conditions that represent the existing conditions for aquatic facilities and programs in Austin. These factors must be considered aspart of an effort to determine the improvements nec essary to yield a more susta ina ble a nd equita ble aquatic system to serve Austin residents and visitors. This chapter includes a summary of the Aquatic Needs Assessment, a review of the current status of the aquatic system, an analysis of aquatic operations, and an overview of health, safety, welfare, environmental and regulatory conditionsfacing the Austin Parks and Recreation Department (PARD).

2.2 Demographics

2.2.1 Introduction

An overall understanding of the population characteristics and demographic trends in Austin is necessary to identify the present and predicted future needs for aquatic services and facilities. This section provides a summary of demographics for the City of Austin as a whole. For demographics based on service area of aquatic sites, see Chapter 7 .

2.2.2 Austin Demographic Characteristics

Table 2.1 illustrates the population trends for the City from 1960 to 2040. This table uses US Census Bureau data and projections from City Demographer Ryan Robinson forfuture projections. Trends indicate that the population has increased continuously, with the largest growth rates from 1970-2000, and is expected to continue to grow at a steady pace through 2040.

Table 2.1: Austin Population (1960-2040)

	Census						With ETJ	Projections*		
	1960	1970	1980	1990	2000	2010	2010	2015	2020	2040
Austin	186,545	251,808	345,890	499,125	656,562	790,390	965,605	1,059,680	1,152,559	1,574,742
10 Year Growth \%		34.9\%	37.3\%	44.3\%	31.5\%	20.4\%			19.4\%	
Source: U.S. Census Bure *Include ETJ	and City De	mographer	Ryan Robins	n (projection						

Table 2.2 shows the household from 2000 to 2022 and indicates that, in Austin, the average household size decreased from 2000 to 2010 but is expected to remain steady at 2.37 through 2022. The average household size for residents in Austin is lower than for the United States, Travis County, a nd the State of Texas. The 2017 average household size of 2.37 is lower than that of Travis County (2.49) which is lower than that average household size of the State of Texas (2.78). The 2.58 average size for the USA is between the Tra vis County a nd Texas values.

Table 2.2: Household and Family Size (2000-2022)

	Households	Average Household Sre			
	$\mathbf{2 0 1 7}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 1 0}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 2 2}$
USA	$123,158,887$	2.59	2.58	2.59	2.60
Texas	$8,922,933$	2.74	2.75	2.78	2.79
Travis C ounty	476,373	2.47	2.48	2.49	2.50
Austin	386,333	2.41	2.37	2.37	2.37

Source: U.S. Census Bureau, Esin forecasts

Table 2.3, Median Age, identifies a trend throughout Austin, Travis County, Texas, and the USA of an increasing median age. The median age in Austin was 29.6 in 2000 and is expected to increa se to 32.9 by 2022. It should be noted that the median age for Austin is slightly lower than for the County and the State, and significantly lower than the U.S. The median age in 2017 was 32.6 in Austin as opposed to 33.0 for Travis County, 34.6 for Texas, and 38.2 for the USA. The age of the residents is important, because PARD needs to plan for the appropriate age groups that it will be serving through its aquatic facilities.

Table 2.3: Median Age (2000-2022)

	$\mathbf{2 0 0 0}$	$\mathbf{2 0 1 0}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 2 2}$
USA	35.3	37.1	38.2	38.9
Texas	32.3	33.6	34.6	35.6
Tra vis C ounty	30.4	32.0	33.3	33.7
Austin	29.6	31.2	32.6	32.9

Source: U.S. Census Bureau, Esri forecasts

Table 2.4 displays the population age 65 and over from 2000 to 2022 and indicates that this age group increased from 6.7% to 9.1% of the population in Austin between 2000 and 2017 a nd is expected to continue to increase to 10.4% by 2017. All of the other jurisdictions have a higher percentage of the population in this age cohort tha does Austin, which is currently (as of 2017) at a pproximately 9.1%, compa red to the County at 9.5%, the State at 12.5%, a nd the USA at 15.6% of the population. The percentage of persons over age 65 is significantly lower in Austin and Travis County than the other jurisdictions.

Table 2.4: Population Age 65 and over (1990-2017)

	2000		2010		2017		2	
	Number	Percentage	Number	Percentage	Number	Percentage	Number	Percentage
USA	$34,991,753$	12.4%	$40,136,920$	13.0%	$51,092,236$	15.6%	$60,072,953$	17.6%
Texas	$2,072,532$	9.9%	$2,615,138$	10.4%	$3,537,012$	12.5%	$4,303,289$	14.0%
Travis County	54,824	6.7%	74,771	7.3%	114,956	9.5%	148,705	11.0%
Austin	43,905	6.7%	56,009	6.9%	85,158	9.1%	106,520	10.4%

Source: U.S. Census Bureau, Esri forecasts

Table 2.5 identifies the population under age 18 from 2000 to 202. The table indicates a steady decrease in the percentage for this age range in the City of Austin from 22.5% in 2000 to 21.8% in 2017. This decline corresponds to the previous table which identified the growing population over age 65. The percentage of the population under age 18 in Austin is lower than for the County, the State, and the USA. It is notable, however, that the percentage in this age group is not declining as rapidly in Austin or Travis County as it is
in Texas or the USA, in contrast to their lower percentage. Additionally, the total number of residents under age 18 is increasing dramatically in Austin, despite the decreasing percentage of this age group, due to continued population growth.

Table 2.5: Population Under 18 (1990-2017)

	2000		2010		2017		2022	
	Number	Percentage	Number	Percentage	Number	Percentage	Number	Percentage
USA	$72,325,430$	25.7%	$74,098,929$	24.0%	$73,035,696$	22.3%	$75,091,191$	22.0%
Texas	$5,880,213$	28.2%	$6,864,738$	27.3%	$7,215,505$	25.5%	$7,776,658$	25.3%
Travis County	193,323	23.8%	244,800	23.9%	281,944	23.3%	312,280	23.1%
Austin	147,726	22.5%	180,204	22.2%	204,006	21.8%	221,234	21.6%

Source: U.S. Census Bureau, Esri forecasts
All of this information indic ates that the population of Austin is younger and has sma ller household and family sizes than the County, the State of Texas, a nd the United States in terms of their percentages.

2.2.3 The Top Ten Demographic Trends in Austin (As identified by City Demographer, Ryan Robinson)

Many of these trends reaffirm the demographic patterns described previously in the previous section (2.2.2). The following text was written by Ryan Robinson, City of Austin Demographer, and reproduced with minor modification from City of Austin website. ${ }^{1}$

Austin is evolving as a city and as an urban area. Its point along a trajectory of growth and demographic change can be located and described by outlining several large-scale phenomena of urbanization. This list of The Top Ten Big Demographic Trends will attempt to answer these questions: Where have we just come from, where are we now, and where are we going as a City? Demographically speaking that is.

The theme of ethnic change and diversification is a common one throughout the Top Ten, and yet each point addressing the issue highlights a particular aspect of ethnic change significant in its own right. In one way oranother, the trendsdisc ussed below are inherently intertwined with one a nother-each force exerting its own push or pull on the collective, synergistic direction of the City's demographic path.

1. No majority

The City of Austin has now crossed the threshold of becoming a Majority-Minority city. Put anotherway, no ethnic ordemographic group exists as a majonity of the City's population. The City's Anglo (non-Hispanic White) share of total population has dropped below 50% (which probably occured sometime during 2005) a nd will stay there for the foreseeable future.

It's not that there has not been absolute growth in the total number of Anglo households in Austin but rather it's because the growth of other ethnic and racial groups has outpaced the growth of Anglo households. For example, the growth rate of Latino and Asian households far exceeds the growth of Anglo households in Austin.

And yet, what used to resemble a seemingly inexorable path toward greaterand greaterethnic and racial diversification within the City is becoming less certain. The brakes have been thrown on the City's rate of diversification--due mostly to housing prices inside the urban core which have spiked--with no apparent end in sight to the increases. The Whitening of the urban core is indeed striking. Almost all of central east Austin and vast stretches of south central Austin became Whiterduring the decade. So what'shappened since 2010? More than likely, we have experienced a continuation and even a possible acceleration of this trend. We really won't know until we can map Census 2020 data. Annual tract-level population data updatesfrom the Census Bureau's Americ an Community Survey come freighted with such large margins-of-error that it's difficult to determine what exactly is happening demographically within neighborhoods across the City.

[^0]
2. Dec reasing families-with-children share in the urban core

The share of all householdswithin the city'surban core made-up offa milies-with-c hildren isslo wly dec lining. In 1970, the urban core's families-with-children share was just above 32%, Census 2000 puts the figure at not quite 14%. Moreover, with only a few neighborhood exceptions, the urban core is also becoming almost devoid of maried-with-children households.

Citywide, the trends have been similar in that the overall number of families-with-children has inc rea sed while the share of total householdsfrom fa milies-with-children has decreased. This rela tive loss of fa milies-with-children households has significant implications for the city's several school districts, but AISD will feel the greatest brunt of the effect.

Here's the rub: the absolute number of children in the city is going up, while their share of total population isdec lining. This paradoxisfurtherexacerbated by the fact that in absolute termsthe demand forservices will increase as the share of families that remain within the city will become, in relative terms at least, inc reasingly poor because of who is left and who is moving in. School systems and health care providers will have a hard time managing the increasing absolute need in light of this loss in share.

Although there will continue to be pockets and neighborhoods with high concentrations of affluent families in Austin, it has been middle class families that are becoming increasingly less common within the urban core. Without a sizable share of middle class families to stabilize the urban core, working class fa milies suffer because the rung above them on the socio-economic ladder has been removed, making it more difficult for them to achieve upward social mobility.

3. Afric an American share on the wane

The city's Afric an Americ an share of total population will more than likely continue its shallow slide even as the absolute number of African Americans in the city continues to increase. The import of this decrease in share should not be underestimated asjust a few decadesago African Americansmade-up around 15\% of the city's population and just a few decadesfrom now African Americ ans could represent a mere 5% of the city's population and constitute the smallest minority group in the city.

4. Hispanic share of total population

Will it ever surpass the Anglo share? Maybe not, but they will be close to each other in a short 25 years. Enough cannot be said about how strong Hispanic growth has been. The city's Hispanic share in 1990 was under 23%, the Census 2000 figure was almost 31%, and this share of total is probably around 35% today.

Importantly, the city's stream of incoming Hispanic households is socio-economically diverse. Middleclass Hispanic households have migrated to Austin from other parts of the state and the country for hightech and trade sectorjobswhile intemational immigrant Hispanic and Latino householdshave come here for construction and service sector jobs. Among other effects on the total population, the huge influx of Hispanic families into Austin, with higher-than-average household sizes a nd more children per household, has acted to dampen the increase in the city's median age, keeping Austin one of the youngest cities in the country. Moreover, were it not for Hispanic families moving into the urban core, the city's falling families-with-children share would have had a much steeperdescent.

5. Asian share skyroc keting

The Asian share of total population in Austin almost doubled during the nineties, lea ping from 3.3\% in 1990 to almost 5\% by 2000 a nd stands somewhere near the 6.5% mark today. Like their Hispanic counterparts, the incoming Asians to Austin during the past 15 years are a much more diverse sub-population than what existed in Austin in the past. For example, thirty years a go, a ny Asian in Austin was likely Chinese and somehow associated with the University of Texas. Today, Austin hosts an Asian population that spans the socioeconomic spectrum and is sourced by several countries of origin, with India, Vietnam and China being the largest contributors.
Austin has become a destination, for example, for Vietnamese households flowing out of metropolitan Houston. This highly entrepreneurial population hasopened new businesses, purchased restaurants, made loans a vailable to its network and acquired real estate. Emerging clusters of Vietnamese households are evident in several northeast Austin neighborhoods.

Amazingly, by the middle of the next decade, the number of Asians in Austin will more than likely exceed the number of Afric an Americ ans. While the general population of Austin doubles every 20 to 25 years, the number of Asians in Austin is doubling every ten years.

6. Geography of African Americans, dispersion and flight to the suburbs

The critic al mass and historical heavy concentration of Afric an Americ an households in east Austin began eroding during the 1980s, and by the mid-1990s, had really begun to break apart. Overthe past 25 years, middle-class Afric an Americ an households have left east Austin for the suburbs and other parts of Austin. The level of residential segregation for African Americans has dropped significantly as their level of spatial concentration has diminished. Many community leaders talk today of how many of these families are still retuming to churc hes in east Austin on Sunday moming. However, many of these same community leaders fearthat the newly-suburban Afric an Americ an population will eventual build suburban churches closer to home, leaving the original houses of worship somewhat stranded. The potential impact of the loss of these churches and their community outreach and community care programs on the African American households left in east Austin could be devastating.

7. Geography of Hispanics, intensifying urban barios along with movement into rural areas

Analysis of Hispanic household concentrations from Census 2000 reveal the emergence of three overwhelmingly Hispanic population centers in Austin: lowereast Austin (which a lso serves as the politic al bedrock of Austin's Hispanic community), greater Dove Springs, and the St. Johns area. Dove Springs shifted from being about 45\% Hispanic in 1990 to almost 80% by 2000. St. Johns went from being 35% to 70%-this radic al transition is clearly evident on the streets of St. J ohns, a neighborhood that once hosted one of Austin's oldest Afric an Americ an communities

The import of this trend is this: at the same time that ethnic minority populations are moving into the middle-class and are more capable than ever to live anywhere they choose, there are parts of the city where ethnic concentration is greatly inc reasing. However, it is lower-income minority households that are most likely to partic ipate in the clustering phenomenon.

8. An increasingly sharp edge of affluence

Maps of Median Family Income from Census 2000 show an increasingly hard edge between affluent central Texas and less-than-affluent parts of the urban region. While some forms of residential segregation have decreased markedly over the past few decades in Austin, the degree of socio-economic spatial separation has steeply inc reased. The center of wealth in Austin has slowly migrated into the hills west of the city.

This trend of wealth-creep out of the City creates an even greater burden for citizens funding services and facilities that are used and enjoyed by individuals from across the region. Austin is becoming a more divided city, divided not just in terms of income but also in terms of cultural attributes, linguistic characteristics, and political persuasions. For example, precinct-level results from the 2004 Presidential election reveal a deep cleavage within the Austin urban area in terms of the residential location of Republicans and Democrats and the dividing line between Red and Blue Austin that roughly follows MoPac from south to north, illuminating the strong east to west political spatial dic hotomy.

9. Regional indigent health care burden

During the foreseeable future, the regional indigent health care burden will continue to grow and the city's disproportionate shouldering of the cost will increase as well. The creation of the Travis County Hospital District in 2004 wasa giant step toward leveling the uneven burden of indigent health care across the Austin region, and yet, there was an obvious spatial pattem of who supported the creation of the district and who did not, which can be seen in the precinct-level results of that vote.

10. Intensifying urban sprawl

The Austin region will continue to experience intense urban sprawl. Although there is an enormousamount of residential development currently underway within the urban core and in downtown Austin, the
thousands of new units being created there will be only a drop in the regional bucket of total residential units created. There simply are very few land availability constraints in the temitory surrounding Austin.

And yet this is not to say that the positive effects of new urbanism and Smart Growth polic ies will not be felt inside the city, it is rather to say that even with the success of the many enlightened urbanizing efforts curently a foot in Austin, urban sprawl and its footprint will have an enduring presence in central Texas.

Conclusion

Austin is a magical place, an attractive place, attractive not only in terms of natural beauty but also in terms of its gravitational pull for people.

Austin drawsits special character from its physic al setting along the Balc ones Esc apment, a city wedged between coastal plain and dramatic cliffs, canyons and juniper carpeted rolling hills; it sits on the edge of the Chihuahuan desert existing as a physical and cultural oasis where talented, entrepreneurial, hard working people are drawn from all over the world.

Austin's quality of life has become its biggest economic development engine, and the city's diverse demographic structure serves to support and enrich its quality of life.

NOTE: This list was originally put together in 2008 and has been updated using Census 2010 information and the more recently released Americ an Community Survey data. March 2016.

2.2.4 Social Needs and Conditions Index

Certain socioeconomic characteristics help to identify individuals or target populations most likely to use and/or benefit from public sector programs, services, and community outreach efforts. The results of this analysis apply to much more than just parks and recreation services, indicating neighborhoods that would benefit most from community services of which aquatic facilities and programs represent just one example. The methodology used to develop this index is presented in Figure 2.1.

Figure 2.1: Social Needs and Conditions Methodology

A Social Needs \& Conditions Index was developed from seven socioeconomic and demographic indicators that measure the well-being of residents in each of Austin's 200 census tracts. Figure 2.2 shows the Social Needs\& Conditions Index foreach of the censustracts in Austin. This data wasused to assist the project team in establishing priorities as they relate to facility, outreach, and program development. The full text of this process is included as Appendix B.

Figure 2.2: Social Needs and Conditions Index

2.3 Aquatic Needs Assessment Summary

In 2013 and 2014, Brandstetter Carroll Inc. (BCI) and its team of consultants prepared the Aquatic Facilities Needs Assessment. That document works in conjunction with this Master Plan as a source of the qualitative assessment of the facilities, analysis, public engagement, and preliminary recommendations. The Needs Assessment is summa rized here.

2.3.1 Existing Aquatic Facilities in Austin

The City of Austin has seven (7) munic ipal pools, 29 neighborhood pools, three (3) wading pools, and one (1) waterfront pool (Barton Springs). The City also operateseleven (11) splash padsand a rental facility. Two pools (Bartholomew and Westenfield) have recently been reconstructed, and four (4) pools are closed (Kealing, Palm, St. John's, and Odom). The splash pads are recent developments, and Deep Eddy and Barton Springs are tota lly unique facilities that have had otherplansprepared in recent years. Table 2.6 providesan overview of the aquatic facilities in Austin with their configurations, sizes, year built/renovated, and the presence of a bathhouse or restroom building.

Table 2.6: Aquatic Facilities Characteristics

CURRENTPOOL DESGNATIONS	Shape	length	Total Pool Square Feet	Main Pool Square Feet	Wading Pool SF:	Depth (min-max)	Lanes	Changing Room / Restrooms	Year Built	Year Renovated
Municipal Pools										
Bartholomew	Land freeform	75'	7,740	7,740		0 "-12'	4	Both	1961	2013
Deep Eddy	Rectangles		21,329	21,329		0"-8'	9	Both	1921	2012
Gamison	Rectangle	162'x65'	14,486	12,276	2,210	3'-6'	8	Both	1966	
Mabel Davis	Rectangle	$168 ' \times 52{ }^{\prime}$	11,717	11,717		1'-12'	8	Both	1980	
Northwest	L	50m	15,642	13,392	2,250	3'-15'	8	Both	1956	
Springwoods	L with zero depth		4,400	4,400		0"-5'	6	Both	Unknown	
Walnut Creek	L	25 m	14,951	10,643	4,308	2' - 12'	8	Both	1983	
Neighborhood Pools										
Balcones	L	75	4,583	4,583		2'1"-4'	6	Both	1986	
Big Stacy	Rectangle	97'x43'	4,000	4,000		3'6"-6'10"	6	Both	1935	1977
Brentwood	Rectangle	42'x60'	2,731	2,400	331	3'-4'6"	5	Restrooms	1954	
Canyon Vista	Rectangle	75^{\prime}	3,280	3,280		3'-9"- 12'-4"	6	No	1985	
Civitan	Rectangle	$65^{\prime} \times 45{ }^{\prime}$	3,515	2,400	1,115	3'-5'		Restrooms	1964	
Dick Nichols	Rectangle	75^{\prime}	10,463	9,848	615	3'-8'	9	Both	1996	
Dittmar	Z	75'	6,531	6,531		2'-11'	6	Both	1988	
Dottie Jordan	L	75'	4,550	4,230	320	$3^{\prime}-11^{\prime}$	6	Both	1974	
Dove Springs	Rectangle	$135 ' \times 75$ '	11,365	10,540	825	3'-8'10"	6	Both	1994	
Gillis	Rectangle	86'x40'	2,550	2,550		3'3"-8'		No	1954	1979
Givens	L	150'	11,920	10,700	1,220	3'-13'	2	Both	1958	
Govalle	Rectangle	$65^{\prime} \times 45{ }^{\prime}$	2,400	2,400		3'-5'		Restrooms 125' away	1954	1986
Kennemer	L	75'	4,224	4,224		3'-9'6"	6	Restrooms	1975	
Martin	L	75'	4,880	4,880		2'-11'6"	6	Restrooms	1934	1977
Metz	Rectangle	$105 ' \times 45^{\prime}$	3,992	3,992		3'6"-10'		Restrooms	1937	1986
Montopolis	L	25 m	4,880	4,880		2'-11'6"	1	Restrooms	1978	
Murchison	L	75	4,224	4,224		3'-9'6"	6	Restrooms	1974	
Parque Zaragoza	Rectangle	45'x105'	3,992	3,992		3'4"-9'4"		Closed	1932	
Patterson	Rectangle	42'-62'	2,731	2,400	331	2'9"	5	Restrooms nearby	1954	
Ramsey	Rectangle	42'x105'	3,800	3,800		3'-8'	5	Restrooms	1941	1999
Reed	Rectangle	40'-65'	2,731	2,400	331	3'-4'6"	4	Restrooms	1956	
Rosewood	Rectangle	$75 ' \times 130 '$	8,670	8,670		3'-10'6"		Restrooms downstairs	1932	2009
Shipe	Rectangle	42'x100'	5,250	4,000	1,250	3'-10'	4	Nearby	1934	
West Austin	Round	50'	1,500	1,500		4^{\prime}	0	Restooms	1930	2011
Westenfield	Rectangle and fan	75'	4,393	3,067	1,326	0'-7'	4	Both	1931	2013
Special Rental Facility										
Commons Ford Ranch	Rectangle		744	744		2' - 8'				
Splash Pads										
Bailey									1938	2009
Bartholomew									2010	
Chestnut									2005	

CURRENTPOOL DESGNATIONS	Shape	length	Total Pool Square Feet	Main Pool Square Feet	Wading Pool S.F.	$\begin{gathered} \text { Depth } \\ \text { (min-max) } \end{gathered}$	Lanes	Changing Room / Restrooms	Year Built	Year Renovated
Clarksville (Mary Frances Baylor)									2010	
Eastwoods									1929	
Liz Carpenter										
Lott									2005	
Metz									1937	1998
Pease										2009
Ricky Guerrero										2009
Rosewood										2009
Wading Pools										
Little Stacy	Rectangle	53'x30'			1,500	9"-2'		No		1997
Shipe	Rectangle	25'x50'			1,250	8"-2'		Nearby	1934	1997
Waterfiont Pools										
Barton Springs		200m				0'-14'			1929	

2.3.2 The Need for a Facility Assessment

Many of Austin's saquatic facilities were built between the 1930's and the 1950's with the most recent facilities built in the 1980'sor early 1990's. The typical useful life intended foran aquatic facility is 30 years. Accordingly, many of these facilities have outlived their useful life by a tremendous amount. Pools built in the 1930's are nearly 80 years old, and those built in the 1950's are between 50 and 60 years old. Even the more recent ones built in the 1980's are 25 or more years old.
The Brandstetter Carroll Inc. Team (BCI) was chosen to prepare the Aquatic Facilities Needs Assessment to evaluate and provide recommendationsforall of the City of Austin a quatic facilities with the exception of the splash pads, and the facilities at Bartholomew, Westenfield, Deep Eddy, and Barton Springs.
The Scope of Services for the project included the following seven phases:

1. Planning Context
2. Inventory and Analysis
3. Needs Assessment
4. Qualitative Assessment
5. Options
6. Goals, Objectives, and Recommendations
7. Recommendationsfor Each Pool

2.3.3 Demographic Analysis

The demographics of Austin are continuously changing and a detailed analysis was needed to identify the trends impacting the delivery of aquatic facilities and services. The Needs Assessment included a detailed review of demographics in Austin, which was updated and included in section 2.2 of this chapter. The demogra phics a nalysis also included the Social Needsand ConditionsAnalysiswhich is provided in Appendix B of this Master Plan.

2.3.4 A Publicly Driven Process

The Aquatic Assessment had two main public engagement goals: 1) to engage broad and diverse segments of Austin residents to identify aquatic issues, concems, and ideas, and 2) to update the community on the assessment progress and based on current assessment status gather any additional input. The Aquatic Assessment met these goals through these primary methods of public engagement:

- Surveys collected
 3003

- Public input meetings 8
- Open houses 2
- Telephone Town Hall 1

A summary of the public engagement results are included in Chapter 3 of this report.

2.3.5 The State of Aquatic Facilities in Austin

Two on-site assessment visits, addressing all aspects of the pool experience, were conducted for each of the 36 pools within the scope of this project: one between February and March, 2013 when most pools were empty of water and a second in August of 2013 when some pools were still in operation, and all were filled with water. The assessments addressed all aspects of the pool experience including: the water bodies, the parking lot, the bath houses, restroom buildings, and pump rooms and included cost information for the repair or renovation of the facilities. An estimate forthe cost to keep each pool operating fora minimum of 10 years was also included. (Qualitative Assessment Formsforeach pool are located in Appendix I of the Needs Assessment in a separate document.) Findings were provided within the following categories:

1. Pool conditions
2. The Virginia Graeme Baker (VGB) Act
3. Americ ans with Disa bilities Act (ADA)
4. Bathhouse buildings and restrooms
5. Pump house buildings
6. Equipotential pool bonding
7. Pooldecks
8. Wading pools adjacent to main pools
9. Elec tric al systems
10. Mechanic al and Plumbing systems
11. Structural conditions

2.3.6 The Future of Aquatic Facilities in Austin

The qualitative assessment foreach pool facility, combined with the desiresof the community a soutlined in the public engagement process through the statistic ally valid survey, web survey, Speak-Up Austin engagement, surveys at the pools, television town hall meeting, and the eight public workshops held previously, clearly identified a need to (see also Chapter 3):

- Increase the length of the swim season
- Provide additional shade
- Upgrade pool houses/bathhouses
- Improve restrooms

The Consultant was asked to produce a series of options describing potential changes to both operation procedures and the number of pools in the City of Austin, based on national trends.
This a nalysis included the following:

- Aquatic trends
- Code changes
- Potential funding mechanisms
- Altemative scenarios

2.3.7 Consultant's Recommendations

The Assessment concluded with a series of objectives and recommendations based on the public input and the qualitative assessment, which were primarily based on the status quo of facilities and operating procedures. The Assessment recommendations included:

- High Prionty Objectives
- Long Term Objectives
- General Recommendations for all Pools
- Prototypic al Pool Plans

2.3.8 Substantial Repair Needs

Many of the facilitiesare in need of substantial repairs. Forexample, G ivens, which wasconstructed in 1958 (59 years old), was one of the seven (7) pools identified in the 2014 Needs Assessment as unlikely to survive 5 more years. The site needsextensive pool house improvements to meet ADA requirements aswell asnew plumbing and lighting. The wading pool requires the addition of zero depth entry access to meet ADA requirements. The pool wall hasmajorcracks. The coping wasreplaced in 2013 but isalready cracking, due to the structural wall cracks below. The pool decks need replacement. The guard chairs, ladders, lifts, etc. are not bonded, which was required after 1984, and could become a hazard if not addressed. Overall, this pool alone needs over \$1.1 million (according to the Needs Assessment in 2014) to fix these issues and keep it open.

Many of Austin's pools are in similar condition to Givens. The 2014 Needs Assessment identified $\$ 47$ million in improvements, just to repair/rebuild current infrastructure. That figure does not include upgrades or efforts to meet the needs of underserved areas.
Most of the facilities were built between 1927 and 1990 with an average age of over 50 years old. The typical useful life span of a standard pool is $25-30$ years. Asa result, many poolsare physic ally a nd functionally obsolete (programmatic ally outdated). They do not have features and attractionsthat are popular with today's users, such as zero-depth entry, interactive play areas, slides, program space, and spray features. Additionally, many do not meet current health or accessibility guidelines or codes (e.g., restrooms and showers, health codes). Table 2.7 presents a summary of the issues needing addressed at each pool. (Bartholomew, Deep Eddy, and Westenfield were not part of the Needs Assessment so are not included in the table.)

2.3.9 Geographically Inefficient

Many areasare not served orare underserved, and many have overlapping service a reas. Figure 2.3 illustrates five (5) key areas in the City of Austin that are underserved by aquatic facilities. These areas are numbered in order of priority. The Northeast area of the City of Austin is identified as the most in need of new aquatic facilities. This area incoporates the neighborhood community of Colony Park and Lakeside in addition to other surrounding communities.

Many of the pools in Austin are located close to other pools, and many areas have no pools nearby. In addition, some communities, most notably Colony Park and northeast Austin, have worked with the Parks and Recreation Department to develop a community master plan that includes a new aquatic facility as acknowledgment of the need to add and enhance recreational opportunities to the Colony Park area. Few pools are located in the northem and southem portions of the city, while in the central part of the city, most notably east of I-35, several pools are located within a mile of a nother pool. Some of parts of the City are also served by "semi-public" pools (e.g., homeowners association pools) or other publicly accessible pools, while other areas are not. These pools (locationsalso shown in Figure 2.3) can help to meet the aquatic needsfor some of these residents

2.3.10 Additional Aquatic Assessment Data

Additional analyses and documentation of the existing conditions at pools are included within the Criteria and Elements discussion in Chapter 7 (Site Suitability Ranking Process).

2.4 Current Aquatic System Status

Austin aquatic facilities have experienced high levels of use with approximately 1.25 million visiting pools a nnua lly, including 662,000 at munic ipal a nd neighborhood pools.

2.4.1 Existing Outdoor Aquatic Programs

The Austin Parks and Recreation Department hosts a wide variety of aquatic programs foryouth, adults, and fa milies. The following is a list of some of the programsoffered by the City. Some of the programsare provided in partnership with other organizations as identified.

Swim Lessons

Swim lessons are provided at 16 Neighborhood or Municipal Pools. Classes are divided into nine sessions in 2016 from May 9 to August 12. C lasses include:

- 16 years a nd older - 40 minute class

Figure 2.3: Existing Aquatic Service Areas with Underserved Areas

Table 2.7: Aquatic Facility Issues Summary

Issue	$\begin{aligned} & \stackrel{y}{c} \\ & \stackrel{\sim}{0} \\ & \stackrel{\sim}{\tilde{0}} \\ & \hline \end{aligned}$			$\underset{\sim}{\underset{\sim}{c}}$	뭉 0 0 0 0 0 0 0				$\begin{aligned} & \text { n } \\ & \text { C } \\ & \text { O } \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \underline{E} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \underline{\underline{\underline{(n}}} \\ & \hline \end{aligned}$	\sum_{i}^{n}	$\begin{aligned} & \underline{\underline{0}} \\ & \mathbf{0} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$			$\begin{aligned} & \text { 든 } \\ & \sum \\ & \hline \end{aligned}$	$\stackrel{N}{N}$	능 0 0 0 0 0						$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \ddot{\sim} \\ & \hline \end{aligned}$		$\begin{aligned} & 0.0 \\ & \stackrel{.0}{\bar{\prime}} \\ & \hline \end{aligned}$	응 $=0$ 0 0 0 जे	n 0 0 3 0 0 O O	$\begin{array}{r} \text { N} \\ \stackrel{0}{6} \\ \hline \end{array}$			
Architecture	3	3	1	2	2	2	2	1	4	4	3	4	3	2	4	4	1	3	1	1	1	3	4	2	1	1	1		3	2	2	1
Roof needs replacement						x			x	x	x	x			x							x	x						x		x	
Rusting doors/windows	x	x			x	x	x			x			x	x	x	x		x				x	x	x								
ADA deficiencies	x	x		x	x		x	x	x	x	x	x		x	x	x	x	x	x	x			x	x	x					x		
Paint	x								x			x	x		x	x							x						x			
Cracking walls									x	x		x																	x		x	
Restrooms Outside Fence		x														x		x														x
Restrooms in Park (Bold, no restroom at all)			x	x							x		x								X	x				x	x			x		
Site	2	4	2	3	1	1	1	2	4	1	5	2	3	3	3		2	3	2	3	3	4	3	3	2	2	2	1	3	3	1	2
ADA Access	X	x	x	x	x		x	x	x	x	x	x	x	X			X		x	x	x	x	X	X	x	x	x		x	x		x
Pergolas/ shade shelters issues		x	x	x								x		X	x			x	x	x		x		x				x				
Drainage issues	x					x		x	x		x		x		x		x	x		x	x	x	x		x				x		x	
Site Fumishings									x		x				x			x												x		
Fencing		x							x		x																					
No parking		x		x							x			x							x	x	x	x		x	x		x	x		x
Parking Lot Deteriorating													x																			
Pool	4	8	6	9	4	2	5	5	7	8	7	15	10	6	9	7	3	9	8	12	9	9	5	7	3	10	4	4	6	3	4	1
Pool deck cracking/uneven		x		x				x			x	x	x		x	x	x	x	x	x	x	x	x	X		x		x	x			
Deck joints poor		x		x			x	x	x	x	x	x		x	x	x	x	x		x	x	x	x			x	x		x	x	x	
Coping cracked/missing	x									x		x		x	x				x												x	
Waming/pool depth markers	x	x	x	x	x						x	x	x	x	x	x			x	x	x	x	x	x		x			x			
Paint flaking / Tiles missing		x		x	x	x	x		x	x	x	x	x	x	x	x		x	x	x	x	x	x	x	x	x			x		x	
Struc tural Wall Issues							x		x			x	x						x	x		x				x						
Pool Leaks			x									x	x					x		x	x					x						
Piping / Valves at End of Life										x	x	x			x	x		x	x	x												
Gutterto Waste				x									x											x		x						
Gutter Grating needs replacement			x						x																				x			
Controller												x	x		x						x	x					x	x				
Flow Meter/ Pressure Gauges	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Needs Backwash Holding Tank	x	x		x	x		x	x	x	x	x	x		x	x	x		x	x						x			x				
Wading Pool Needs Separate Filtration		x		x				x		x		x								x		x		x								
VGB																																
ADA Access (w for wading pool only)		w		w					w	w		w								w		w		w			w			w		
MEP	7	3	2	1	3	7	6	4	6	3	1	7	3	5	4	4	4	6	6	7	1	6	5	3	5	3	3	3	3	1	3	3
Piping rusted/damaged						x		x	x					x	x		x	x	x	x		x	x	x	x							x
Faucets not metered						x	x										x			x			x									x
Non-functional faucets/ showers								x	x	x					x	x		x	x	x		x	x		x			x				
Leaking fixtures							x	x						x			x		x													
Drinking founta ins not functional	x					x		x														x							x			x
Vent piping blocked						x						x																				
Poorflush valves, faucets, hardware	x											x																x				
No hot water/ not working	x				x	x	x		x							x		x	x	x		x						x			x	

- Adult Beginner
- Parent and Child Level 1-2 - Ages 6 months to 2 years-11 months
- Preschool Levels 1-3 - Ages 3-5-11 months
- Leam to Swim Level 1-6 - Ages 6-12
- Stroke Clinic - ages 10 and under and 11-17
- Fitness Swimmer - ages 16 and older (3 sites)
- Teen Swimmer (3 sites)
- Snorkeling - ages 8 and older (1 site)
- J unior Lifeguard - a ges 11-14 (2 sites)
- SwimATX

Partic ipation in the Instructional Swim Program has dec reased since 2006 but has remained steady since 2012 (Figure 2.4). As might be expected, the most popular time for swim lessons has been in late J une. Early J uly and early J une period were next, followed by late July and early August. With fewerpoolsopen, the numbers are significantly lower in spring. Sessions in late August and September were offered in previous years, but are curently not offered. The largest participation in the Instructional Swim Program is in the 3 to 5 year old age category, followed by the 6 to 16 yearage category.

Figure 2.4: Instructional Swim Program Partic ipation (2007-2015)

Instructional Swim Program 2007-2015

Rec reational Swim Team Programs

Rec reational Swim Team Programs are offered at18 locations for ages 5-17. Participation has remained steady since 2006 (see Figure 2.3).

Statesman Swim Safe for Austin Kids (7 sites)

Statesman Swim Safe for Austin Kids program is a non-profit addressing the critical need for accessible swimming instruction. These programsare programmed through eightrec reation centers and are primarily aimed at East Austin children with limited resourcesfrom grades kinderga ren through third grade.

Project Safe

Project Safe is a partnership of PARD, YMCA, and Colin's Hope. Teaches basic water safety, swimming skills, and physical fitness to first graders from an ASID School.

Deep Eddy Movie Nights

Deep Eddy Movie Nights are hosted on five evenings in July and August.

City of Austin PE Program for Employees (4 sites)

These programs were established to help City employees become the fittest workforce in the country.

Colin's Hope Project (5 sites)

Colin's Hope was formed in 2008 after 4 -year-old Colin Holst tragically drowned in a private fitness facility pool, with lifeguards on duty and family members present. The non-profit's mission is to raise water safety awareness to prevent children from drowning. Their website identifies that their major programs/initiatives include:

- Creation and distribution of bilingual Water Safety information to families, schools, water parks, and youth based organizations.
- Sponsorship and co-coordination of a swim safety program forat-risk 4 yearolds. This program includes swim lessonsplus on land watersafety education, and is conducted in partnership with the YMCA and Austin ISD.
- Global dissemination of water safety information in the form of our online Water Safety Quiz, and our Water Sa fety Tips \& La yers of Protection.
- Hosting and/or participation in many community based health and safety events.
- Annual Water Safety Awareness ad campaigns featuring billboards and print ads each year from March-September.
- Helping stock life jacket loaner stations at local area lakes so that visitors can borrow and retum a life jacket.

They are a preeminent community resource for water safety and drowning prevention information for media, hospitals, parents, schools and community-based organizations. They serve in leadership roles on local, state, and national water safety boards. They are founding members of the Families United to Prevent Drowning group.

SwimATX

SwimATX launched with a pilot program of 88 teensat Reagan High School and LBJ High School in J a nuary 2015. This new program is in partnership with Austin Independent School District and the City of Austin. Swim instruction took place during school hours at YMCA and City of Austin pools, and provide P.E. credit for the 88 teens participating in the first phase of this program. Upon completion of the program, teens received scholarships for free participation in Lifeguard Certification classes and guaranteed employment as Lifeguards with the City of Austin and the YMCA. The program remains active at Reagan HS and moved from LBJ HS to Eastside Memorial in J a nuary 2017.

Other Programs:

- Lifeguard Certification (8 sites)
- Masters Swim (2 sites)
- Water polo (4 sites)
- SwimATX (2 sites)
- Aqua Zumba (1 site)
- Aqua Yoga (2 sites)
- Special Olympics Swim Team

2.4.2 Pool Attendance

The overall average annual attendance of the pools (not including Barton Springs) overthe 2002-2014 period was 743,905 , with over 298,000 at the seven Municipal pools, nearly 434,000 at the 25 Neighborhood Pools, and just under 12,000 at the Wading Pools. Table 2.8 summarizes the totals and also indicates the high pool average (Deep Eddy fora Munic ipal Pool and Big Stacy fora Neighborhood Pool), and the low pool average (Mabel Davis for a Munic ipal Pool and West Austin fora Neighborhood Pool).

Table 2.9, Average Annual Attendance by Pool, illustrates the wide range of attendance at each of Austin's aquatic facilities. This table also illustrates the cost per participant, which is the cost to operate each pool (labor, chemicals, and utilities for 2014) divided by the number of participants (average a nnually between 2002-2014).

Table 2.8: Average Annual Attendance at Pools (2002-2014)

	Ar-moge Totel	Hot Fser avercera	ISwFent Aveuses
vericios Poos [7]	20\%156	15138	12.451
Noigrecerod toes 15)	488.883	S8. 191	2.588
Nosing Prost [1	11208	7535	3785
Tctal	Me.ves*		

Table 2.9: Average Annual Attendance and Cost Per Participant by Pool

Pool Name		Annual Attendance
Cost Per Participant		
Municipal Pools	31,954	$\$ 1.31$
Bartholomew	151,388	$\$ 1.46$
Deep Eddy	26,090	$\$ 4.39$
Garmison	12,451	$\$ 11.12$
Mabel Davis	55,509	$\$ 3.59$
Northwest (Beverly S. Sheffield)	N / A	N / A
Springwoods	20,766	$\$ 5.74$
Walnut Creek	20,293	$\$ 2.98$
Neighborhood Pools	66,854	$\$ 2.36$
Balcones	12,442	$\$ 2.38$
Big Stacy	10,849	$\$ 2.17$
Brentwood	4,262	$\$ 6.65$
Canyon Vista	56,191	$\$ 2.12$
Civitan	31,029	$\$ 2.59$
Dick Nichols	16,839	$\$ 4.55$
Dittmar	29,149	$\$ 3.16$
Dottie Jordan	5,115	$\$ 4.59$
Dove Springs	12,025	$\$ 8.68$
Gillis	7,709	$\$ 4.66$
Givens	Closed	Closed
Govalle	7,950	$\$ 2.94$
Kealing	11,812	$\$ 3.19$
Kennemer		
Martin		

Pool Name	Annual Attendance	Cost Per Participant
Metz	17,376	\$3.88
Montopolis	8,455	\$5.01
Murchison	10,154	\$4.08
Palm	Closed	Closed
Parque Zaragoza	6,813	\$9.24
Patterson	9,027	\$5.31
Ramsey	20,107	\$1.53
Reed	12,112	\$4.26
Rosewood	14,023	\$2.70
Shipe	16,865	\$4.40
St. J ohn's	Closed	Closed
West Austin	2,568	\$3.13
Westenfield	20,675	\$2.28
Wading Pools		
Little Stacy	7,535	\$2.09
Odom	Closed	Closed
Shipe Wading	3,738	\$1.98
Waterfiront Pools		
Barton Springs	468,260	\$1.00

2.4.3 Annual Budget

The budget for the PARD Aquatic Division is allocated through the COA General Fund and allocated through Aquatic Administration, which divides the funds into four separate categories: Public Pools, Barton Springs Pool, Aquatic Maintenance, and Instructional Swim.

Admission

Admission fees provide revenue, the Department recommends a fee with is approved by City Council. Current fees are shown in Table 2.10.

Table 2.10: Admission Fees

Municipal Pools Daily Admission Pricing		
Age Group	Resident	Non-Resident
Child ren under 1 year	FREE	FREE
Child (ages 11 and under)	\$1.00	\$2.00
J unior (ages 12-17)	\$2.00	\$3.00
Adult (ages 18-61)	\$3.00	\$4.00
Senior (ages 62 and over)	\$1.00	\$2.00
Senior (ages $80+$)	FREE	NA
Veterans(Honorably Discharged)	FREE	NA
Deep Eddy and Barton Springs Daily Admission Pricing		
Age Group	Resident	Non-Resident
Child ren under 1 year	FREE	FREE
Child (ages 11 and under)	\$1.00	\$3.00
J unior (ages 12-17)	\$2.00	\$4.00

Deep Eddy and Barton Springs Daily Admission Pricing

Adult (ages 18-61)	$\$ 3.00$	$\$ 8.00$
Senior (ages 62 and over)	$\$ 1.00$	$\$ 4.00$
Senior (ages 80 +)	FREE	NA
Veterans (Honora bly Disc harged)	FREE	NA
Season Swim Pass Pricing	Resident	Non-Resident
Age Group	FREE	FREE
Children under 1 year	$\$ 60$	$\$ 90$
Child (a ges 11 a nd under)	$\$ 120$	$\$ 150$
J unior (ages 12-17)	$\$ 180$	$\$ 270$
Adult (ages 18-61)	$\$ 60$	$\$ 90$
Senior (ages 62 and over)	$\$ 350$	$\$ 495$
Fa mily of 4	$\$ 34$	$\$ 34$
Punch Card (\$40 value)	FREE	NA
Senior (ages 80 +)	FREE	NA
Veterans (Honora bly Disc harged)		

Operating Budget

The following section disc usses the annual operations costs of the aquatic system. Table 2.11 summarizes the overall operations budget and indic ates that the City operates the pools at an annual average cost of approximately $\$ 6.365$ million. All revenues go to the City's General Fund. These figures do not include the budget for Barton Springs because it is undergoing a separate planning process and is outside of the scope of this Master Plan. Barton Springs is also a unique facility that makes up a disproportionate proportion of the operating budget.

Table 2.11: Austin Aquatic Budget (Excluding Barton Springs)

Table 2.11 outlines the budgets for 2016 and 2017. Bec a use they are integral to the operation of aquatic facilities and programs, personnel represents the largest percentage (71% for 2017) of the operating budget or $\$ 4.5$ million of $\$ 6.36$ million (not including Barton Springs). Only $\$ 2.1$ million is used to cover maintenance, including $\$ 1.2$ million for utilities, leaving little for the constant need for repairs due to the age of facilities. Table 2.12 below identifies the overall annual operations costs for the average, high and low pools within each category.

Table 2.12: Average Annual Operations Costs

	Average	High	Iow
Municipal Pools	$\$ 135,588$	$\$ 221,000$	$\$ 114,000$
Neighborhood Pools	$\$ 63,987$	$\$ 158,000$	$\$ 24,000$
Wading Pools	$\$ 8,467$	$\$ 11,700$	$\$ 6,600$
Splash Pads	$\$ 3,034$	$\$ 9,200$	$\$ 1,600$

Table 2.9 indic ates the cost per partic ipant for each Austin pool. Table 2.13 provides an overall average for the costs per participa nt and the lowest example (Bartholomew for a Municipal Pool and Ramsey for a Neighborhood Pool) and the highest example (Mabel Davisfora MunicipalPooland Parque Zaragoza for a Neighborhood Pool). The ten pools with the lowest cost per participant over the 2002-2014 period are indicated in Table 2.14. In contrast, Table 2.15 below illustrates the ten pools with the highest cost per participant.

Table 2.13: Average Cost Per Partic ipant

	Average	High	Low
Municipal Pools	$\$ 4.60$	$\$ 11.12$	$\$ 1.31$
Neighborhood Pools	$\$ 3.95$	$\$ 9.24$	$\$ 1.53$
Wading Pools	$\$ 2.04$	$\$ 2.09$	$\$ 1.98$

Table 2.14: Top Ten Lowest Cost Per Partic ipant Pools

Pool Name	Annual Attendance	Cost Per Participant
Bartholomew	31,954	$\$ 1.31$
Deep Eddy	151,388	$\$ 1.46$
Ramsey	20,107	$\$ 1.53$
Shipe Wading	3,738	$\$ 1.98$
Little Stacy	7,535	$\$ 2.09$
Dick Nichols	56,191	$\$ 2.12$
Canyon Vista	10,849	$\$ 2.17$
Westenfield	20,675	$\$ 2.28$
Big Stacy	66,854	$\$ 2.36$
Brentwood	12,442	$\$ 2.38$

Table 2.15: Top Ten Highest Cost Per Partic ipant Pools

Pool Name	Annual Attendance	Cost Per Participant
Mabel Davis	12,451	$\$ 11.12$
Parque Zaragoza	6,813	$\$ 9.24$
Givens	12,025	$\$ 8.68$
Civitan	4,262	$\$ 6.65$
Walnut Creek	20,766	$\$ 5.74$
Patterson	9,027	$\$ 5.31$
Montopolis	8,455	$\$ 5.01$
Govalle	7,709	$\$ 4.66$
Gillis	5,115	$\$ 4.59$
Dottie Jordan	16,839	$\$ 4.55$

2.4.4 Capital Funding History

Over the past ten-years, the City of Austin has expended $\$ 29.2$ million for capital projects related to the Aquatic system. The City authorized bonds for PARD park projects in 2006 with $\$ 18$ million dedicated toward pools. Again, in 2012, the City authorized bonds for pools totaling approximately $\$ 5$ million. Following the
completion of the Aquatic Needs Assessment, City Council allocated $\$ 6.2$ million for the replacement of Shipe and Govalle Pools, which are curently being designed. Table 2.16 summa rizes the capital fund ing.

Table 2.16: Ten Year Pool Capital Funding

Funding	Capital Allocation for Aquatics
2006 Bond	$\$ 18$ million
2012 Bond	$\$ 5$ million
2016 Council Allocation	$\$ 6$ million
Total	$\$ 29.2$ million

2.4.5 Maintenance Funding

The Aquatic Maintenance budget has been exceeded by an average of \$400,000 per year over the past four years, resulting in reductions to other PARD programs/improvements. Mabel Davis did not open in 2017, due to losing 217,000 gallons of water in 24 hours. Bond funds from 2006 and 2012 were used to rectify code violations and to address environmental issues as well as for the development of Bartholomew Pool, Westenfield Pool, a nd improvementsto Deep Eddy Pool. These improvements did not address major infrastructure needs. Additionally, new health mandates will require $\$ 477,000$ in new expenses this year, including additional staff at the entrance to each pool to monitor entry points.

2.5 National Trends

Communities across the country are experiencing declining attendance and higher costs at their older, rectangular shaped pools, but are seeing increased attendance at pools which have been renovated to include more family friendly experiences. Some projects designed by the Consultants have seen attendance double or even triple once the reconstructed facilities are open. The old rectangular or "L" shaped pools offer little for children between toddlers and teens (who are comfortable in over 3' depth of water). These renovations and reconfigurations started in suburban communities and are now seeing success in larger, urban communities. The recent changes to the pool at Bartholomew provide good examples of features of a new "Fa mily Aquatic Center." Thistype of facility typic ally includes more shade, shallow water, zero depth entry, interactive water features, lazy rivers, waterslides, and fa mily restrooms, along with keeping lap and competition lanes. These features appeal to participants of all ages and keep people at the pool longer, providing justification for higher entry fees, while resulting and leading to increased concession sales. Family Aquatic Centers are typically designed to attract from a larger market area and multiple neighborhoods, even extending outside city limits.

Since 2008, a new concept in municipal aquatics has evolved. This concept, known as the "Community Pool," seems to be most popular in communities that do not wish to construct a traditional "Fa mily Aquatic Center" with large waterslides, spraygrounds, lazy rivers, and activity pools. These pools offer some desired features such as a small slide, zero depth entry, or a sprayground without some of the larger higher cost a menities. Springwoods provides a good example of this type of new "Community Pool." Community Pools are geared toward the daily repetition user who wants to congregate with neighbors and friends. They, nevertheless, attempt to offer a recreational experience that is a service to the citizens at a lower capital cost, often recovering operating costs through user fees. Community Pools still offer the same programming for aquatic instruction, competition, and general recreation as a Family Aquatic Center.

As a direct result of the downtum in the economy in the late 2000's, a nother trend was the need to inc rease revenues and decrease expenses. To accomplish this goal, communities have consolidated pools by providing newer regional pools in place of two or three smaller neighborhood oriented pools. This process provides a new facility with less maintenance and operations costs in place of older pools, which are near the end of their life expectancy. Some communities have also converted pools to splash pads, as Austin has done, to reduce the need for lifeguards, while still providing an aquatic experience. It should be noted, however, that the City of Austin has seen a higher maintenance cost at these splash pads, which could be mitigated to some degree with electronic notification of problems or routine checks by staff as implemented by the Aquatic Division (daily observation by staff).

2.5.1 Parks Per 100,000 Population

The Trust for Public Land produced a report detailing parks and rec reation facilities for the 100 most populous cities in the United States. This report, 2017 City Park Facts, ${ }^{2}$ includes numbers of pools in each of these cities. These figures include both indoor and outdoor pools with a minimum depth of four feet. The report shows 35 pools for the City of Austin. This figure excludes wading pools and splash pads. Of these 100 cities, Austin ranked 15th nationally with 3.9 pools per 100,000 population. The ranked Texascommunities are presented in the following table.

City	Rank	
Austin	15	
Poolsper 100,000 population		
Plano	29	3.9
Irving	34	3.9
El Paso	38	2.3
Garland	48	2.1
Houston	54	1.9
Arlington	55	1.8
CorpusChisti	56	1.8
San Antonio	57	1.8
Lubbock	68	1.6
Dallas	79	1.3
Fort Worth	97	0.2

2.5.2 Examples of Pool Consolidation

One example the Consultant has seen is the consolidation of pools in Cincinnati, Ohio (second highest numberof pools per 1,000 residents in the U.S. according to the Trust for Public Land report) where a new Otto Amleder Memorial Regional Aquatic Center was opened, which charges $\$ 5$ for persons over age 7 and $\$ 2$ for children age 7 and under in a low income portion of the community. It should also be noted that this new facility waspossible in part due to a generousfoundation grant which wasthe direct result of the Rec reation Commission's Master Plan.

In Cincinnati, the Neighborhood Pools had previously been free fordecades, but the City now charges $\$ 2$ for adults and $\$ 1$ for children out of budget necessity. Prior to the neighborhood poolscharging fees, residents volunteered they would rathertravel further and spend the money for a betterexperience with their fa mily at the Fa mily Aquatic Center than at the free pools.

The Cincinnati Recreation Commission (CRC) also offers a nnual memberships for $\$ 20$ for children, $\$ 35$ for adults, and $\$ 80$ forfa milies. Thismembership includesall 25 neighborhood poolsbut doesnot include the fa mily aquatic centers. The CRC doesoffer an annual membership forthe aquatic center (and all 25 neighborhood pools) for $\$ 60$ for an individual or $\$ 150$ for a fa mily.

2.5.3 Aquatic Codes and Requirements

The aquatics industry is evolving. Recent Virginia Graeme Baker (VGB) Act and Americ ans with Disa bilities (ADA) Act guidelines have required communities to alter their pools to meet the requirements without the ability to "grandfather" olderfacilities. These and other standards are disc ussed in Section 2.7 Health, Safety, Welfare, Environmental, and Regulatory Conditions. The City of Austin has done a good job of conforming to these acts at the pools, but the ADA requirements must be assessed for access from the parking lot to the pool and in the pool house and restrooms. Another requirement which must be met is zero depth entry or a ramp into wading pools of 24 " depth and under. Additionally, grates have an anticipated life of five years if not constructed of stainless steel. After that time, the drains are required to be replaced.

[^1]Section 2.7 also disc usses equipotential pool bonding which was not a requirement of the National Electric al Code prior to 1962 (with updates and clarifications in 1975, 1984, and 2008). This code requires all pool ladders, lifeguard chairs, ADA lifts, and otherelements that are inserted into the poolordeck to be grounded into the rebarforthe pool and deck. The absence of grounding puts swimmers at risk.

The Texas Plumbing Code now requiresbathhouses at pools, which was not a requirement when many pools were originally constructed. New facilities are required to include them, therefore, increasing the cost of the pool development and operations.

Additionally, the Model Aquatic Health Code requires a separate filtration system with an appropriate tumover rate for all bodies of water. The Centers for Disease Control and Prevention (CDC) has been working with public health, academia, and aquatics industry representatives across the United States on guidance to prevent drowning, injuries, and the spread of recreational water illnesses at public swimming pools and spas. The Model Aquatic Health Code (MAHC) is a voluntary, science and best practices-based guidance document that can help local and state authorities make swimming and other water activities healthier and safer. The MAHC serves as a voluntary model and guide forlocal and state agencies needing to update or implementswimming pooland spa code, rules, regulations, guidance, law, orstandardsgoveming the design, construction, operation, and maintenance of public swimming pools, spas, hot tubs, and other disinfected aquatic facilities. The first edition and annex of the MAHC was released on August 29, 2014. Although it is not known when and if the State of Texas will adopt portions of the MAHC, it is recommended that the staff of the Aquatic Division become familiar with the recommendationsand practices of the Code and incorporate them in their operations.

2.6 Aquatic Operations Observations and Analysis

2.6.1 Introduction

The following observations, a nalyses, and the corresponding recommendations in Chapter 8 are offered as tools to improve the current operation and to provide suggestionsforworkable solutions to inc rease customer satisfaction, increase participation by those currently underserved, to develop an even greater sense of ownership of Austin's aquatic venues, and to encourage support for the future of aquatics in the City. The concepts of sustainability and equitability have been considered throughout this operations a nalysis. This chapter addresses the topics of Lifeguard recruitment and retention, maintenance and operations, programming, partnerships, demographics, a nd marketing. Within each disc ussion, the challenges, successes and opportunities are presented. The specific recommendations based on these observations and analyses are included in Chapter 8.

2.6.2 Lifeguard Recruitment, Retention, and Training

In the summer of 2016, Austin's aquatic facilities were the subject of numerous news stories and artic les when a number of Austin pools had delayed openings as a result of a lifeguard staffing challenge. Opening dates for some of the pools were staggered in spite of increasing the starting pay for lifeguards to $\$ 13.03$ per hour in May 2017. Since November 2015, the Aquatic Division has been behind in their minimum staffing numbers even with Lifeguard Certification Training underway. This issue is not unique to Austin but, rather, represents a dilemma that many public pool operators are facing around the country.

[^2]In addition to the SwimATX program, Austin's Aquatic Division offers an exceptional Employee Recognition Program, including the Wooden Nickel System, the Luke Strabala Award, Staff Special Events, Staff Raffles, and an August Work Incentive Program.

The Recruitment Process of The PARD Aquatic Division is a scomprehensive as a ny other in the country. School visits, Holiday Recruitment Events, J ob Fairs, print and a nimated ads, radio station play, and social networking outreach strategies are embraced.

Why then is it such a struggle to recruit and retain lifeguards? With pay increases, recognition and reward programs, free training initiatives, a nd availability of work, Austin Aquatic Division struggles with meeting the minimum number of lifeguards needed. It is not always just about the money! There are several contributing factors that cannot be easily resolved and others that are worth considering for change.

Lifeguard Location Analysis

In response to the difficulty in hiring an adequate number of Lifeguards, the Consultants performed an a nalysis of the location of the overall population compared to the number of Lifeguards within areas of the City and separated the a nalysis by age groups of residents ages 15 to 19 and for all ages.

Figure 2.5, Potential Aquatic Staff Locations, shows the location of a quatic staff (age 19 and under) and Austin residents (a ge 19 and under). The darker red a reas indic a te a higher number of residents between 15 and 19 years of age within a census tract. This age range represents 76% of aquatic staff and 80% of lifeguards.

Figure 2.6, Staff by Aquatic District, shows the four aquatic districts a nd the location of aquatic staff. Staff underage 19 are shown in yellow, while otherstaff a shown in blue. The numbers of these staff are shown for each aquatic district in the legend (Staff 19 and Under/All Staff). This analysis indic ates much higher numbers of staff coming from the North a nd South Districts, whereas the South Central a nd North Central Districts have much fewer staff but a higher concentration of pools.

Table 2.17, Population and Staff by Aquatic District, showsthe percentage of the Austin population within each of the aquatic districts. Under population, the percentages are provided for all residents and for residents between the ages 15 and 19. The percentages are also provided for staff. For example, the North District represents 34\% of the City population between age 15 a nd 19 but only 21% of staff between a ge 15 and 19. Some a quatic staff live outside of the City limits (23\%). Of these staff, a pproximately 55% live to the north of the border between the North Central and South Central districts.

Table 2.17: Population and Staff by Aquatic District

Aquatic District	Population		Staff	
	All	$\mathbf{1 5}$ to $\mathbf{1 9}$	All	$\mathbf{1 5}$ to $\mathbf{1 9}$
North	41%	34%	21%	21%
North Central	16%	29%	22%	23%
South Central	9%	5%	11%	10%
South	34%	32%	46%	46%
Total	100%	100%	100%	100%

Table 2.18, Population a nd Staff within 1 Mile of City of Austin Pools, shows the number of residents age 15 to 19 living within a mile of a City of Austin pool (Neighborhood and Municipal Pools open as of 2016). The next column to the right shows the number of aquatic staff (age 15-19) living within a mile of these pools. The rightmost column shows the ratio of staff to population within these age range. A lower number in this column indicates a low hiring rate nearthat pool. The average for the 34 pools listed is 2.3%. A total of 362 aquatic staff (age 15-19) live within a mile of one of these pools or 41% of the staff in this age range. Some staff members live within a mile of more than one pool.

Figure 2.5: Aquatic Staff Locations

Figure 2.6: Staff by Aquatic District

Table 2.18: Population and Staff Within 1 Mile of City of Austin Pools

Facility Name	Age 15-19			Population Age 15 or Over		
	Population within 1 Mile	\# of Staff	Ratio Staff/ Pop	Population within 1 Mile	\# of Staff	Ratio Staff/ Pop
Balcones Neighborhood Pool	501	19	3.8\%	11,096	20	0.2\%
Bartholomew Municipal Pool	676	21	3.1\%	11,340	26	0.2\%
Barton Springs Munic ipal Pool	323	20	6.2\%	9,851	26	0.3\%
Big Stacy Neighborhood Pool	1,624	7	0.4\%	16,350	11	0.1\%
Brentwood Neighborhood Pool	450	19	4.2\%	12,169	25	0.2\%
Canyon Vista Neighborhood Pool	811	16	2.0\%	9,674	19	0.2\%
Civitan Neighborhood Pool	1,209	2	0.2\%	9,984	2	0.0\%
Deep Eddy Munic ipal Pool	375	22	5.9\%	8,062	24	0.3\%
Dick Nic hols Neighborhood Pool	789	41	5.2\%	11,127	49	0.4\%
Dittmar Neighborhood Pool	689	18	2.6\%	10,710	23	0.2\%
Dottie Jordan Neighborhood Pool	915	7	0.8\%	11,356	11	0.1\%
Dove Springs Neighborhood Pool	1,081	1	0.1\%	9,837	7	0.1\%
Gamison Munic ipal Pool	862	12	1.4\%	14,135	13	0.1\%
Gillis Neighborhood Pool	1,596	7	0.4\%	17,606	9	0.1\%
Givens Neighborhood Pool	810	9	1.1\%	9,646	12	0.1\%
Govalle Neighborhood Pool	602	6	1.0\%	6,756	8	0.1\%
Kennemer Neighborhood Pool	2,038	7	0.3\%	22,365	14	0.1\%
Little Stacy Wading Pool	632	13	2.1\%	15,638	16	0.1\%
Mabel Davis Munic ipal Pool	1,036	3	0.3\%	9,505	9	0.1\%
Martin Neighborhood Pool	828	18	2.2\%	14,949	27	0.2\%
Metz Neighborhood Pool	971	10	1.0\%	12,885	17	0.1\%
Montopolis Neighborhood Pool	1,536	2	0.1\%	13,081	4	0.0\%
Murchison Neighborhood Pool	614	20	3.3\%	11,962	21	0.2\%
Northwest Municipal Pool	537	18	3.4\%	13,893	22	0.2\%
Parque Zaragoza Neighborhood Pool	915	10	1.1\%	11,094	17	0.2\%
Patterson Neighborhood Pool	640	20	3.1\%	13,611	23	0.2\%
Ramsey Neighborhood Pool	529	24	4.5\%	13,476	29	0.2\%
Reed Neighborhood Pool	504	37	7.3\%	6,314	39	0.6\%
Rosewood Neighborhood Pool	918	8	0.9\%	13,180	15	0.1\%
Shipe Neighborhood Pool	716	17	2.4\%	18,879	26	0.1\%
Springwoods Municipal Pool	404	3	0.7\%	7,037	5	0.1\%
Walnut Creek Munic ipal Pool	269	2	0.7\%	6,062	3	0.0\%
West Austin Neighbormood Pool	1,831	21	1.1\%	18,570	30	0.2\%
Westenfield Neighborhood Pool	774	43	5.6\%	14157	49	0.3\%

Challenges

- Working Conditions

Actual working conditions vary from facility to facility with many of the aging facilities lacking adequate restrooms, refrigerators, microwaves, break areas, ice or cold beverages, secure storage forvaluables, shade and even shelterduring ra in events. Portable toiletsmay be a n afford able solution but are unacceptable as an employment incentive. Some locations also lack office or staff spaces for storage for the protection of a Lifeguard'spersonal items.

Some locationshave no support staff such asa DeckAttendant orGate Attendant to handle issueson deck or at point of entry. This type of assistance is especially important during emergency situations. In 2017, the Department of Health mandated this type of assistance at certain locations, leading to additional costs.

- Pay Scale vs. Duties

In addition to the high level of responsibility of being a lifeguard at a public pool, staff is expected to perform general maintenance of the entire property, ja nitorial work in the bathhouses, inspectionsand related documentation, trash removal, water chemistry with reports, bather attendance, and more. This situation is especially challenging at "two lifeguard facilities" and represents a huge responsibility that requires not only a varied skill set and tolerance level. It is also a great deal to ask of young, temporary employees.

Although the pay scale currently adopted may appearasan attractive wage, that wage may not be perceived to match the level of responsibility a nd risk associated with the expectationsof the City. This perception, combined with the cost and time it takes to become a Certified Lifeguard, may reduce the attractiveness of Lifeguard as a sea sonal job, compared to lowerskilled job such asthose in food service. Wages are often higher, and the stress level is lower.

- Duties and Tasks

Many young employees have been raised in a "germ phobic" generation and, in many cases, have never had the responsibility forcleaning a facility much less aging public restrooms. When Lifeguards are expected to do routine janitorial work, that additional responsibility alone is enough to deter applicants. Although not unique to Austin, Lifeguards performing janitorial tasks is becoming less common a round the country.

The required maintenance and janitorial expectationsassociated with the Lifeguard position in Austin makes it difficult to maintain the profession of lifeguarding as one of prestige or a specialty with a possible full-time future in the system. It also makes the competition from other aquatic venues difficult to surpass.

- Transportation

The number of facilities scattered throughout the system presents a challenge to giving employees hours in their neighborhoods, which then poses transportation issues for all employees, especially those not yet driving or without access to transportation. For example, limited hours are available in the north, which makes it challenging to keep staff that are not from south/south central parts of the City. The days of having enough tra ined and interested lifeguardsor applicants that they can walk to workat their neighborhood pool have passed. Although, many poolsare hiring a comparatively small percentage of the local 15-19 population, as noted previously in this chapter.

Potential applicants may only know the pools that they themselves have frequented, so those that do have Lifeguard certification may be reluctant to travel outside of their neighborhood. Applicants choose their own districts and may not want to go to an unfa miliar or a nother facility where they will have to discipline others outside of their neighborhood. They may also not have access to affordable and timely transportation to otherlocations. Younger applicants without a driver'slicense or access to a carmay be able to bike to their neighborhood pool but not be able to reach other locations.

- Scheduling

Lifeguards are scheduled for an 8 hour day with a two lifeguard minimum per facility. Although this shift helps with the complicated task of scheduling, it leaves very little flexibility for scheduling employeeswho need fewerorvaried hours. An automated scheduling system would free up Aquatic Management Staff for other more pressing needs. Several free online scheduling programs are available that can help with this challenge. One of these programs wasimplemented by the Aquatic Division in 2017 but has had limited success.

The City of Austin needssuch a large number of lifeguardsfortheir seasonal and year-round operation that it isunderstandable to want to crosstrain the entire safety tea m in orderto be able to send them to differentlocationsasneeded. However, deep watertraining, and the requirement to retrieve a weight at the maximum depth in the aquatic inventory, limits the number of potential youth, adult, and senior employees, locations have only wading pools or shallow neighborhood pools. Applicants who may be highly effective at a wading pool or shallow water pool may not pass the current required training orconditioning requirements but could function quite well as a shallow water lifeguard. Incorporating
shallow water and other site specific training could allow Austin to train lifeguards for the wide variety of a quatic facilities and could help alleviate lifeguard shortages in some areas.

- Training

The City hasa lack of available indoor training facilities presea son. School schedules, a lack of hours, and a need for an indoor facility increase the difficulty of finding Instructor/Trainers, which in turn leads to large training classes that make leaming and skill development more challenging. Smaller classes with more instruction and coaching could help applic ants be more successful. Starting classes earlier in the spring could reduce stress on those offered in late spring.

The City of Austin's Aquatic Staff Manual is one of the most comprehensive manuals in the country. That being said, digesting this manual can be overwhelming to many applicants due to the large number of facilities and the desire to cross tra in. This comment does not suggest that any changes be made to the manual but doessuggest that the information be streamlined and perhapsbe available through online videos and tutorials.

- Hiring Process

The amount of paperwork to become a Lifeguard in Austin is cumbersome asit is forother majorcities around the country. Part of this process requires the applicant to visit the Administration Office, which could be a transportation challenge forsome. Improvements in this process have been made in 2017 with the goal of further strea mlining the process.

Although the City hasadopted directdeposit for Lifeguard staff, the a ntiquated payroll system and Lag time Pay Schedule can also be confusing and tum off applicants. Automating time and attendance can be done in the newer, largerfacilities but becomes more complicated at pools without intemet access (and fiber/Wi-Fi). Time and attendance programs using cell phones are now available and could be helpful in minimizing the hours it takes to complete timesheets.

Front Desk and Admissions Operations are the responsibility of the Aquatic Division. Curently, credit and debit cardscannot be used due to lack of Wi-Fi or intemet connections, making makes cash management inefficient and causes customer service issues. Once the City of Austin adopts a city wide a utomated time and attendance program, Austin Aquatic Division will be able to incorporate it into their operations. Today's automated time and attendance programs can use both the finger print reader and cell phone app with GPS protection forclocking in and out. This automated process will not only improve accuracy for payroll but reduce the time it takesto process such a large payroll.

Currently the most challenging pools to staff are those that are located on the east side of Austin. Because of the population growth of Austin, traffic has also increased making travel more difficult and time consuming, both East to West and North to South. Also, Lifeguards assigned to the older pools that are experiencing lowerdaily attendance numbers can cause Lifeguards to feel disenfranchised quickly, resulting in low retention levels. They often feel "alone" and may become bored and distracted.

The Recruitment Process used by Austin Aquatic Division is ambitious and has been effective in finding applicants but the time needed to follow up and facilitate hiring has an impact on staff, resulting in dropout rate, low staff morale, a nd pooremployee processing. Specialty training forthose working at Barton Springs Pool and the North and North Central District facilities is required. For an applicant, this requirement may be seen asan additional training obligation and not be asattractive fora part-time or sea sonal position.

Suc cesses

- Training

PARD Aquatic Division has an exceptional 2016 Aquatic Staff Manual that reinforces employee empowement by providing the rules and regulations with the "reasons" and the "applicable codes" to help lifeguards communic ate better with the visitors. The Staff Manual serves as a comprehensive guide to the "expectations" of the Aquatic Division and clearly exhibits the commitment to safety of visitors and employees. It is an exc eptional operations guide that can be accessed when in need and antic ipates the needs of the staff.

State required "In Service" by the PARD Aquatic Division provides a comprehensive and professional approach that has maximized performance. Lifeguard Audits conducted result in high average scores. The commitment to retraining those that do not meet the minimum standards of the audits is obvious.

- Partnerships

The SwimATX program is an exceptional example of collaboration with area agencies fora common goal. Cooperative efforts with the University of Texas and other area aquatic senvices providers, both public and private are explored regularly. Recruiting and retaining a year-round lifeguard staff at these high numbers is a remarkable feat, even if they do not meet the minimum goal. Other cities around the US struggle to reach much lower numbers.

The Austin Aquatic Management Team is a gifted and committed team of civil servants with a shared mission of excellence under very difficult conditions. The team shares a "service" mentality and a "No Compromise" attitude on safety. With great leadership, a culture of safety prevails. The Aquatic Staff is not only open to suggestions but thrives in responding to them.

Reviewing the historical data kept on Aquatic Incidents, exhibits an exceptional percentage of incidents vs. attendance. A record of less than 428 total incidents is remarkable with over 1 million visitors annually. Statistics do indic a te that Barton Springs has the highest rate of incidents, perhaps due to the natural environment (and high attendance), while Bartholomew shows the next highest level of incident, perhaps due to the volume of visitors at this newer facility.

Opportunities

- Staffing

The example set by SwimATX has set the stage for future collaborative ventures and partnerships to assist the Aquatic Division meet their staffing goals. Additionally, facilities that have Full-Time Head Lifeguards have proven to score higheron a udits. Hiring of more Full-Time Head Lifeguards will ena ble every aquatic facility to be managed with a higher level of professionalism.

Improvements to Austin aquatic facilities as explored in this plan will make PARD Aquatic Division a more attractive employer. The possible reduction in the number of aquatic facilities will also make recruitment, retention, and training more successful. Affordable and accessible technology may provide assistance with scheduling and payroll, making staff time more efficient, freeing up their time for more vital tasks, and serving as an incentive for employees.

Communicating information such a large, seasonal staff is nearly impossible but imperative. Communication does occur at In Service Trainings, but a more efficient method would be the use of technology oreven social networking platformsto disseminated information. Programs such as Power DMS can be accessed from home computers and cell phones to communicate with the staff and document receipt of the information.

The greatest assets for promoting improvement opportunities are the obvious support of aquatic programs by the residents of Austin and the City's aquatic legacy. Tuming this support into advocacy for change and funding is the true opportunity. The result of SWIM512 coupled with the support of the community is the greatest opportunity to recharge the PARD Aquatic Division.

The Aquatic Management Staff must continue to be involved and their input respected throughout this process. As the Aquatic Master Plan is implemented, each new or renovated facility should be equipped with internet capabilities (Wi-Fi and fiber) in order to take advantage of online attendance programs and water chemistry control systems a vailable now and in the future.

2.6.3 Aquatic Maintenance: Challenges, Successes, Opportunities and Needs

One of the driving factors behind the SWIM512 process is the aging of the aquatic inventory in the City of Austin and the closure of several of the facilities due to age, maintenance concems and mechanical issues. The public has an expectation that all facilities should remain open regardless of their physic al condition, aquatic budget, or shrinking attendance because of their passion for swimming. This passion is without the
knowledge and understanding of the issuesof reported code, health and accessibility requirements, the cost of maintenance and the age of many of the facilities. Also, the number of locations, the diversity of the pool designs and mechanic al systems, and the need for constant upkeep and improvement present a challenge to the staff members charged with these responsibilities. The Aquatic Maintenance Staff is responsible for preventative and routine maintenance as well as emergency repairs. Many of the facilities are over 50 years of age and now have outlived their practical lives.

Challenges

- In 2013, an aquatic assessment was undertaken by the Aquatic Division, which included public workshops and surveys in consultation with the firm of Brandstetter Carroll Inc. The assessment identified seven critical pools that were in danger of functionally failing withing the next five years.
- In 2014, Aquatic Maintenance was allocated two new Full-Time Aquatic Swimming Pool Mechanic II positions. In spite of these two new positions, there is still a laborgap between need and an ability to respond.
- Two major projects were completed in 2014: Bartholomew and Westenfield pools. New facilities camy with them new maintenance concems and needs, as well as time to acclimate to the new mechanic al systems.
- Maintenance of an aquatic facility inventory of this size and age is a year-round operation even for those facilities not open during the winter months.
- Staggered openings of the pools met with resident complaints in 2015, 2016, and 2017 but were necessary due to the complexity of the requirements to meet even a phased opening timeline.
- Most of the existing facilities were built between 1927 and 1990, representing different generations of mechanical systems, and many products which are no longer available. A large number of parts in the inventory require time consuming fabrication and parts are not standardized.
- Some pools require painting annually, which depends on weather in order to complete on time.
- Like many urban aquatic facilities, Austin does experience issues with trash, bottles, plastic, and tree debris.
- Many of the olderpoolswere not designed with maintenance best practicesin mind and lackpractical items like hose bibs, chemical controllers that are difficult to reach, and outdated electrical systems.
- Many of the facilities do not meet the current health, safety and accessibility codes such as the requirement for showers, restrooms, ADA improvements and ease of a c cessibility. Some of the facilities are non-compliant to recent environmental and OSHA guidelines as well.
- The Ma intena nce Division isunderfunded forpreventative ma intena nce in spite of the growing need for it. In the last 3 years, between $\$ 2$ million and $\$ 2.6$ million was allocated in the budget formaintenance with overhalf allocated to utilities and chemicals. Over the past four years, the Maintenance budget was exceeded by an average of over $\$ 400,000$ peryear, primarily due to repairs of aging facilities.
- Because of the age diversity of the aquatic facilities, there is no continuity of mechanical standards. With each design firm or builder used, the mechanical systems vary making it extremely difficult to stock shelves and be prepared for quick replacement of damaged equipment.
- Maintenance should be an integral part of each design plan and be involved in the preparation of the specifications for equipment.
- As the facilities age, the cost of operations is constantly inc reasing.
- A lag time between a service request and action ta ken often causes an early closing or late opening.
- There is no true supply inventory and there are definite disconnects between the need for materials in a timely fashion and procurement policies and procedures. In maintaining aging pools without backup supplies, a motor issue could result in a pool closing fordaysoreven weeks.
- The Barton Springs and Deep Eddy facilities are celebrated as unique and special, however the environmental issuesrelated to theiroperation make them challenging and la borintensive to mainta in.
- Continuity of maintenance is a real issue as many of the seasonal facilities have Head Lifeguards/ Managerswho are temporary employeesand change very often. Keeping the linesof communic ation
open, consistent and meaningful is difficult under those conditions. If there were more Full-Time Head Lifeguards, the relationship between Aquatic Operations and Aquatic Maintenance could be more productive.
- The pool facilities that do have build ingsassociated with Aquatic operation are also aging and many need upgradesto reduce daily maintenance and to conform to meet current codes.
- The general public and key decision makers may not truly understand the difficulty of maintaining older facilities. They may have the perception that a facility has no problems if water in the pool appearsclear.
- As the Aquatic Master Plan is implemented and new facilities are developed or improved, Wi-Fi and intemet capabilities should be included for water chemistry controls, cash management, and customer use.

Successes

- After visiting those facilities open for the 2016 sea son, the Consultant was impressed to see how well maintained the facilities were in spite of the age and condition. It is clear that the staff has done their very best under difficult circumstances.
- Those team members responsible for the maintenance and upkeep of these facilities share the No Compromise on Safety mantra of the Aquatic Division.
- The Maintenance Division, although responsible for facilities by area, has shown sincere interest beyond their actual area and look to other team members for advice and assistance.
- The level of knowledge and expertise of the Aquatic Maintenance Division is evident in their ability to understand the mechanical operations of so many different operating systems.
- The Aquatic Maintenance Division is embracing the SWIM512 experience, and they recognize the need for improvements in the maintenance function.

Opportunities

- Active participation in the SWIM512 efforts will assist the residents and City officials to mutually understand the true needs of the Aquatic Maintenance Division and the scope of their work.
- The Aquatic Maintenance Division should have an opportunity to participate in the planning of the new facilities a nd the renovation of those that rema in. Their practic al knowledge will be helpful to the design team.

2.6.4 Aquatic Programming

The City of Austin offers a wide variety of aquatic programsand special eventsthat have had a very positive impact on those that a re involved. The largest programs by registration include Swim Lessonsand Swim Teams. Program registration is available online; however, mail, fax and in-person registration is allowed if space is available. Scholarships are available utilizing the Federal Free and Reduced Lunch criteria.

A comprehensive catalogue of offerings is published annually, and the information is readily a vailable online. Swim lessons for infants through adults a re offered at 15 sites throughout the City (as noted previously in this chapter). Swim lessons meet from Monday through Friday for two weeks with the exception of each facility's weekly Non-Programming Day or otherwise noted. Five sessions of swim instruction are offered during the summer from J une to August with the addition of a Spring Session held in May.

Swim Teams are another one of the successful programs offered serving children 5-17 years of age. The recreational swim team program is intended to develop potential and teach children about the sport of competitive swimming. Other programs offered include a summer Water Polo program for boys and girls of all levels of experience, ages 7 and older. This program is run by the Austin Water Polo Club, a non-profit organization. Aqua Yoga is a unique program offering for a public pool which combines balance, breath work, and stretching and yoga postures. Both programsare offered through a co-operative agreement.

Providing lap swimming time and the encouragement of fitness swimming is a large part of the aquatic programming offering including a Special Olympics Swim Team and a Masters Swim Program. Additionally, the J unior Lifeguard program isoffered to the general public and servesasa recruitment tool foremployment with the Aquatic Division. Pool rentals are also available for the public, and childcare and camp programs can register on-site. Poolside Movie Nights are offered at Deep Eddy.

Sustainability in Aquatic Programming

The following aquatic programming concepts could be employed to meet the definition of sustainability from the City of Austin, Office of Sustainability.

- Provide facilities that are conducive to hosting a variety of programs to meet various user needs
- Provide indoor year-round facilities for training, fitness and programming
- Provide unique and trending programming opportunities to attract new customers not traditionally served and reflects growing population demographics
- Utilize partnerships to promote water safety program and enhance outreach with minimal impact on the bottom line
- Utilize online platforms for time and attendance, training and communications
- Instill the value of aquatic opportunities in future generationsthrough youth programs and community engagement

Challenges

- The number of Leam to Swim programs is too extensive to manage well and a majority of them are canceled due to lack of registration.
- Parents have a hard time identifying the right level class to register their child ren.
- Although financial aid is offered for Learn to Swim programs, Aquatic Staff report challenges is getting the information to children to attend and finish the programs.
- Non-swimming parents may not understand the swim levels as they themselves have no swim experience.
- Over the past 8 years, the number of Learn to Swim classes has fluctuated in the number offered and the number of classes actually taken. Since 2010, the number of classes actually attended has dropped considerably.
- The Spring Session and Session Six show smaller attenda nce historic ally.
- Getting information out to parents about the availa bility of lessons has been challenging.
- Having enough Water Safety Instructors is always a challenge. Staff have indic ated that at least four more WSI's sare needed. Recruitment and retention is also a problem as reported by staff.
- Scheduling is also challenging having to carefully monitor the number of hours worked and the qualifications/certifications needed at each location.
- Pool Rentals are not automated and can be time consuming forstaff.

Suc cesses

- A chart was created to assist parents in choosing the correct swim level for their child. It helps to navigate the Leam to Swim programs.
- Several very positive collaborations are providing aquatic programs, including the Statesman Swim Safe for Austin's Kids, Project Safe with the YMCA and Colin's Hope, Austin Water Polo, Special Olympics, Austin Public Schools and Austin Aqua Yoga.
- Over 2,000 students were served in the Leam to Swim Program, and close to 800 participated in the Swim Teams in 2016.
- Although Swim Team partic ipation has shown some decline since 2009, it a ppears to have remained steady since 2011.
- The Learn to Swim program is well priced for the area and provides financial aid opportunities.
- Swim Teams are often a training ground for future lifeguards and employees. The success of the recreational swim team program can serve as a future recruitment tool.

Opportunities

- With the SWIM512 process and the vision of the City to renovate and add new aquatic facilities, the input about the need for more "teachable, swimmable" water in the new or renovated facilities will be valuable.
- The success experienced with collaborative efforts such as SwimATX could serve to encourage new and creative cooperative efforts.
- Should the City pursue the concept of an Indoor Aquatic Center, attendance in year-round training, lifeguard and swim instruction will inc rease.
- Should the overall number of aquatic locations decrease, the emphasis on programming could be less about quantities of programming needs at many locations and more about offering quality programs at fewer facilities. Staffing these programs would be more easily accomplished.
- Drowning statistics for minority children are growing in the United States. Collaborations with organizationslike Colin'sHope, coupled with effortsfrom PARD Aquatic Division, Austin Fire Department, and Austin-Travis County EMS, not only emphasizes the need for Leam to Swim programs but also elevate the public awareness of this tragic statistic and create a political environment for support of public pools and instruction. Model programs in Arizona and throughout the Southwest have proven successful and have received recognition nationwide.

2.6.5 Additional Operations Considerations

The population of Austin continues to grow with Austin's reputation as a great Americancity and one of the country's sest places to live. With over 1 million visitors in the past two years, the most important sta tistic is the safety record of fewer than 400 aquatic incidents peryear. This statistic alone shows the dedic ation to safety that the Aquatic Division holdsdear. However, since 2011, the a nnual attendance at the City's pools and the participation in the most popular programs of Leam to Swim and Swim Teams continues to decrease. During this period, the cost of the operation of these facilities increased and the revenue recovery decreased. No one reason explains the decline in attendance. One major issue is the aging of most of the City's aquatic facilities. This issue has been explored throughout the Master Plan process and is defined at the beginning of this chapter.

An examination of the current population trends and predictions for Austin's future population projections can help to find solutions to the Aquatic Division's concerns. Statistics show that the average household size for residents in Austin rose from 1990-2000 and is expected to remain steady into 2017. The Median Age will continue to rise in Austin to 31.6 , and the proportion of residents over the age of 65 is expected to rise to 8.5% by 2017. On the opposite extreme, the population under age 19 will dec rease in Austin to 25%.

Otherstatisticsthat relate to a decrease in partic ipation in aquatic programs include the numbers of children in households in the urban core, which is declining in Austin. US Census data also shows the growth rate of Latino and Asian householdsfarexceeds that of Anglo households in Austin. These changes in demographics certa inly contribute to the partic ipation, revenue, and attend ance issuesdisc ussed in thisplan. These changes must be considered when programming, marketing, and operating aquatic facilities and programs. They are not the only contributing factor but certainly must be considered when planning for the future support of aquatic opportunities in Austin.

Marketing

Marketing and promotional materials need to reach minority families in Austin. The current materials are attractive, comprehensive, and produced in both English and Spanish, but it is unclear whether there promotional pieces are reaching those that are underserved. Working with area social service groups, community organizations, churches, and social clubs on a grass roots level may be more effective
with new and emerging minority groups. The SWIM512 process has been a good start at this outreach. Distribution of promotional materials on swimming lesson and drowning prevention programs through childcare, after school programs, and the schoolscould increase exposure to the opportunities offered.

Based on the aging demographics of Austin, the creation of programming targeted to active adults age 50 and older will encourage interest and increase their support of funding for City aquatic facilities. Programs such as Senior Water Aerobics, Post Mastectomy Aqua Classes, Kayaking, Paddleboarding, balance and strength screenings programs will likely be of interest to this population. Although some of the current facilities cannot accommodate these activities, many facilities citywide can provide these types of program offerings.

Young adults without children are often overlooked in aquatic programming. Special events social opportunities, such as the movies at Deep Eddy and others, could attract one of the largest growing populations of Austin. Often this group is not served until they have children of their own. Fitness, tra ining programs, paddleboard, and other active aquatic programming like wall climbing can accomplish this goal.

The Austin Aquatic Division a lready hasexhibited an interest in colla boration with othera gencies. Creative partnerships with hospitals, health insurance companies, medical groups, and non-profit organizations should become the focus of all new programming concepts. Should the City move toward a year-round indoor facility, this type of venue is very suitable for partnerships with hospitals, physic al therapy centers, and fitness centers. Aquatic facilities across the country have had very positive results with renting time to physical therapy centers and sports and fitness providers by providing rental or leased times when the facility is not otherwise busy. Teaming aquatic facilities with health initiatives already in place in the community can be a win for PARD.

Corporate Sponsorships and Naming Rights to fund existing aquatic facilities should be explored. Due to aging facilities in danger of closing due to the need for costly repairs, creating an "adoption" plan by Austin's comorate community with or without naming rights should be considered. These partnerships would be financially based with fees associated for either support of current programs or capital initiatives. Both approaches would net savings to the department for operations or capital investment.

Throughout the public process, a concem has been expressed about accessibility of public pools for those most in need if admissions are increased to help to cover rising costs. Civic organizations, fratemal organizations, and businesses could purchase tickets for children in need and distribute them to schools, churches, Boys \& Girls Clubs, and other civic organizations. Companies that purchase the tickets can have theirlogo on the tickets or receive other suitable recognition.

Creating, selling, and executing a successful Naming \& Sponsorship Campaign can be time consuming foran already overburdened staff. Creative approaches to thistype of campaign have included working with area Public Relations and Advertising Agencies on a commission basis a nd have been very positive.

Marketing of any proposed new facilities in Austin must focus on the education of the community on the terminology and definitions of today's family aquatic centers. Lack of understanding of terms, such as "zero depth entry" and "lazy river" and the benefits they bring to a facility, could confuse and cause concern from those that view aquatic facilities in a more traditional sense. Education on the many benefits of "zero depth entry," including access for the disabled and promotion of family interaction, should be explained in text and photos to gamer support.

Austin is a community that values swimming. A major public relations campaign with an outreach and teaching component can be highly effective in developing support in the community. This effort could be a continuation of outreach from SWIM512 and this Master Plan. Using the exposure of the SWIM512 process, a marketing and promotional campaign should be created to excite Austin and its residents about aquatic opportunities. A mascot, tag line, promotional items, radio, TV, and a social networking campaign are needed to infuse excitement and encourage the emergence of a new generation of swimmers.

Demographics

A disconnect exists between mature lap swimmers' needs and the aquatic needs of young families and young teens. Lap swimmers, interested in their needs for fitness swimming, do not have to be at odds with families seeking the new Community Pool or Regional Family Aquatic Center concepts. Today's aquatic designs can accommodate all interest groups. Serious lap and fitness swimmers are focused on the need forlap lanes that are always a vailable to them. Less than 10% of those that visit a modem day aquatic center are lap swimmers; however, they tend to be very vocal about their needs. They tend to have a traditional sense of what aquatic facilities should provide and are less inclined to support modem a menities such as zero depth entrance and slides for fear of losing lap swimming time.

In marketing to adults, active adults and seniors, a focus on health and longevity has proven successful in the fitness industry. Combining yoga, tai chi, and other fitness activities on pool decks with aquatic components is especially attractive to these demographics.

One issue that makes it difficult for a child to go to an Austin pool is the age and supervision requirement. Although this rule is made with the safety of the child in mind, it could also keep a child from being able to use a pool without an oldersibling or parent along with them. The curent rule is, "All children under the age of 10 must be actively supervised by someone that is age 15 or older." This rule makes partic ipation challenging for fa milies with both parents working.

The hours and days that Leam to Swim programs are offered should be reexamined to meet the needs of working parents. Adjusting schedules to accommodate weekend and evening classescould result in inc reased partic ipation.

All children between the ages of 10 and 14 must take a swim test if they do not have supervision. Austin Aquatic Division should consider providing free life vests at pools for children who cannot pass the swim test, for use until they can develop the skills needed to pass the test. This policy, incorporated with swim testing and Leam to Swim programs, can inc rease the number of children that visit the pools. Use of Coast Guard Approved Life Vests does not hinder the desire to learn to swim but can provide confidence and enjoyment that will in tum encourage the desire to leam to swim. This strategy has been effective in other urban areas.

A world class indoor aquatic facility would certainly make Austin a destination for excellence in aquatic facilities and programs. It could attract teams from throughout the region and have a positive impact on the economic life of Austin. The most popular amenities that will serve Austin's changing demographics should be considered as part the design of this facility. The latest technology needed for competitions, diving, water polo, synchronized swimming, wall climbing, log rolling, kayaking, and surfing would help attract customers.

Partnerships

U.S. Coast Guard Approved Life Vestscould be sponsored by local hospitals, doctors a nd fratemal orders such as the Elks, etc. and could be printed with logos. Poolsthat provide these free Life Vests have seen a large decrease in the number of assists and rescues and an increase in participation by younger, inexperienced swimmers.

According to Recreation Management's 2017 State of the Industry Report, the number one planned program addition for public aquatic facilities is Special Needs Aquatic Programs. These programs are continuing to grow throughout the US. They have great potential for partnerships with local organizations that support special needs programming and also represent great grant potential from both govemment sources and non-profit partnerships.

Statesman Swim Safe forAustin Kidsisa great exa mple of a partnership that hasinc reased the accessibility and equity of swim instruction for children in need. This type of partnerships could add more program offerings without inc reasing the operating budget.

The City of Austin could work with private business to develop aquatic centers, inc luding an indoorfacility, by providing tax incentives, la nd leases, a nd other public/ private partnerships with organizations such as USA Swimming. Naming and sponsorships of such a property could be atta inable based on the industries curently thriving in Austin.

2.7 Health, Safety, Welfare, Environmental, and Regulatory Conditions

The disc ussion of the existing health, safety, welfare, environmental and regulatory conditions is critic al to the development of recommendationsand implementation of the Master Plan. The MasterPlan Team needed a thorough understanding of the issuesand constraintstoward developmentand operationsin orderto develop realistic implementation recommendations. This section also provides a summary of recommendations for each issue.

2.7.1 Introduction

Thissection providesa qua lita tive disc ussion of the health, safety, welfare, environmental, and regulatory issues related to City of Austin pool sites and operations. This section also providesa summary of recommendations for each issue. This section supplements the results of the Appendix I "Qualitative Analysis" of the Aquatic Facilities Needs Assessment and provides more detailed definition of many elements of the criteria included in the Site Suitability Ranking Process (Chapter 7).

Portions of this section are based upon interviews with members of the Aquatic MasterPlan Tec hnic al Advisory Group representing the City of Austin Office of Sustainability, Watershed Protection, and the Planning and Zoning Department aswell asa general contractorfamiliar with design and development practic es in Austin.

2.7.2 Regulatory and Environmental Constraints

The scope of the work and program for each pool facility will need to be verified and refined during further phasesasthey are redeveloped or renovated, but for the purposes of this study, the text will disc uss the issues in general terms with a few specific examples.

The redevelopment of the pools will be constrained by the following requirements, code and development regulations and ordinances. Topics are discussed here in relation to their impact on regulatory constraints. Some of these issues are disc ussed in more detail in later portions of this chapter.

- Austin's Zoning and Site Development Permitting Regulations
- Stormwater Management Regulations
- Texas Health a nd Safety Code Section 341
- Sub-Chapter E Commercial Design Standards (Land Development Code)
- Sub-Chapter LStandards for Public Pools and Spas(TexasAdministrative Code, Title 25, Chapter 265)
- Utility Servic es Ava ilability
- Accessibility and Emergency Access
- Parking Requirements
- Applicable Codes
- LEED Certification and/ or Sustainability Goals

Zoning and Site Development Permitting Regulations:

Typic ally, the City of Austin zonesitspark property as "P" Public. Thiszoning category requiresa conditional use permit and triggerscompatibility fora 100' distance inside of the property line, which then requiresthe development to utilize the development constraints from the adjacent zoning category. Being sited near residential (SF-3) or other restrictive zoning will limit the ability to redevelop parking or structures close to adja cent property lines, constra in the height or limit the impervious cover allowed.

All of the existing pool sites assessed are either zoned "P" Public, "P-NP (Public-Neighborhood Plan), SF-3 (Single Family) or "UNZ" (Unzoned) or a combination of all of these. Only 2 pools are "HD" located in a Historic District. When the pools and facilities may be redeveloped or renovated, the City will probably elect to rezone any properties zoned "SF-3" or "UNZ" to "P" zoning. Under the rezoning, any "NP" or "HD" designation will remain part of the zoning category.

Pools tend to be located in parks which often consist of land that is unsuitable or difficult to develop for a higher use (commercial or residential). Therefore, the pool properties often have multiple regulatory and environmental constraints.

Roodplain Regulations

Out of the 34 pools in the assessment: two (2) are in the Austin Fully Developed Floodway, eight (8) are located in a FEMA Floodplain (3 in the 100-year floodplain and 5 in the 500-year floodplain), and three (3) are in the Austin Fully Developed Floodplain (25-year floodplain).

If new construction or structures (i.e., bath houses, sidewalks, parking) are desired, the various code regulations, requirements for materials and the durability of the structures will need considerable investigation and review. Development in the 25 -year floodplain is prohibited, and development in the 100-year floodplain will require a variance. For development in the floodplain, the variance will require:

- Mitigation of volumes that would exacerbate or cause greater flooding
- Require raised floor elevations above the floodplain
- Improvements to the drainage system
- Acceptable emergency access by vehic les
- Directorapproval

Recent flooding of neighborhoods and subsequent city buyout of houses in affected neighborhoods have begun to affect current and proposed stomwater regulations and could result in stricter future development in these zones.

The floodplain designation will be a key factor that may eliminate some sites from expansion or further enhancements as the sites are evaluated.

Stormwater Management Regulations

Given the locations of many pool sites in flood prone areas (noted above), a large number of these pools have received flood damage in the recent past during heavy rains and flash flooding, and it is a continuing problem as most pools do not have stormwater ponds and other controls that might help to mitigate these conditions.

The area and type of stomwater controls required for proposed improvements will detemine the possibility of making improvements. Larger sites might be able to utilize sheetflow filtration and avoid stormwater structures. Small sites may need to severely limit the project Limits of Construction in order to avoid providing stomwater structures.

Eight of the City's pools and one splash pad are located within the Edwards Aquifer Recharge Zone which has its own set of more restrictive development regulations for development. As with the floodplain regulations, these conditions will somewhat limit the potential to enhance orexpand pool facilitieson sites in the Recharge Zones and are evaluated as part of the Site Suitability Ranking Process. The following aquatic facilities are located within the Recharge Zone:

- Deep Eddy Municipal Pool
- Springwoods Municipal Pool
- BalconesNeighborhood Pool
- Canyon Vista Neighborhood Pool
- Dick Nichols Neighborhood Pool
- Murchison Neighborhood Pool
- Reed Neighborhood Pool
- Westenfield Neighborhood Pool
- Mary Frances Baylor Clarksville Splash Pad

Sub-Chapter E Design Standards

City of Austin Land Development Code, Chapter 25-2 "Zoning," Sub-Chapter E, applies to all new development to "foster a built environment of aesthetic and sustainable value, enhance economic development efforts, promote Austin's unique character and natural environment, and ensure an efficient development review process." Application of Sub-Chapter E is based upon the adjacent roadway type (i.e., Core Transit Comidor, Hill Country Roadways, Highways, Intemal Circulation Routes, Suburban Roadways, Urban Roadways) and the type of development; therefore, application of Sub-Chapter E to pool facility development/improvements is site specific. However, some general Sub-Chapter E sustainable strategies can be identified as being applicable to pool facility development/improvements:

- Relationship of Pool Facility to Streets and Walkways

Improve public sidewalks along the roadway frontage to be supportive of pedestrian and transit mobility, consisting of a planting zone and a clear zone. Restrict (as much as practical) off-street parking from between the public roadway and the street-facing façade of the pool facility. Screen all off-street parking and provide landscaped buffering between parking and the roadway frontage sidewalk.

- Connectivity

Provide direct pedestrian and bicycle access from public streets to the pool entrance/exit. Provide pedestrian and bicycle connections to adjacent parklands, greenbelts, trails and residential development. Provide a transit stop at the site. Provide shower and locker facilities for employees and increase bicycle parking to enhance physical fitness opportunities and multi-modal connectivity. Provide secure indoor bic ycle storage. Provide shaded walkways.

- Pool Facility Entryways

Provide at least one pool facility entry/exit that connects directly to the public roadway. Provide shaded walkways from parking areas to the pool facility entry/exit.

- Exterior Lighting

Provide outdoor lighting applic ations that are either fully-shield ed or full cut-off.

- Screening of Equipment and Utilities

Screen solid waste collection areas and mechanical equipment from view from adjacent public street.

- Open Space Amenities

Provide patio or plaza with outdoor seating areas, including fully or partially shaded spaces. Provide play area with a menitiesorequipment suitable forchildren undernine years of a ge, inc luding partiallyshaded areas with seating for adult supervision. Provide spaces that present educational, historic or cultural features or sensory experiences. Provide multi-use trail connections. Provide sports courts or playing fields. Provide a transit plaza that is adjacent to a transit stop.

City of Austin CIP projects by ordinance must meet Sub-Chapter E Core Transit Coridor Development Requirements.

The Core Transit Comidor typically requires a 15^{\prime} sidewalk and Trees planted 30^{\prime} on center. See Figure 2.7 to the right. The expense of providing a Sub-Chapter E compliant project can be prohibitive on pool and park projects where the site may consist of hundreds, if not thousands, of feet of street frontage. In addition, trees and plantings required for shaded pedestrian paths between buildings must be imigated.

Figure 2.7: Core Transit Comidor with Underground Utilities

Not all PARD sites are curently ingated. However, for future pool facilities, PARD is allocating funds to imigate proposed landscaped areas.

Sub-Chapter E requires locating new municipal facilities close to the property line at the street frontage or intemal circulation route. At many of the pool sites, this requirement may not be possible due to the previous design vision that included the location of park facilities inside parks with broad expanses of greenspace separating build ings from the street.

Renovation or redevelopment projects may be allowed to provide a reduced, altemative approach to both the location of facilities and the extent of sidewalks required. Altemative compliance may consist of allowing the proposed improvements to be designed around the constraints of the existing landscaping and improvements, while providing a shaded connection. Approval of such altemate compliance may require lengthy meetings with staff and presentations to city boards including the Design Commission.

Consideration and further conversations need to take place with PARD staff in regard to the extent of Sub-Chapter E compliance required as appropriate to the facility. The requirements of Sub-Chapter E may impact the overall cost of developing certa in sites and will be a factor in the redevelopment criteria.

Project Example (Rosewood Neighborhood Pool)

The recent Aquatic Facility Needs Assessment noted that this pool was grossly inaccessible to those with disabilities. The restrooms were subterranean and only accessed by steep, code deficient staircases. The nearest parking area was accessed by a steep long ramp that did not contain landings, which is in violation of the both the State and Federal accessibility codes.

As a result of the code deficient situation, in 2015, PARD looked into the feasibility of adding restrooms on the site at a separate facility but not attached to the pool, serving the pool as well as the parking area containing a handic apped accessible parking space.

During the initial design phase, investigations and meetings with City staff determined that the required shaded pedestrian path, landscaping and other requirementsof Sub-C ha pterEmade it cost prohibitive to continue with the project. After further discussions, these conditions were coordinated further with City staff and the project was able to proceed, which illustrates the nec essity of coordination between PARD and regulatory departments.

Texas Health And Safety Code 341

These rules apply to swimming pools, wading pools, baby pools, waterparks, spray fountains or other artificial bodies of water typically used for recreational swimming, bathing or play. While this code is lengthy, some examples of items that would affect the planning of new aquatic facilities are listed below.

- All public swimming pools containing dressing rooms will require shower facilities.
- Public pools shall provide adequate and properapproved facilities for the disposal of human excreta by the bathers.
All upgraded or significantly altered pools will be required to have the appropriate number of toilet fixtures, changing rooms and showers to meet the newer codes. This requirement will impact the cost of all facilities but will be a constant that must be addressed at all facilities. Some facilities with bathhouses and showers may result in lower costsif the existing facilitiescan be upgraded versus developing a completely new facility.

Sub-Chapter L Regulations

Below are a few examples of regulationsforthe design of pools put forth in Sub-Chapter Land pertaining to basic aquatic facility design. Most of these examples translate into a largerfootprint for the pool and require amenities, which might make the replacement of the pool and its associated structures unfeasible if the site is landlocked by adjacent build ings or topography.

- Wading pools shall be separate and physically set apart from beginner or shallow water areas by at least 15 -feet of deck or pool yard enc losure.
- If a wading pool is within 35 -feet of any deep-water area, a pool yard enclosure shall be provided (with clear visibility through the bamier) to physically separate the wading pool from the deep-water area.
- Class B pool deck widths shall be a minimum of 6-feet.
- Class C pool deck widths shall be a minimum of 4 -feet.
- At least one drinking founta in is required.
- At least one shower and dressing booth foreach gender shall be provided.

Most facilities meet these requirements, but they must be included in the evaluation of the potential to upgrade or expand existing facilities to the new standards.

Utility Senvice Availability

The majority of the City of Austin pools were built before 1970 (21 of 34 pools included in the Needs Assessment) and while they all have dry and wet utility service, it is most likely antiquated and needs replacing or major updates if the facility is to be renovated. Replacement may require not just piping
inside the pool enclosure area, but utility extensions from the street. The resulting limits of construction added to the projectmay inc rease the expense of storm watercontrols required by the site development permit process. Therefore, utility enhancements have the potential to be costly, disruptive and add to a lengthy permit process.

Availability and distance to majorutilities will be included in the evaluation criteria forsitesfor the potential to upgrade, redevelop, or expand.

Parking Requirements

The majority of the pool sites have inadequate numbers and types of parking spaces, including noncompliant ADA spaces that do not meet the minimum requirements. Most of these pools were designed as neighborhood pools where most visitors would access by walking. Current statistic s demonstrate that many pool users drive to pools even though they may be in close proximity. Some pool sites do allow for the expansion of parking. However, a ny expansion of parking would also be an issue of adding impervious cover and tie back to cost and stormwater issues addressed previously. The majority of pool sites are landlocked or would require removing park features to achieve parking requirements.

City ordinance requires projects of a certain type or cost to be LEED Certified. LEED Certification may require that alternative fueling or carpool spaces, depending on LEED Certification credits pursued. All new parking would need to meet the City'sparking regulationsand site development pemit requirements.

The availability of existing parking is a positive factor in the evaluation of the potential of aquatic sites to upgrade, expand, or redevelop existing pool facilities. Sites with on-street or limited parking and lack of space to develop parking will be limited to remaining as Neighborhood Pools.

Applicable Codes

Renovationsorupgradesto any of the pool facilities, inc luding sidewalks, restrooms, parking and build ing elements, will be required to be compliant with curent building and accessibility codes, such as:

- Pools with a calculated occupancy of less than 50 persons/patrons would be classified by the IBC 2012 Building Code as "B" Business occupancy. Pools with 50 or more occupants/patrons would be considered "A" Assembly occupancy.
- The pool equipment buildings which are separate from the bath houses could be classified as " S " Storage. While the pool chemicals may be highly corrosive and generate noxious gases, they are classified as non-flammable. Currently all pools do not use the same chemicals for treating the water system, but depending on the type and quantities stored, these buildings may be classified " S " in lieu of being bumped up to a " H " Hazard occupancy. " H " classification carries stricter building fire code and construction guidelines. Attached pool equipment areas to bath houses may be required to comply with the more strict " H " occupancy as there is assumed to be more danger to pool patrons in this situation.
- Any modifications to an enclosed building will require a ComCheck calculation of energy use to be performed and subsequently demonstrate the energy use is within the code limits. The energy code will require more robust (and more costly) building materials than currently installed to meet code required themal resistance (R) values for the building thermal envelope. This requirement may not apply to most buildings at outdoor pools as the buildings are not fully enclosed, and their use is seasonal and spaces are not conditioned.

These factors which may increase the cost of development are included in the evaluation criteria for suita bility of sites for development. These factors do not omit sites from development but rather inc rease the costs.

2.7.3 Pool Accessibility

This subsection discusses pool operation and site conditions with respect to site civil accessibility at the sites and facilities for individuals with disabilities, as they relate to the regulations (Texas Accessibility Sta ndards "TAS") by the Texas Department of Licensing and Regulation under the Texas Architectural Bariers Act,
codified as Chapter 469, Texas Government Code. This subsection does not address issues with respect to compliance with removal of bamiers under Title III of the Americans with Disabilities Act (ADA) and does not address building interior architectural bamier/accessibility issues. These issue are addressed in a separate Accessibility Audit, prepared concurently with this Master Plan.

The Appendix I of the NeedsAssessment Report indic ates that of the 36 aquatic sites assessed, 29 pools have identified accessible site issues, including:

- Lack of accessible rampsand/or rampswith handrails
- Lack of accessible parking and/or accessible parking spaces with non-compliant dimensions and cross-slopes
- Inadequate accessible parking signage
- Accessible sidewalks and ramps with non-compliant cross-slopes, hand-rails a nd landings
- Lack of zero depth entry to wading pools
- Accessible route walking surfaces that are non-compliant (e.g., excessive crack widths and abrupt vertical grade changes at cracks and joints)

The NeedsAssessment did not a ddress the full scope of TASc omplia nt a c cessibility issues. As noted previously, the Parks and Recreation Department (PARD) recently completed a comprehensive ac cessibility assessment of its pool facilities, parts of which have been incorporated into this Master Plan.

Accessible Routes

Texas Accessibility Standards (TAS) require at least one accessible route to be provided within the site from all accessible parking spaces and a c cessible passenger loading zones, public streets and sidewalks, and public transportation stops to the pool facility entrance/exit and to all accessible pool facilities (TAS 206.2.1). TAS Chapter 4 provides accessible route requirements for walking surfaces, ramps, curb ramps, handrails, landings and passing spaces. The City of Austin (COA) La nd Development Code (LDC) Chapter 25-2 "Zoning," Sub-Chapter E provides accessible route requirements as part of its integration and inclusion of people with disabilities into the vision for the future of the City of Austin (Sub-Chapter E issues are disc ussed in subsection 2.6.2 of this chapter).

Accessible Route from Public Right-of-Way and Public Transportation Stops. All pool sites have a c cess to public rights-of-ways and public transportation stops. According to Appendix D of the NeedsAssessment:

- Fifteen (15) pools have at least one public transportation stop within $1-1 / 2$ blocks (within 0.1 mile) of the site
- Two (2) pools have at least one public transportation stop within 3 blocks (within 0.2 miles) of the site
- Nineteen (19) pools have at least one public transportation stop greater than 3 blocks (greater than 0.2 miles) from the site

Each pool entrance/exit should have at least one accessible route to the public right-of-way and along the public right-of-way to at least the closest public transportation stop (accessible routes to all public transportation stops are desired as identified in the Appendix D of the Needs Assessment). The provision of accessible routesto the public rights-of-ways and to the public transportation stops will also help the COA fulfill its commitment to transit-friendly, walkable communities.

- Accessible Route from Accessible Parking

Twenty-three (23) pools have on-site parking. All accessible parking spaces must have an accessible route to each pool entrance/exit. If any parking is added to the aquatic sites that curently do not have on-site parking, accessible parking will be required as part of the addition of parking, and the accessible parking will require an accessible route to the pool's entrance/exit.

- Accessible Route within the Pool Facility

All pedestrian circulation routes within each pool facility must be accessible and TAS-compliant. All elements along the circulation routes must be accessible and TAS-compliant, including walking
surfaces, ramps, handrails, fumiture, and drinking fountains. Twenty-six (26) pools have poor joints in the concrete decks, and 23 pools have deck cracking and uneven joints. From an accessibility standpoint, all walking surfaces within the pool facility should be considered as accessible routes and should comply with TAS Chapter 4 for accessible routes.

Aspart of the intemal accessible route improvements, Appendix I of the Needs Assessment indic ates zero depth entry modifications are required for wading pools at 11 aquatic sites.

- Sidewalks and Ramps

The two most common elements of an accessible route are sidewalks and ramps. Sidewalk running slope, cross-slope, clear width, tums, a nd passing space requirements are given in TAS 403. A walking surface with a running slope steeper than 1:20 is defined as a ramp. Ramp running slope, cross-slope, clear width, landings and handrail requirements are given in TAS 405. The COA LDC Chapter 25-2 Sub-Chapter E hasadditional criteria for planting zone and clear zone sidewalk elements along Core Transit Comidors, Intemal Circulation Routes, Urban Roadways and Suburban Roadways. The City of Austin has standard construction details for its sidewalks a nd curb ramps.

Accessible Parking

General site parking requirements are discussed in subsection 2.6.7 of this document. Where parking spaces are provided, parking spaces must be provided that are accessible (TAS 208). TAS Table 208.2 provides the minimum number of required accessible parking spaces pertotal number of parking spaces provided in a parking facility. In addition, van accessible parking spaces must be provided at a ratio of 1 van accessible parking space per 6 accessible parking spaces. Accessible parking spaces must be located on the shortest accessible route from parking to the pool entrance/exit. Layout, signage, markings, and cross-slope requirements for car and van accessible parking spaces and access aisles are provided in TAS C hapter 5. Twenty-three (23) pools have on-site parking. Accordingly, they must provide a certa in number of carand van accessible parking spaces with associated access aisles and accessible routesto pool entrances/exits. The NeedsAssessment recommends the addition of accessible parking at six (6) of these 23 pool sites because they do not currently meet these requirements.

Passenger Loading Zones

Passenger loading zones, if provided, must be accessible (TAS 503). Vehicle pull-up space, access aisle, markings, a nd cross-slope requirements are provided in TAS 503. It is antic ipated that passenger loading zoneswill be needed ateach pool entrance/exit, though having a passengerloading zone is not required by TAS.

Stairs

Stairs are not part of an accessible route; however, all stairs must comply with TAS 504 with respect to tread and riser height and depth, tread surface, nosings, a nd handrails. Sta ir handrails must comply with TAS 505. It should be noted that TAS criteria for handrails do not necessarily address OSHA fall protection requirements.

2.7.4 Safety

This subsection disc ussessite civil safety a nd sec urity issuesat the pool sites, inc lud ing lighting, signage, fenc ing, emergency call stations, and Crime Prevention through Environmental Design (CPTED).

Lighting

Chapter VIII of the Needs Assessment identifies 11 pool sites that need exterior lighting improvements around the pool facility and/or within the parking lot. In addition, the Needs Assessment identifies public desire for additional night-time pool facility functions (e.g. night/evening swim hours, fa mily movies, etc.), which might require additional site security lighting in parking a reasand along pedestria n/bicycle access routes.

Outdoor lighting should incorporate "Dark Sky" lighting strategiesto preserve the noctumal environments and to increase night sky access by reducing the adverse effects of excessive artificial light outdoors. It is recommended that the outdoor lighting be fully shielded, full cut-off, and comply with the recommended
strategies of Austin Energy (AE) Green Building 2013 "Commercial Rating Guidebook," Item 15 for Light Pollution Reduction. Directional lighting should be minimized as much as possible.

Outdoor lighting should be provided along parking aisles, along pedestrian access ways, and along the pedestrian/bicycle paths. Some wayfinding signage might require directional lighting.

Signage

The Needs Assessment Report identifies 17 pool sites that need signage/wayfinding improvements. The signage improvements should include vehicle traffic control signs, pedestrian/vehicle warning signs, pedestrian/bicycle/vehicle wayfinding signs, and accessible parking and route signs.

Fencing

The Needs Assessment identifies four (4) pool sites that need perimeter security fencing repairs and/or replacement.

Emergency Call Stations

Consideration should be given to installation of solar-powered Emergency Call Stations at pool sites, especially at more remote locations, similar to the Emergency Call Stations that Capital Metro Transit Authority (CMTA) installs at its transit station parking lots. The Emergency Call Stations provide the public with an added sense of security and an option for quick emergency notification.

Crime Prevention through Environmental Design (CPIED)

The pool facilities can incorporate a variety of strategies into the sites' built environment, as much as is applicable and practical, to help detercrime:

- Increase pedestrian and bicycle traffic
- Provide for vehicle circulation to use vehic les as a surveillance asset
- Create landscape designs that enhance surveillance, especially in proximity to designated points of entry and opportunistic points of entry
- Use the shortest, least sight-limiting fence appropriate for the situation
- Avoid poorly placed lights that create blind spots
- Ensure potential problem areas are well lit, such as along pathways, entrances/exits, parking areas, and information kiosks
- Avoid too bright security lighting (shielded and/orcut-off luminaires) that creates blinding glare and/ ordeep shadows
- Place lighting along pathways and other pedestrian-use a reas at proper heights for lighting the faces of the people in the space
- Utilize closed-circuit cameras to provide surveillance where window surveillance is una vailable
- Minimize points of entry, and clearly identify the points of entry
- Maintain the site and landscaping
- Provide trees
- Display security system/surveilla nce signage at access points
- Display public activity signs
- Avoid cyclone fencing and razor-wire fencing
- Place a menities, such as seating, in common areas

Equipotential Bonding

As noted during the installation of the new hydraulic lifts for ADA access to the pools, these installations were accomplished by drilling into the concrete and placing a removable sleeve forthe lift. It wasbrought
to the attention of the Consultantsthat the lifts are not bonded to the pool, and with the age of the pools, some of the other metal extrusions from the pool deck and pool may also not be grounded. The pool ladders, lifeguard chairs, and ADA lifts should all be tied into the rebarforthe pool and deck for proper bonding in accordance with the National Electrical Code, ADC Section 680.26.

The first mention of grounding pools in the N.E.C. occurred in 1962. Prior to that date, there is no mention of grounding or bonding of pools. In 1975, bonding is first mentioned as a separate issue from grounding of electrical equipment, and 1984 brought the first clarification that the intent of the code is to eliminate any voltage gradients between the pool and surrounding deck and appurtenances. Since then, the code has been clarified and updated (most recently in 2008) to address the issue of vinyl and fiberglass coated pools and to include bonding of the water.

The primary solution to this deficiency would be to replace the pool decks within three (3) to five (5) feet of the pool, which could then be connected to the pools structural framework, and ground each of the metal extrusions.

2.7.5 Environment

This subsection discusses site environmental issues with respect to pool operations, including disposal/ discharge of chlorinated water, impenvious cover, stom water quality treatment, erosion and sediment control measures, and tree protection.

Chlorinated/Chemical Effuent Disposal/Discharge

There are two primary conditions where existing pool facilities discharge chlorinated effluent from the sites: filter backwash discharge and end-of-season draining of the pools. In general, the effluent is discharged to the City of Austin wastewater system if there is wastewater infrastructure nearby; otherwise, the effluent isdischarged directly to localstom drainsand/orreceiving streams. From a wastewatersystem regulatory standpoint, the chlorine chemical (e.g. Calc ium Hypoc hlorite), pH balance chemical(e.g. Muriatic Acid), oil and organic mattercontent will normally fall within acceptable rangesfordirect discharge into the City of Austin wastewater system. Disc harge to a local storm drain or receiving stream is subject to regulation by the City of Austin and Texas Commission on Environmental Quality (TCEQ) under the Texas Pollutant Discharge Elimination System (TPDES) Program (which is the State of Texas' local administration of the Environmental Protection Agency's National Pollutant Discharge Elimination System (NPDES) Program). Disc hargesto the surface waters of the State of Texasmust fall within a permitted activity, eitherpermitted under the TPDES General Permit or permitted under a TPDES Individual Permit. Discharges to the surface waters of the State of Texas must comply with the state Water Quality Standards, which must take into account whether or not the receiving water body is classified as an "Impaired Water Body." Therefore, no generalizations can be made concerning the regulatory acceptability of discharging effluent from the pool facilities to local storm dra in systems a nd surface water bodies.

From a planning standpoint, three primary altematives may be considered to discharge pool facility effluent.

- Re-Inigation

Re-irrigation involves discharging the effluent to the site vegetation/landscaping through a "reuse" ingigation system that is separated from the domestic water inigation system. A re-inigation system requires a filter, storage tank, pump, distribution, and backflow preventer system. Assuming the effluent chemistry is compatible with the local vegetation, re-irigation is one of the acceptable green infrastructure water qua lity treatment systems.

Wastewater

Discharge to the Public Wastewater System. If a public wastewater main is nearby, the effluent can be discharged directly to the wastewater system. Generally, the least costly effluent discharge connection is a gravity flow connection to the public wastewater main if there is already public wastewater infrastructure downgradient from the pool facility. If there is not a downgradient wastewatermain, an effluent pump/force main system is required.

- Discharge to the Local Stom Drain and/ or Surface Water

From an environmental standpoint, direct discharge of the effluent to a storm drain or surface water is the least desirable alternative, unless the effluent has been pre-treated to remove organics and oils and to de-chlorinate. Recently, 3,000 gallon settling tanks have been installed at Reed and other poolsasa method of allowing solidsto settle and to allow the chlorine to dissipate before discharging into storm systems.

- Neutralize chemicals used in cleaning

The acid used to clean Deep Eddy Pool once it isdrained should be neutralized priorto discharge into a storm or stream system.

Impenvious Cover

The maximum allowable impervious cover at a pool site is controlled by a variety of zoning and watershed ordinances and regulations. In general, reconstruction of existing impervious cover is usually considered as maintenance as long as the purpose of the impervious cover remains unchanged (e.g., re-pavement of a parking lot or reconstruction of an existing pool deck). However, if an existing pervious ground surface is covered by new impervious cover (e.g., expansion of a parking lot) or if previously grandfathered impervious cover is re-purposed as redeveloped impervious cover, then the new and redeveloped impervious cover may count aga inst the maximum a llowable imperviouscover. Therefore, it is important that the maximum a llowable impervious cover and the existing impervious cover (and their uses) be identified at the pool sites where extensive impervious cover construction/reconstruction is being considered.

The addition of site impervious cover must be considered with respect to stomwater quality treatment requirements and be considered with respect to potential impacts to peak site runoff characteristic sand requirements for sto mwater detention (see subsection 2.6.8).

Stormwater Quality Treatment

In general, the addition of site impervious cover requires water quality treatment of the runoff from new impervious cover and from redeveloped impervious cover that is previously untreated. Under certain conditions and within certa in watersheds, small a mounts of new and/orpreviously untreated redeveloped imperviouscoverare allowed without providing stormwa terquality treatment (e.g., up to 8,000 squa re feet of new and redeveloped impervious cover outside the Barton Springs Zone). Also, the City of Austin Land Development Code excludes stormwater treatment from certain types of impervious cover (e.g., pools and water quality treatment structures). However, from a planning standpoint, it is prudent to provide stormwater quality treatment for a ny proposed new impervious cover, a ny repurposed impervious cover, or any reconstructed impervious cover as a Sustainability strategy (see subsection 2.6.6), regardless of whether or not the Land Development Code requires stomwater quality treatment.

The City of Austin Environmental Criteria Manual (ECM) Section 1.6 .0 provides a variety of stormwater qual lity treatment strategies. The City of Austin encouragesthe incorporation of Green Sto mwaterQuality Infrastructure, including retention/re-irrigation, vegetative filter strips, bio-filtration, rainwater harvesting, porous pavement for pedestrian use, non-required vegetation (e.g., trees), and rain gardens. A potential option exists to partic ipate in the City of Austin "Optional Payment instead of Structural Controls in Urban Watersheds" Program.

Erosion and Sediment Control Measures

Erosion and sedimentation control measures are required to minimize the adverse impacts of erosion and sedimentation from any site construction activities and from post-construction stabilized ground surfaces. Temporary construction erosion and sedimentation controls must be incorporated into any "la nd-disturbing" a ctivity and nomally include silt fences, rock berms, stabilized construction entrances, temporary seeding, soil stabilization mats, inlet protection, and filter dikes. Temporary erosion and sedimentation controls must be designed, installed and maintained in accordance with the following criteria:

- City of Austin: Environmental Criteria Manual (ECM) Section 1.4.0 and Appendix P-1 notes,
- Texas Commission on Environmental Quality (if the pool site is within the Edwards Aquifer Zone): "Complying with the Edwards Aquifer Rules, Technical Guidance on Best Management Practices," latest edition, Sections 1.3 and 1.4.

Post-construction permanent erosion and sedimentation control measures are normally incorporated into the landscaping (e.g., permanent vegetation) and local drainage system stabilization (disc ussed in subsection 2.6.8).

Tree Protection

Tree protection measures are required by the City of Austin to protect and preserve the urban forest as part of any site development and construction project. To the greatest extent possible, all trees with trunk diametersgreaterthan 2 inchesshould be protected and preserved using a numberofstrategies, inc luding mulching, protective fencing, planking, pruning (under the guidance of an arborist), supplemental application of nutrients, restric ted construction of improvements within the critical root zones, parking peninsulas, and tree wells. The Environmental Criteria Manual indicates a 4 " tree for this treatment, but PARD utilizes this standard for trees over 2". City of Austin Environmental Criteria Manual (ECM) Section 3.5 .0 criteria and ECM Appendices P-2 and P-6 provide regulations for tree preservation measures.

The following tree protection measures should be incorporated into any landscaping and improvement work on the pool sites:

- Preserve a minimum of 50% of the Critic al Root Zone (CRZ) at natural grade with natural ground cover
- No cut or fill greater than 4 inches located closer to the tree trunk than $1 / 2$ CRZ radius distance
- No cut or fill at all within the distance from the tree which is three times the trunk diameter

If trees are removed, measures will be needed to mitigate the loss of urban forest, which can include planting replacement trees, preservation or restoration of natural areas, providing a maintenance program for the on-site trees to be retained, transplanting trees, and payment into the "Urban Forest Replenishment Fund" (UFRF).

Endangered or Threatened Species

Endangered speciesare known to be located at Barton Springsand must be considered in the evaluation of other sites for potential expansion. The Texas Parks and Wildlife web page identifies the Barton Springs Salamander (Eurycea sosorum) as follows:
"The Barton Springs Salamander occurs only at the spring outflows of Barton Springs. These are often found under rocksor in gravel in water several inches to 15 feet deep. They can also be found hiding in aquatic plants and algae. They rely on a clear, clean, continuous flow of spring water. The Barton Springs Salamander isclearly capable of living underground, butalso inhabitssurface environments. Although not known forcertain, some scientists believe the salama nder is primarily a surface-dwellerthat is a dapted for life underground when surface conditions become unsuitable."

Monitoring water qua lity at Barton Springs isessential for assessing the cumulative impact of development on the entire Barton SpringsEdwardsAquiferaswell asforendangered spec iesprotection and preservation of the unique swimming site. An automatic sampler is stationed at Barton Springs to collect data on pH , temperature, turbidity, specific conductivity, dissolved oxygen, and depth. Watershed Protection ground water monitoring staff test for suspended solids and nutrients every two weeks. Additionally, twice weekly, and following rainfall overone inch, the Parks and Recreation Department and/orCounty Health Departments test for bacteria levels.

The Center for Biological Diversity website provided the following description:

"Saving The Barton Springs Salamander"

Every year, more than 340,000 people visit the Barton Springsswimming hole in Austin, Texas. Few
swimmers realize they're taking a dip in the home of one of North America's most endangered species - the Barton Springs salamander. An entirely aquatic amphibian, this salamander is uniquely adapted to live in Barton Springs' warm, consistently flowing water. But if Austin can't curb the urban expansion that degrades the water quality of the springs, this tiny creature will swim with us no more.

Barton Springs is part of Texas' Edwards Aquifer region, which provides habitat for more than 50 species of animals and plants living nowhere else in the world - including the Barton Springs salamander. Since the springs provide much of Austin's munic ipal water supply, theircleanliness is a critical issue for both local salamanders and Austin's human population. But increasing development in the area has severely contaminated the aquifer, and salamanders bear the brunt of the damage. Sediment runoff from construction clogs their gills, smothers their eggs, reduces the availability of spawning sites, a nd lessens water circulation a nd oxygen.

Also of concem are pesticides, six of which have been known to contaminate Barton Springs - and which are likely causes of strange deformities and deaths recently seen in Barton Springs sala manders. In 2002, the U.S. Fish and Wild life Service requested that the Environmental Protection Agency engage in consultations regarding pesticide impacts on the salamander but the agency failed to do so. The Center, along with Austin environmental group Save Our Springs Alliance, sued in 2004, and in 2005, the EPA agreed to perform consultations regarding pesticide impacts for atrazine and five additional pesticides. The Center continues to monitor and oppose ha rmful chemic al pestic ide use through our Pestic ides Reduction Campaign."

Two pool sites include critical habitat for two other salamanders the Jollyville Plateau Salamander (threatened) at C anyon Vista and the Austin Blind Salamander (endangered) found at Balcones (as well as Barton Springs).

Invasive Species

Invasive species are a constant issue for any park and recreation system. Although not an issue within existing pool fences, it is a concem at sites where pools may be expanded. Invasive species can take over the landscape of a site and require costly management programs.

2.7.6 Sustainability

This subsection disc usses site civil susta ina bility issues with respect to pool operations, inc luding Sub-C hapterE issues, site civil LEED strategies, a nd la ndsc aping.

LEED Strategies

Curently, LEED (Leadership in Energy and Environmental Design) program of the U.S. Green Building Council) silver certification is required by City Ordinance for new projects over $\$ 2,000,000$ or renovations over $\$ 500,000$. As projects for renovation and improvements are considered, budgets to meet LEED certification should be included where appropriate.

Meetings will need to occurearly in the budget process with city staff to cla nify when it is feasible to meet LEED certification due to the project type and components upgraded by facility type and budget.

The City requirement to utilize LEED standards will apply to all sites and is, therefore, not a limiting factor in the site evaluations, but some sites may be more adaptable to LEED princ iples.

The proposed pool improvements may or may not involve LEED certification; however, there are several site civil LEED sustainable practices strategies that can be incorporated into the pool improvement projects.

- Community Connectivity

Channel development to existing infrastructure to provide connectivity and to protect greenfields and preserve habitat and natural resources, such as providing pedestrian connectivity to residential neighborhoods and basic services (see also Sub-Chapter E disc ussion, subsection 2.6.2).

- Public Transportation Access

Reduce pollution and land development impact from a utomobiles, such as providing, within walking distance, access to one ormore busstopsfortwo or more public, campus or private bus lines usable by building occupa nts or providing, within walking dista nce, a c cess to commuter rail, light rail or rapid transit station (see also Sub-Cha pter E disc ussion, subsection 2.6.2).

- Bicycle Storage and Changing Rooms

Reduce pollution and land development impact from a utomobiles, such as providing secure bicycle racks and/or storage near pool entrance/exit and providing shower/changing facilities in the pool fa c ility for staff.

- Low Emitting and Fuel-Efficient Vehicles

Reduce pollution and land development impact from a utomobiles, such as providing preferred parking for low emitting and fuel-efficient vehicles and installing alternative-fuel fueling stations (e.g., electric).

- Altemative Transportation Parking Capacity

Reduce pollution and land development impact from a utomobiles, such assizing parking to meet, but not exceed, minimum required parking and providing preferred parking for carpoolsand vanpools.

- Protection or Restoration of Habitat

Conserve existing natural areas and restore damaged areas to provide habitat and promote biodiversity, such as limiting the footprint of site disturbance and restoring/protecting green space with native oradaptive vegetation.

- Maximize Open Space

Promote biodiversity, such as maintaining a high ratio of open space to development footprint.

- Stommater Quantity Control

Limit the disuption of the natural hydrograph by reducing impervious cover, increasing on-site infiltration, reducing or eliminating pollution from stormwater runoff, and eliminating contaminants, such aspreventing the post-development peak discharge rate and quantity from exceeding the predevelopment peak disc harge rate and qua ntity and protecting the receiving strea ms from exc essive erosion, including stream cha nnel protection/sta bilization.

- Stormwater Quality Treatment

Limit the disruption and pollution of natural water flows by managing stormwater runoff such as reducing impervious cover, promoting infiltration, and capturing and treating the quality of the stormwa ter runoff.

- Heat Island Effect (Non-Roof)

Reduce heat islands to minimize impacts on microclimates and upon human and wild life habitats, such as providing tree canopy shading, solarpanel shading, architectural/structural device shading, hardscape materials with high solar reflectance index (e.g. concrete), and open-grid pavement systems.

- Light Pollution Reduction

Minimize light trespa ss from the pool site to reduce sky-glow to inc rea se night sky a c cess. Improve night time visibility through glare reduction and reduce development impact from lighting on noctumal environments, such as lighting areas only as required for safety and comfort, incorporating cutoff luminaries, low-reflectance surfaces and low-angle spotlights, and managing light densities based upon zones of usage.

- Construction Waste Management

Divert construction and demolition debris from disposal in landfills and incineration facilities. Redirect recyclable recovered resources back to the manufacturing process and reusable materials to a ppropriate sites (e.g., incorporation of concrete and asphalt debris and soil exc avations into the site civil pool improvements).

Landsc aping

From a site improvements standpoint, landscaping is required by the City of Austin Land Development Code (LDC):

- To screen vehic le parking from view from adjacent rights-of-ways
- Provide an even distribution of landscaped areas within the interior of the parking lot
- Provide parking islands with trees
- Provide landscaped area with tree close to all parking spaces

The City of Austin Environmental Criteria Manual (ECM) contains sustainable practices with respect to landscaping, including trees, which can be incorporated into the pool improvement projects:

- Use plantings listed in the Preferred Plant List as much as possible (ECM AppendixV)
- Provide minimum 8-ft width of islands, medians and peninsulas which conta in new trees
- Provide buffering plantings using shade trees, omamental trees and shrubs (with low or no irigation demand)
- Install water efficient irrigation system, including use of reuse/recycled water
- Install tree protection measures within the landscaping

2.7.7 Parking

This subsection disc usses site parking and parking lot issues at the pool facilities.

Number of Parking Spaces

The City of Austin Land Development Code (LDC) and Transportation Criteria Manual (TCM) require site development to provide adequate parking (standard, accessible, bicycle) based upon the "density" of site use(s). Swimming pools fall under "Outdoor sports and recreation" use category in the parking tables of LDC 25-6 Appendix A. The parking requirements for all outdoor sports and recreation (Schedule "B") must be made by special detemination based upon the requirements applicable to similar uses, the location and characteristics of the use, and appropriate traffic engineering and planning data.

The NeedsAssessment indicates at least 6 pool sites need additional parking spaces, including increased accessible parking spaces (accessible parking is discussed in subsection 2.6.3). In general, pool improvements will require consideration of the appropriate number and type of parking. If the proposed pool use and/or "density" of pool use (i.e. square footage of pool and wading pool) remain unchanged and there is an approved Site Plan and/orParking Detemination, then the required minimum number of parking spaces will remain unchanged, except the number of accessible parking spaces must comply with the most recent TAS standards (see accessible parking disc ussion subsection 2.6.3). If the proposed pool use or "density" of pool use change or if pool improvements are proposed at a pool site without an existing approved Site Plan or Parking Detemination then the required number of parking spaces may have to be increased.

Parking Lot

The Needs Assessment indicates at least six (6) pool sites need some type of parking lot improvements. The City of Austin Transportation Criteria Manual (TCM) provides criteria for parking lot layout, including consideration of ingress/egress driveways, parking spaces, drive a isles, tuming and maneuvering, intemal circulation, signage and pavement markings, pavement design, safety bariers, visibility, emergency
vehicle lanes and turn-around, and fire protection device (e.g., fire hydrants) clearances. In addition, the City of Austin LDC also has parking lot landsc a ping requirements (see landsc aping disc ussion Section 5.3), and the State of TexasTAS has accessible parking requirements.

The location of a parking expansion with respect to the pool facility and the public roadway must take into account Sub-Chapter E requirements (see discussion subsection 2.6.2). The addition of impervious cover, assoc iated with expa nsion of the pool parking lot, will require consideration of maximum allowable impervious cover and stormwater trea tment (see disc ussion subsection 2.6.5).

2.7.8 Utilities

This subsection discusses site utility issues, including drainage, water and wastewater, at the pool facilities.

Drainage

The City of Austin Land Development Code, Draina ge Criteria Manual and Environmental Criteria Manual require each pool site to manage its stormwater runoff with respect to stormwater runoff peak rate and quality.

Stormwater Runoff Peak Rate of Disc harge Management

Stormwater runoff peak rate of discharge management strategies must be implemented to prevent site post-improvement peak discharge rates from exceeding pre-improvement peak discharge rates. In order to manage stomwater peak discharges from the site, the Drainage Criteria Manual provides criteria for the design and construction of stormwater management ponds. In addition, pool sites within certa in watersheds are eligible forconsideration of payment into the Regional Stormwater Ma na gement Program (RSMP) in lieu of construc ting on-site detention struc tures a slong it can be demonstrated that the higher peak dischargesfrom the site can be adequately conveyed from the site through the downstream storm drain conveyance systems.

Stomwater Quality Treatment

In general, stormwater quality treatment strategies must be implemented to minimize the effect of nonpoint source pollutants in stormwater to improve stormwater and receiving stream water quality by removing suspended partic ulate matter and associated constituents, such as bacteria, nutrients and metals. There are two primary water quality zones within the City of Austin; the Barton Springs Zone (BSZ) and outside the BSZ(which in tum is further divided into watersheds). Each water quality zone has its own water quality treatment criteria. In order to manage the quality of the stormwater runoff from the pool site, the Environmental Criteria Manual provides criteria for the design and construction of water quality controls, including sedimentation/filtration (full and partial) ponds, wet ponds, retention/irrigation ponds, vegetative filter strips, biofiltration, rainwater harvesting, porous pavement (for pedestrian use only), non-required vegetation (e.g., trees), and rain gardens. In addition, pool sites within Urban watersheds are eligible for consideration of payment into the Urban Watersheds Structural Control Fund in lieu of constructing on-site water quality control struc tures.

Water

Water utilities involve services off the Austin Water Utility (AWU) waterma insfortwo primary uses: domestic water service and fire flow. The City of Austin Utility Criteria Manual (UCM) governs the design and construction of domestic water service, which include for pool facilities, service for plumbing fixtures, pool makeup water, and landscape imigation. The UCM and Fire Protection C riteria Manual govem the design and construction of fire flow service, which include fire sprinkler systems and fire hydrants. The Needs Assessment report identifies plumbing-related improvements at various pool facilities, but no domestic water service or fire flow capacity improvements are identified. However, expansions of plumbing fixtures, pool capacity or landscaping could require up-sizing water services and meters. Expansions of pool facility buildings could require modifications/relocations to the fire hydrants. At the very least, adequate fire flow capacity for any pool improvement must be demonstrated under residual pressure conditions.

There a re a variety of strategiesto minimize the up-sizing of the domestic watersupply, including installation of water efficient plumbing fixtures and irrigation system, reduction of pool liner leakage, and use of recycled water (or rainwater harvesting) for inigation.

The Office of Sustainability suggested having water taps for pools separated from other park facilities to better monitor the quantity of water used at the pools. This office also suggested minimizing energy and water use during construction.

Deep Eddy

Deep Eddy Pool is filled from four wells. Without a filtration system, the water needs to be drained and refilled approximately every two days. The frequency depends on the quality of the water in the wells and conditionsforalgae growth. The Parks and Recreation Department estimates that it takes approximately 300 million gallons from the aquifer each year to fill the pool. In addition to the large quantity of well water, the energy used to operate the pumps must also be considered in the environmental impact.

Wastewater

Wa stewater utilities involve discharge to the Austin Water Utility (AWU) wa stewater mains for two primary purposes: discharge of effluent from the plumbing fixtures and discharge of pool water (filter back-washing and end-of-sea son pool draining). Not all pool facilities have bathhouses or toilets, in part bec ause there are no nearby wastewater mains to discharge the plumbing fixture effluent by gravity. Upgrades and/or expansion of a pool facility's plumbing fixtures may require upgrades to the drain/wastewater collection system and discharge pipe to the wastewater main, depending upon the peak fixture flows and collector pipe capacity. The addition of a bathhouse or toilet where one currently does not exist may require a pump/force main system to the nearest wastewater main. Discharge of chlorinated effluent from a pool is discussed in subsection 2.5.5. The City of Austin Utility Criteria Manual (UCM) govems the design and construction of connections (gravity and force main) to the AWU wastewater system.

2.8 Staff Strengths, Weaknesses, Opportunities, and Challenges (Swoc) Exercise

In J a nua ry 2016, the C onsulta ntsled a SWOC (strengths, weaknesses, opportunities, a nd cha llenges) disc ussion. The results are summarized here:

2.8.1 Strengths

What are the Strengths of the Aquatic Division facilities, programs, and staff? What are you most proud of?

- Lifeguards
- Flexibility/tra ining
- Safety culture
- Don't compromise on safety - lifeguards
- Ability to work asa team
- Form partnerships (SwimATX)
- Working/Passion of community
- Maintenance staff
- Diverse perspectives/ years of experience
- Qualifications of the Aquatic Team
- Focus on the future (development and staff)
- Pay increase for part-time staff
- Diverse array of programs
- Variety of facilities
- Staff dedication
- Desire to engage the public
- Ebb and Flow
- Number of pools
- Ability to keep pools operational in spite of theirages
- Openness/Willingness to make changes
- Culture of change
- Adaptability
- Geographic location - weather in Austin
- Citizen advocates
- Counciladvocates
- Affordable programs
- Swim team program
- Recognize need forimprovement
- Individual staff talents
- Weather in Austin

2.8.2 Weaknesses

What are the Weaknesses? What areas need improving?

- Lack of indoor aquatic facility - impacts training and recruitment Communication gaps/Staff on site Increased operations budget cuts Lack of a wareness of programs and facilities-Need more education of the public
- Need for indoorfacility for training, lap swimming, fa mily activities a nd therapeutic recreation
- Number of pools - strain on staff - some close together
- Geographic locations of pools
- Amount of water used
- Age and current conditions of pools
- Oldertechnology
- Need year round staff at five facilities
- Lack of indoor training facilities
- Lack of deck space forprogramming
- Hiring practices and background checks can take weeks
- Budget constraints
- Low brand awareness
- Communication between operations and programs- (Pool staff cannot call Ma intenance directly) Inc onsistent swim lesson program
- Population decline and affordability Hard to reach the public
- Austin's emphasis on green space - "City within a Park"
- Ability to think on our feet
- Accessibility to citizens
- Partnershipsresultin win-win (staff rec ruitment)
- Timing of opening season
- Bamiersto becoming a life guard
- Lack of funds for preventive maintenance Lack of standard parts Operations - Code and technology changes Funding Different builders with varying levels of expertise Only accept cash (since J anuary 2016, accept credit/debit at 5 municipal locations for daily admission)
- Facilities are not able to address needs
- Most vocal residents versus greater community good
- Antiquated payroll and scheduling practices (city wide) Lack of access to Wi-Fi- Only two pools have intemet access
- Outdated chemical controllers
- Lack of consistency in ownership
- Purchasing policies
- Employee site preferences based on the facility and safety - struggle to get life guards at some facilities
- Coordination sows in COA bureaucracy (support services)
- Politic dynamics
- Don't know what is driving the market (demographics)
- Reliance on high school age staff
- Lack of participation in some parts of Austin - do not know what is driving the market

2.8.3 Opportunities

What Opportunities do you see to build upon the strengths and improve upon the weaknesses?

- Multi-use facilities for balance and to complement each other
- Fix reputation of swim lesson quality
- Assess best practices re: staff shortage
- New programs(scuba, kayak, paddle boarding, water aerobics, etc.)Multi-use facilities for balance and to complement each other
- New programs (scuba, kayak, paddle boarding, water aerobics, etc.)
- Indoorpools
- Event facilities (sc ale) (Use UTfor 600 child swim team event)
- Leverage skill sets to grow programming
- New pay raise a llows selection of staff
- Attract new swimmers/ bring back old swimmers
- Sponsorships/ partnerships/ vendors
- Software/tech solution to scheduling
- Upgrading chemical controllers/ technology / more efficient technology
- Year-round programs
- ADA compliance can be improved
- Competitive (cool, fashionable forteens)
- Common language to define types of pools (define neighborhood, municipal, etc. with criteria)
- Add poolsto rec center, mall locations where people are
- Basic amenities / landsca ping / sound
- Focus Austin asa swim destination
- More efficient design (variable speed pumps, auto fill, etc.)
- Build tech info into new facility infrastructure
- Improved customer service
- More deck/ grass/ shade
- Maximize team talent
- Plan how to take the next step
- Reuse ortransition
- Partnerships

2.8.4 Success

What must be done to realize Success? Partic ipants were then asked to identify their top item and the total is identified in the parentheses.

- Funding (6)
- Infrastructure
- Staff
- Sponsorships/ altemate sources of income
- Implement the Master Plan
- Need an indoor facility to tra in (3)
- Politic al support (3)
- Need more WSI's and more WSIT's(2)
- Need more water safety instructors (WSI's) (1)
- More full-time trainers and pool staff
- Influence - (policy, collaboration, advocacy)
- Clear identification of facility types definitions and criteria
- Partnership and sponsorship opportunities defined
- Logic al purc hasing policies

2.8.5 Issues \& Concems

What are the health, safety, welfare, and environmental concemsfacing the Division?

- Drought / water restrictions (pools and grounds)
- Having enough safety equipment maintenance / inventory
- Only seven pools with AED's (all as of 2017)
- Shortage of life guards nationally
- Chemic al hand ling, delivery route, and storage (some go through lifeguard area)
- Sustainable design / materials/ landscaping
- Flooding (Dottie Jordan, Barton Springs, Reed, etc.)
- Endangered species at Barton Springspotential to find more in the future
- Regulation forces - new vs. experienced
- Security for closed pools (need nonclimbable fences)
- Plaster vs. paint (exposure / funding)
- Well vs. City water - water supply
- Regulation forces - new vs. experienced
- Security for closed pools (need nonclimbable fences)
- Proper maintenance during off-season
- Time to repaint - exposure

2.8.6 Potential Best Management Practices

What are some potential susta ina bility best management practic es that could be implemented?

- Non-traditional design models (St. Paul natural pool)
- Green energy (wind and solar)
- Xeriscaping (landscaping for crowd control and reduce wateruse)
- Grasses that are better for our climate zone
- Near public transportation forease of transportation network (parking issues at some sites)
- Rainwater collection and ingation with gray water
- Siting and location of pools
- Reduce paper waste - digital connections
- Right-size the pools - not too many
- Variable speed pumps-improved chemical controllers - automatic fill level controllers

3.1 Introduction

Very early in the process of developing thisMasterPlan, two key elements were completed: the development of the Public Information Plan (desc ribed in the SWIM 512 section below) a nd the Staff Strengths, Weaknesses, Opportunities and Challenges (SWOC) session with PARD Aquatic Staff (included in the Planning ContextChapter 2). These two tasks provided a framework for actions that followed. A follow up meeting was held with the PARD Aquatic staff to elaborate on the disc ussions of the SWOC and to dive into more detail and gain an understanding of the current issues, concems, and procedures.

The public engagement for this Master Plan consisted of a review of the input gathered during the first two phases, the Aquatic Facilities Needs Assessment (completed in 2014) and the SWIM 512 campaign held in the summer of 2015, followed by public workshops held during three stages of the Master Plan process. The first two workshops were held in March of 2016 in which general preferences and priorities were established. Following these meetings, a survey was distributed and completed by over 1,700 residents. Next, two focus groups in June 2016 and four workshops in July 2016 focused on the development of a more sustainable and equitable system of aquatic facilities. This engagement was used as a basis for further refinement of the process to determine criteria for redevelopment of aquatic facilities, which was later presented at two workshops in J une 2017.

Engagement opportunities were not limited to attendees of the public meetings. All presentation materials, including handouts and slideshows, were posted on the Aquatic Master Plan project webpage (https:// a ustintexas.gov/department/aquatic-master-plan) afterthe completion of each public meeting. Add itionally, the community was offered with an altemative venue to provide feedback through this webpage if they were unable to attend a meeting. These opportunities are a standard practice for PARD, a nd similar project webpages were setup for the Aquatic Facilities Needs Assessment and the SWIM512 engagement. An email address (swim512@austintexas.gov) was also setup for the for the project to accept community comments, and thisemail addresswasused to respond to these comments aswell. Results of the public engagement are included in more detail in Appendix C.

3.2 Needs Assessment Input

3.2.1 Summary of Engagement Opportunities

The process began as part of the Aquatic Needs Assessment in 2014 with a series of 11 regional meetings, a statistic ally valid, random sample survey of 500 residents, and over 2,500 surveys collected at the pools or
online, plus a Television Town Hall meeting in which over 63,000 Austin households were called to participate with nearly 6,000 persons accepting and participating.

The citizens of Austin have demonstrated strong opinions conceming their pools, a nd their input is crucial to the implementation of any major improvements to the aquatic system. Therefore, the public engagement process for the Austin Aquatic Master Plan has been conducted in three phases over the past three years, including many opportunities that were part of the Needs Assessment. The process engaged the public throughout each phase of the project, which continued through the completion of this Master Plan.

The process engaged over 13,000 people through the following methods:

- Public Workshopsin regional locations
- Stakeholder groups and focus groups
- Statistic ally valid, random sample surveys
- Online and papersurveys
- In-park interviews at pools
- Neighborhood Association meetings
- Television Town Ha ll
- After-school and summer campsfor youth
- Coordination with active user and advocacy groups

3.2.2 What are the Citizens' Prionties?

The citizens of Austin have been consistent throughout all phases of the public engagement. Recuming themes through all phases were:

- Keep the poolsopen and affordable
- Increase the hours and swim sea son length
- Improve restrooms, bathhouses, and seating areas
- Improve cleanliness of pools, bathhouses, restrooms, etc.
- Provide shade

More key findings of the engagement include the following:

- The majority of the 2016 survey respondents are recreational swimmers (82%), but a large group also swim laps and use the pools for fitness or therapy.
- A large majority visit the pools multiple times in the summer
- The most important actions the City could take to improve pools are (from the 2016 survey):
- Increase the swim season (67\%)
- Provide additional shade (63\%)
- Upgrade pool and bathhouses (33\%)
- Add more lap lanes (28\%)
- Install zero depth entry (28\%)
- Provide more seating areas (23\%)

3.3 SWIM 512: Public Engagement Synopsis

Prior to the commencement of this Aquatic Master Plan, the City instituted the SWIM512 campaign to take advantage of users at the pools in the summer of 2015. This process utilized on-site community conversations at three (3) Municipal Pools and eight (8) Neighborhood Pools, Neighborhood Talks at neighborhood association and organization meetings, a nd Community Foc us Groups at rec reation centers. This process led to the development of a survey instrument, which was implemented aspart of the MasterPlan development process.

3.3.1 Results

The results of this process include:

- Generally strong support forlargerfamily aquatic centers and the development of indoor, year-round facilities
- A large percentage of the survey respondents are willing to pay a fee to use pools
- Preferred features, a mong the children polled through the summercamp and after school program, inc luded tall slides, climbing walls, lazy rivers, indoor pools, diving boards, and shade
- Strong need for pools in some underserved neighborhoods, especially where geographic bamiers such as major highways limit ac cess to pools (ex. Colony Park)

3.3.2 Public Information Plan

A Public Involvement Plan (PIP) was developed at the beginning of the Master Plan process to outline the steps to be taken toward completion of this plan and the extensive public engagement that would be a crucial part to the determination of recommendations. The five goals and 17 objectives provided direction for the public engagement process throughout the development of this Master Plan (see Appendix D).

Goals and Objectives

Goal 1: To provide users, neighbors, and other direct stakeholders served by each existing pool facility with sufficient opportunity to contribute their input to the City of Austin and its consultants to inform and help shape the results of the Master Plan

Objective 1-A: Utilize and expand upon the extensive community engagement gained through the SWIM 512 process and utilize the stakeholder contacts from this process in further engagement strategies.

Objective 1-B: Informing stakeholders about the Master Plan; the processes and timelines; the goals, objectives and anticipated outcomes; and their ongoing progress.

Objective 1-C: Collecting stakeholder input that aids in assessing and defining current characteristics, conditions and needs of each district.

Objective 1-D: Collecting stakeholder input that aids in developing a vision that defines the desired physical, functional, aesthetic and cultural character of each district.

Objective 1-E: Collecting stakeholder input to aid in identifying enhancement needs, including recommendationsforpolic y mea sures, capital investments, a nd opportunities forcollaboration with both public and private partners.

Objective 1-F: Presenting recommendationsfor public comment, review and feedback.
Goal 2: To ensure that traditionally underrepresented and hard-to-reach populations and groupshave sufficient opportunity to engage in the Master Plan process. This goal will involve using targeted and customized outreach strategies to ensure opportunities to partic ipate for populations and groups including the following:

Objective 2-A: Environmental justice (EJ) populations.
Objective 2-B: Non-profit, faith-based and other community-serving organizations and their clients.

Objective 2-C: School communities (students, parents and staff) forcampuses served by each facility. Utilize AISD and PTA contacts established in the SWIM 512 Process.

Goal 3: To maintain communications and outreach between the City and its consultants and other aquatic providers, govemment agencies, and key public and private partners, including:

Objective 3-A: Targeted outreach to public officials and key decision-makers to inform them of Aquatic Master Plan goals, objectives, anticipated outcomes, process and timeline.

Objective 3-B: Coordination and collaboration between the City a nd otheragencies, providers and partners to leverage the use of the various available communications channels and outreach opportunities.

Goal 4: To communic ate and enable opportunities for input for interested citizens throughout the City through appropriate engagement and outreach strategies, including:

Objective 4-A: Informing the public of the purpose and need, process and outcomes for the Aquatic Master Plan and their relationship to the Needs Assessment and the City's overall mobility policies and programs.

Objective 4-B: Providing information and opportunities for engagement for recreational/ aquatic advocates and other communities of interest that align with the purpose and need of the Master Plan.

Goal 5: Utilize and expand upon the extensive community enga gement and contacts gained through the SWIM 512 Community Conversations, Neighborhood Talks, Community Focus Groups, and Community Survey, a nd utilize the stakeholdercontactsfrom thisprocess in furtherenga gement strategies.

Objec tive 5-A: Analyze a nd utilize the resultsofthe Community C onversa tionsand Neig hborhood Talks in the identification of community preferences and identification of alternative scenarios

Objective 5-B: Utilize the Community Preference Survey developed by Dr. Cortez to identify community preferences and priorities.

Objec tive 5-C : Incorporate the stakeholderlistsa nd AISD contac tsin furtherpublic engagement.
Objective 5-D: Utilize the findings of the Service-Learning Project in the establishment of scenarios to serve Austin.

3.4 Spring and Summer 2016 Workshops

As part of the Master Plan development process, two rounds of public meetings were conducted in 2016, including two meetings in March and another four in July 2016. In addition, the City and Consultants participated in neighborhood association meetingsto promote the public workshopsand the survey as well asto gamer neighborhood thoughts and ideas.

The survey was conducted online and in paper form and was completed by over 1,700 Austin residents. The survey was promoted by email, use of NextDoor social media, and visits to the neighborhood associations. Additionally, the Austin Parks and Recreation Department conducted focus groups of children at their after school and summer camp programs. The pupose of this synopsis is to summa rize citizen priorities and identify how this information will be used in the Master Plan.

3.4.1 What to Do with Pools that are Beyond Repair

The engagement as part of the Master Plan process built upon the prior lessons leamed and included more specific topics related to the approach the City should take when a pool is beyond repair and priorities for improvements or renovations. The highest percentages of the survey respondents prefer repairing pools that are in good condition (41\%) orclosing the pool a nd replacing it with a family friendly option (30\%). In terms of prionities, the results were nearly evenly matched between closing pools that are beyond repair a nd making necessary renovationsto remaining pools (34\%) and closing pools that are beyond repair and add a series of larger swimming pools to serve all areas of the city (32\%).

3.4.2 Criteria for Action

The survey and July 2016 workshops a lso sought to identify citizen priorities regarding the criteria that should be used in the detemmination of how to renovate, redevelop, decommission, or relocate Austin's old pools. Citizens were asked to rank possible criteria. The overall sentiment from the survey is shown in the Table 3.1.

Table 3.1: Criteria forAction

Action	Surey Response
Current annual visits to the pool	51%
Proximity to other pools - distance to other pools	47%
Population size within a mile of the pool	47%
Costs to upgrade	44%
Pool is in a park with other activities	27%
Age of the pool	26%
Need to develop bathhouses/bathrooms (significant expense)	19%
Other (please specify)	12%
Access by public transportation	10%

This exerc ise was also used to rank 16 variables at the J uly public meetings with the items at the top typically including:

- Annual visits to the pool
- Location in an area with no pool
- Population within the service area
- Accessible by public transportation
- Cost to upgrade
- Proximity to other pools
- ADA a ccessibility

In addition to these criteria, the Master Plan Team has also identified other technical criteria which may be limiting factors such as location in a flood zone, availability of utilities, historic significance, etc.

3.4.3 Pool Types and Distribution Altematives

The J une 2016 Focus Groups and J uly 2016 Public Workshops provided opportunitiesto gatherfeed back on a potential system of pool types and distribution alternatives from the public. The following five aquatic facilities were presented:

- Neighborhood Pools
- Community Pools
- Regional Fa mily Aquatic Center
- Regional Fitness Aquatic Center
- Premier Indoor Fitness Center

Following the presentation of the definition of each type, three potential systems of distribution were presented and then discussed with the partic ipants.

- Neighborhood Pool Focused, which included primarily smallerneighborhood poolsand would require a much larger quantity to serve the City
- Regional/Community Centered, which included a smaller number of more regional and community pools of a larger size
- Combination Concept, which included all pool types in a system with fewer pools than existing but more evenly distributed

The altematives presented were intentionally not in the shape of Austin, so as to best frame a system to serve the entire city while avoiding specific neighborhood concerns. After the presentations, participants were able to discuss the pros and cons of each altemative at stations and could use templates to develop their own system.

The Combination Concept was generally accepted as the most realistic to serve Austin, offering the most options and choices of types to serve the City, but some modifications were discussed. Specifically, partic ipants indicated strong feelings for the neighborhood pools but indicated realistic understanding that the City cannot support the number of pools currently and add more without a significant impact on the current budget. Some concem wasalso expressed overthe potential to charge feesformore pools and the need to keep swimming affordable, but no fee structure was discussed. Disc ussions on ways to improve on these altematives are included in the meeting summaries (Appendix C).

3.4.4 How Will This Information Be Used?

Extensive public engagement helped build the frameworkforthe next stage of the process, recommendations for the future. This information was used to generate the Vision, Goals, and Objectives. The altematives described previously provide background for the type of system to develop to serve Austin and provide guidance on the final recommendations.

The discussion of the health, safety, welfare, environmental, and regulatory conditions assisted in the identification of potential criteria that were used in the Site Suitability Ranking Process (Chapter 7) to determine the recommendationsforeach existing pool and potential pool site. Citizen sentiments were used to determine how to weigh various elements based on importance to the public.

Using the Site Suitability Ranking Process applied to each existing and potential pool site, the Parks and Recreation Department will propose aquatic improvements and development that meets the Vision, Goals and Objectives of this Plan, while serving the citizens in the most susta inable manner in terms of economics, social equity, and the environment. All of the previouspublic engagement and a nalyses form the basisof the Master Plan recommendations and the Action Plan.

3.5 Prelminary Recommendations Public Workshops (June 2017)

3.5.1 Ovenview

The team consisting of the Austin Parks a nd Rec reation Department Aquatic Division, Brandstetter Ca rroll Inc. and Adisa Communications held two public meetings. The first was held on June 10, 2017 at 10am at the Pan Am Recreation Center. The second public meeting was held on J une 13, 2017 at 6:30pm at the Spicewood Springs Public Library.

Stakeholders (property owners, local neighborhood associations, City Council Members, staff and citizens) were informed of the meetings using multiple methods. Posters and fliers were distributed to community centers, and yard signs were distributed to public areas. Adisa Communications was in charge of making over 200 phone calls to Austin households, plus an additional 40 phone calls to past attendees.

Attendees were greeted by the Adisa team and each person received a fact sheet, comment card, site suitability pamphlet and demographic card. The attendees were allowed the first half hour to look over the project boards and ask any questions to team members present. After a 30-45 minute open house period, a presentation was given by Patrick Hoagland of Brandstetter Carroll. Seventeen (17) people attended the first meeting at Pan Am Rec Center, and thirty-four (34) people attended the second meeting at Spicewood Springs Library.

3.5.2 Input Received

The project team fielded questions from attendees about the proposed improvements as shown on the schematic. Attendees voiced the following questions:

- Isourneighborhood pool indicated in red on the boards going to close?
- How do you priontize your process?
- What are other measures for community input?
- How is the budget for the Aquatic Division created in relation to taxes?
- Isthere a Master Plan draft available to the public?

3.5.3 Comment Cards

Attendees were asked to answer three questions on the comment card. The log of the comments received for each of the questions can be found in Appendix C. A total of 17 comment cards were collected from both meetings. The questions were asfollows:

- Are there any parts of the Aquatic Master Plan that need clarifying?
- What does the future of Austin's aquatic systems and pools look like to you?
- Please share additional comments or questions here.

This page intentionally blank.

The mission, vision, goals, and objectives of the Aquatic Division must a lign with the overall City and Park and Recreation Department Strategic Plans. Therefore, those guiding principlesare summarized here to frame the Aquatic Division mission, vision, goals, a nd objectives.

4.1 City of Austin Mission, Vision \& Pride Values

In developing its 2017-2021 Strategic Plan, PARD carefully considered the City of Austin's mission, vision, and values to ensure that the PARD Plan aligns with the City's values. The City of Austin Office of the City Manager developed the City of Austin's mission and vision. The City's a dopted mission statement follows:

City of Austin Mission

To make Austin the best-managed city in the country.

City of Austin Vision

To make Austin the city everyone's talking about-so others will look to us for best-practices, innovation, and inspiration.

City of Austin Values

Austin also espouses a set of values that create the word PRIDE. The city's value statements follow:

- Partner-we will partner with one a nother and with our community to provide the recreational, cultural and outdoor experiences for the Austin community.
- Responsibility \& Accountability-we take responsibility for achieving results and hold ourselves accountable forouractions.
- Innovation \& Sustainability—we actively seek out good ideas that have a lasting, positive impact on our work, our community, and our environment.
- Diversity \& Inclusion-we recognize and respect a variety of perspectives, experiences, and approaches that will help us achieve ourorganizational goals.
- Ethics \& Integrity—our action will maintain the trust and confidence of the public and the best service.

4.2 Parks and Recreation Department Strategic Plan

The City of Austin Parks and Recreation Department is currently completing its Strategic Plan for 2017-2021. This plan is antic ipated to be completed by anuary 1, 2017. The PARD Vision, Mission and Values are adapted from the Draft Strategic Plan.

The PARD Strategic Plan

The City of Austin Parks and Recreation Department (PARD) is taking definitive steps towards realizing a vision where it can continue to be an innovative leader in parks and rec reation services. Through PARD's efforts, the City of Austin will have more inclusive, sustainable, and equitably distributed parklands, facilities, programs and amenities.

PARD Vision

The Parks and Recreation Department will be an innovative leader in parks and recreation experiences.

PARD Mission

Inspire Austin to leam, play, protect, and connect by creating diverse programs and experiences in sustainable natural spaces and public places.

PARD Values

Lifelong Recreational Opportunities - We promote lifelong recreation, cultural, environmental, and educ ational op portunities for Austin's diverse communities.

Inc lusion - We strive to reflect diversity, equity, and inclusion in all of our programs and services.
Health and Wellness-We contribute to Austin's health and wellness by providing safe and accessible parks, facilities, and programs.

Sustainability - We work to improve environmental and recreational functions and improve the connection between people and the environment.

Accountability - We commit to being professionally accountable to our customers, to our partners, to one another, and to ourselves.

Collaboration - We seek to strengthen partnerships between the City of Austin, private organizations, volunteers, and community groups to efficiently provide recreational opportunities to our residents.

Customer Senvice - We provide a world class parks system through exceptional customer service and stewardship.

4.3 Aquatic Division Vision, Mission, Goals, \& Objectives

The Aquatic Division mission and vision wasdeveloped through the extensive public engagement in the Needs Assessment, SWIM 512, and Master Plan processes, as well as input from the Aquatic Division Staff, Master Plan Team consisting of the Aquatic Advisory Board, Technical Advisory Group, and District Representatives Group. It is recommended that the vision and mission be evaluated annually to ensure they continue to meet the community's needs.

Aquatic Division Vision (What we strive to be)

Lead the Aquatic Industry with the highest quality aquatic standards for safety, programming, facilities, and staffing

The vision is intended to be aspirational and future-oriented, representing the impact the Division seeks to have on the community in the years ahead. This vision articulates the Division's desire to play a key role in
engaging residents, visitors and businesses of Austin in a way that providesopportunity to positively enhance lives. These enhancements may be realized in the form of positive health, wellness, safety, cultural, social and/oreconomic improvements.

Aquatic Division Mission (Our Fundamental Purpose)

Provide a sustainable and equitably distributed system of outstanding aquatic facilities and programs

Goals \& Objec tives: (Work towards)

To realize the vision of the Aquatic Master Plan, the Master Plan process developed a set of goals and objectives. The following goal areas have been established:

1. Fina ncial Susta ina bility
2. Diverse Facilities
3. Year-Round Facilities
4. Progressive, Responsive Programming
5. Enhanced Operational Support
6. Foster Partnerships
7. Recruit \& Reta in High Performance Staff
8. Environmental Susta ina bility

The goals rep resent a reas of strategic prionty a nd desired outc omeswhile the objectives(numbered) indic ate how the goal will be accomplished over the course of the planning period. In some cases, specific strategies or examples are provided to further explain the objectives. These items are provided in bulleted lists below the associated objective. More detailed Action Plans will be developed on an ongoing basis that delineate specific strategies, projects, activities and measurements for determining success.

Goal 1: Financially Sustainable System

Develop a sustainable management model for existing facilities and develop a city-wide sustainable facility model that addresses the present and future needs of the City.

Objectives:

1. Provide an equitable distribution of aquatic facilities throughout the City of Austin, including but not limited to:

- Support research and development in areas identified as deficient in aquatic facilities such as the Colony Park/Lakeside area in the northeast quadrant of the City
- Implement the recommendations of this Plan regarding the short- and long-term improvements, upgrades, consolidations, and decommissioning.
- Utilize current demographic analysisasa key factor in the processto determine locationsofupgraded, expanded, new, ordecommissioned facilities.

2. Identify a variety of facility types to meet the diverse needs of residents, such as:

- Provide aquatic facilities to offer year-round programming (see Goal3)
- Provide a balance of "neighborhood-based" and value driven aquatic "community" (multineighborhood) facilities that offer family and fitness oriented aquatic opportunities

3. Establish a system of aquatic facilities and programs at a higher level of management and economical susta ina bility over the long-term
4. Establish an organizational a nd support struc ture to mainta in a more susta inable system
5. Establish closerrelationshipswith the permitting agenciesand departmentsto streamline the development process

Goal 2: Diverse Facilities

Provide a modem and safe aquatic system throughout the City.

Objectives:

1. Reduce pool closure occurrences due to maintenance issues as a result of the age of facilities, such as:

- Bring all facilities, including associated buildings, parking, decks, etc. up to current standards and codes, such as ADA, health, safety and pool codes

2. Provide suitable aquatic facility infrastructure for use by public or private events, including:

- Bathhouse facilities
- Qualifying pool length(s)
- Ample deckspace
- Mobility access to facility
- Covered/shaded gathering spaces
- Climate controlled staff a reas
- Upgraded restrooms and pool houses

3. Modernize existing facilities and develop new facilities to include features identified most in the community engagement process, such as, but not limited to:

- Improved restrooms/pool houses
- Shade
- Wi-Fi
- Slides
- Shallow water play areas
- Lap lanes
- Climbing walls
- Diving boards

Goal 3: Year-Round Facilities

Esta blish a nd mainta in year-round facilitiesin key demographic service a reasthat provide maximum equita ble access to aquatic environments and opportunities

Objectives:

1. Prepare a feasibility study to determine the scope, size, programming, and financial impact of indoor facility(s)
2. Provide year-round, heated outdoor recreation/lap pool facilities. Example:

- Identify locations which will best support year-round outdoor programs, lessons, and lifeguard training

3. Develop indooraquatic facilitiesto:

- Enhance lifeguard training opportunities
- Cultivate partnerships with educ ational organizations, such as AISD a nd other school distric ts serving Austin
- Support local competitive swimming, water polo, synchronized swimming, etc.
- Provide year-round programming (all ages)
- Expand drowning prevention and other water safety programs
- Reduce and limit weather-related impacts on aquatic programs

Goal 4: Progressive, Responsive Programming

Provide enhanced programming that responds to community input and that appealsto all usergroups

Objectives:

1. Provide an equitable and enhanced distribution of aquatic programs throughout the City
2. Deliverenhanced aquatic programming services, such as:

- Expand programs related to water safety, swim lessons, fitness, and leisure recreation.
- Provide new and trending programs as desired by the community (examples: scuba, kayaking, paddle boarding, yoga, etc.)

3. Expand year-round programming at an indoorfacility
4. Increase swim event opportunities for aquatic events and competitions
5. Maintain and expand community outreach relating to Aquatic Programsoffered city-wide
6. Develop an annual survey to a ssist in detemining what future programming may be desired

Goal 5: Enhanced Operational Support

Provide aquatic focused maintenance facilitiesand develop operational proceduresto support a susta inable aquatic system

Objectives:

1. Standardize mechanic al components and equipment for renovated and proposed facilities throughout the system to achieve ease of maintenance and operation procedures of aquatic facilitiesa nd to reduce cost for inventory, such as:

- Create an inventory of standard mechanical components and aquatic equipment for ease of replacement, maintenance, and repair

2. Allocate and designate a central aquatic system facility that would provide an opportunity to store aquatic equipment, make repairs, and house aquatic maintenance staff, while also providing a closer connection between aquatic and maintenance staff
3. Mentor, train, and support existing and future aquatic mechanic/maintenance staff
4. Proc ure and support the ac quisition of additional a quatic mechanic staff
5. Support, develop, cross-train, and mentor aquatic staff in the maintenance and operations of aquatic facilities

Goal 6: Foster Partnerships

Foster partnership opportunities to complement and enhance the aquatic system

Objectives:

1. Develop and expand aquatic partnerships with local educational entities and organizations who may want to include aquatic sas part of their curic ulum or activities offered
2. Expand partnerships to inc rease swimming abilities and water safety
3. Increase and enhance outreach to promote aquatic programs and water safety

Goal 7: Rec ruit \& Retain High Performance Staff

Hire, train, and secure retention of developed aquatic staff

Objectives:

1. Train, mentor and maintain a dedicated aquatic staff at all levels
2. Continually evaluate hiring practices and procedures to improve and expand the Aquatic Staff, such as:

- Develop and foster relationships with Corporate City of Austin Human Resources and PARD Human resources in the hiring of lifeguards a nd other aquatic staff as needed
- Automate administrative hiring practic es for seasonal lifeguards

3. Establish and hire the needed quantity of full time lifeguard employees to support a year-round aquatic system
4. Implement procedures and policies to enhance recruitment of lifeguard staff, such as:

- Continue to sponsor and provide non-fee based lifeguard tra ining
- Sponsor and provide a no-cost altemative to supply lifeguards with uniforms a nd equipment
- Consider paying or reimbursement for lifeguard tra ining

5. Adapt and procure permanent 'front line' staff for utilization at aquatic facilities and to omit the demand for lifeguards from performing other duties, such as:

- Establish and implement flexible front line staff positions throughout PARD structure that can be utilized at aquatic facilities

6. Improve lifeguard staff experience and retention during the operating sea son by improving environmental conditions and amenities at each aquatic facility, such as:

- Provide lifeguard break/safety rooms with environmental controls
- Improve quality and quantity of shading at facilities for lifeguards
- Provide free of charge, sun protection material and apparel
- Provide access to ice and cold water

Goal 8: Environmental Sustainability

Provide facilities that maximize environmental sustainability and energy efficiency

Objectives:

1. Upgrade and standardize facilities and procedures with more efficient aquatic facility design which takes advantage of technology, such as:

- Auto-fill
- Variable speed pumps
- Improved chemical controllers

2. Design facilities using Leadership in Energy and Environmental Design (LEED) and/or Sustainable Sites Initiatives (SITES) princ iples, such as:

- Upgrade systemsto provide a potential reduction of water use
- Design landscapes for low water use and low maintenance levels
- Utilize stomwater best management practices

5.1 Introduction

Currently, the City of Austin is served by five categories of aquatic facilities: Neighborhood Pools, Municipal Pools, Wading Pools, a Waterfront Pool, and Spraygrounds. The sizes vary a great deal depending on design intent. The text below describes the current pool types and then illustrates the proposed prototypical recommended facility types.

5.2 Current Pool Classifications and Characteristics

5.2.1 Municipal Pools

- Charge a fee
- Are typically larger and have more features than the free Neighborhood Pools, such as 50 meter length (Northwest, Garison, and Mabel Davis), diving boards, slides (Springwoods), shade, zero depth entry (Bartholomew and Springwoods), or other water features
- Typic ally offer swim lessons and swim teams
- Include bathhouses at the pool
- Some may be open for extended swim seasons

5.2.2 Neighborhood Pools

- Free to the public
- Are typically smaller pools with fewer features and should typically have a maximum length of 25 yards (Ramsey and Stacy are 33 meters)
- May have bathhouses at the pool or restrooms nearby in the park
- Some offer swim teams and swim lessons
- Do not offerdiving boards
- Westenfield is the newest Neighborhood Pool and includes:
- A bathhouse (meets current standards)
- Zero depth entry
- Shallow and deep water
- Shade

5.3 Recommended Pool Classifications and Descriptions

The public engagement process identified that the community desires a variety of facility types, sizes, and features. Various types of facilities were presented at two focus groups and four public workshops in the summer of 2016 with general approval. At those meetings, participants reviewed the facility classifications and used templates to identify potential a mangements throughout the City to represent an equitable distribution of facilities to serve the growing participation. The groups clearly preferred a mixture of Neighborhood, Community, and Regional Pools with a clearneed forindoor facilities for year-round programs and training.

Table 5.1 identifies the various pool classifications in tabular format. Figures 5.1 through 5.6 graphically illustrate the features of the varying classifications of aquatic facilities. These classifications are intended to help start the conversation, when a new facility is to be developed. Engagement between the Parks and Recreation Department, surrounding neighborhoods, a nd community-wide aquatic interests groups will be necessary to identify the type, size, and features that are most desired for a specific location.

Table 5.1: Aquatic Facility Classifications

	Neighborhood	Community	Regional	Indoor	
Aquatic Facility Designation	Neighborhood	Community	Regional	Premier- CityWide (Indoor)	Community Indoor
Defining Criteria Service Radius Travel Time Facility Acreage	1 mile 20 minute walk 1 to 2	3 Miles 10 minute drive 2 to 4	5 miles 15 minute drive 5 plus	City-wide 30 minute drive 10 min	5 miles 15 minute drive 2 to 4
Combined Surface Area of Water for site (Sq. Ft.) Bathhouse Fa mily Changing Rooms	3,000-5,000 Fixtures as Req. Min. of 1	5,000-7,000 Fixtures as Req. Min. of 2	7,000-12,000 Fixtures as Req. Min. of 2	15,000 plus Fixturesas Req. Min. of 2	5,000 to 7,000 Fixtures as Req. Min. of 2

Mechanical/Chemical	per water volume separate systemsper contained body of water	perwater volume separate systems percontained body of water	perwatervolume separate systemsper contained body of water	perwatervolume separate systems per contained body of water	per water volume separate systems percontained body of water
Gutter system	Yes	Yes	Yes	Yes	Yes
Skimmer system	Small wading pool only	Small wading pool only	Small wading pool only		No
Life Guard Room	1 doubles as First Aid Room	1 doubles as First Aid Room	1 min .	perprogram elements	1
First Aid Room	Combined with Life Guard Room	Combined with Life Guard Room	1 min .	perprogram elements	1
Office	Yes	Yes	Yes	Yes	Yes
Lap/ Recreation Pool					
Indoor/Outdoor	Outdoor	Outdoor	Outdoor	Indoor/outdoor	Indoor
				50 meters $\times 25$	
length	75^{\prime} or 25 meters	25 meters	75 ' or 50 meter	yards	6 lanes $\times 25$ yards
Min Depth	42"	$42^{\prime \prime}$	42 "	7	42"
Max Depth	7'-9'	10^{\prime}	10^{\prime}	10^{\prime}	10^{\prime}
\# of Lanes	6 to 8	6 to 8	6-12	10 min	6 to 8
(min. 8'-0') Lane Width	Industry standard	Industry Standa rd	Industry Sta nda rd	Industry Sta nda rd	Industry Sta ndard
Activity/ Wading Pool					
Surface Area Sq Ft	800-1,500	1,200-2,000	2,000-3,000	Optional	No
	No wading pool	No wading pool			
Min Depth	Zero depth entry	Zero depth entry	Zero depth entry		
Max Depth	30"	30"	30"		

	Neighborhood	Community	Regional	Indoor	
Aquatic Facility Designation	Neighborhood	Community	Regional	Premier- CityWide (Indoor)	Community Indoor
Water Playground	No	No	Optional	No	No
Aerobics/Program Pool - Larger Facility					Optional
Surface Area Sq Ft	N/A	N/A	900-1,000	1,000-1,600	1,000-1,600
Min Depth	N/A	N/A	42	42 "	42 "
Max Depth	N/A	N/A	10^{\prime}	10^{\prime}	10^{\prime}
With ramp and stairentry	N/A	N/A	Yes	Yes	Yes
Diving Well					
Indoor/Outdoor	not applicable	not applicable	Outdoor	Indoor	Indoor
Max Depth	not applicable	not applic able	16	As Required	As Required
Width	not applicable	not applicable	Per Code plus 5' both sides	PerCode plus 5^{5} both sides	PerCode plus 5^{\prime} both sides
1 Meter Board	not applicable	not applicable	Perprogram	Perprogram	0 to 1
3 Meter Board	not applicable	not applicable	Perprogram	Perprogram	No
1 Meter Platform	not applicable	not applic able	Perprogram	Perprogram	No
3 Meter Platform	not applicable	not applic able	Perprogram	Perprogram	No
7 Meter Platform	not applicable	not applicable	Perprogram	Perprogram	No
10 Meter Platform	not applicable	not applicable	Perprogram	Perprogram	No
Features					
Open or closed flume slide	No	Optional	Perprogram	No	Optional
Tot slide	No	Optional	Perprogram	No	Optional
Zero depth entry	Yes	Yes	Perprogram	No	Optional
Interactive play features	No	Optional	Perprogram	No	Optional
Splash pad	No	Optional	Perprogram	No	Optional
Aerobics Pool	No	No	Perprogram	Yes	Optional
Climbing Wall	No	Optional	Perprogram	No	Optional
Group pavilions (outdoor)	No	Optional	Yes	No	No
Shades Structures	1-2	2-3	2-4	No	No
Meeting/Training/Party Room	No	Optional	1	2 Min .	1
Spectatorarea	No	Yes	Yes	Yes	Optional
Parking (per code)	ADA only required	50 Minimum	100-150 Minimum	200 M inimum	100 Minimum
Programming (minimum)					
Swim Lessons	Optional	Yes	Yes	Yes	Yes
WaterAerobics	Optional	Optional	Yes	Yes	Yes
Swim Team	Optional	Yes	Yes	Yes	Yes
Site Requirements					
Transit Access	Not required	Within 3 blocks	Required	Required	Required
Sanitary Sewer	$8{ }^{\prime \prime}$				
Potable Water Service (minimum)	$4 "$	$4 "$	$4{ }^{4}$	$4 "$	$4 "$
Non-Potable Water (forimigation)	Desired	Desired	Desired	Desired	Desired
3 Phase Electric	Required	Required	Required	Required	Required
Road Access	Residential	Collectoror higher	Collector or higher	Major Arterial	Collector or higher
Recreation Center on site	Optional	Optional	Optional	Optional	Desired
COATN City Fiber	Yes	Yes	Yes	Yes	Yes
Aerators	Yes	Yes	Yes	Yes	Yes
Parking	ADA only required	50 Minimum	100-150 Minimum	200 Minimum	100 Minimum

Desired site characteristics for new orexpanded facilities: Low environmental sensitivity; no 25 or 100 year floodplain; zoned "P"; no erosion hazard buffer, no resource buffers; urban watershed regulation area; no endangered species; and located within 100' of a roadway.

5.3.1 Neighborhood Pools

Neighborhood Pools (Figure 5.1) will continue to serve the area within a 20 -minute walk or about one mile. These facilities will remain free to the public and provide basic services. Westenfield is a good example of a new Neighborhood Pool that meets the criteria identified in Table 5.1. To remain in operation, several existing Neighborhood Pools will require new orexpanded pool houses, improved accessto the pool and pool houses.

5.3.2 Community Pools

Community Pools(Figure 5.2) will be somewhat largerthan Neighborhood Poolsand have additionala menities to serve a larger market area or roughly a ten-minute drive. These facilities may charge a fee and will be designed to better host programs and swim teams. In addition to the facilities at a Neighborhood Pool, these pools may provide some of the following amenities (depending on budget and desires of the surrounding neighborhoods): waterslide, tot slide, interactive waterplay features, spla sh pad, climbing wall, diving boards, group pavilions, and a room for meetings, parties, and training. The lap pool may be connected to the activity pool as shown on Figure 5.2 or be separated for a larger facility (as at Westenfield). A minimum of 50 parking spaces should be provided.

5.3.3 Regional Outdoor Aquatic Centers

Two types of Regional facilities are recommended, which will vary greatly based upon the capabilities of the site and the desired features of the region of the City. Each will serve approximately a five-mile radius or 15 -minute drive time. The primary difference between the type types will be the presence of 50-meter length for the larger facilities, which lends to more fitness, exercise, and competition uses. Both types would include a room for party rentals, training, and meetings.

25-Yard Option

Regional center with 25 -yard pools (Figure 5.3) will have a total water surface in the range of 7,000 to 10,000 square feet. Bartholomew is an example of this type of pool as shown on Figure 5.3, but lessons leamed since opening Bartholomew indicate that these pools should have more lap lanes ($5-6$ minimum) and more deck and grass beach area. The increased capacity should allow income from concessions to generate revenue.

50-Meter Option

Regional centers with 50 -meter pools will be larger in the range of 10,000 to 12,000 square feet with 50-meter lap lane length as shown in Figure 5.4. In addition to the 50-meter lap lanes, the aquatic facility would feature a wading or shallow water activity pool, a diving area, shade structures, a variety of other features, and a minimum of 150 parking spaces.

5.3.4 Indoor Facilities

Premium Indoor Aquatic Center

A Premium Indoor Aquatic Center (Figure 5.5) would serve both community and regional use by hosting swimming and diving meets. The facility would include a large competitive lap pool with stadium seating as well as a smaller warm water pool for warm-ups and programming. Diving could be located in one of these tanksora separate tank. The largerwater bodieswould allow a variety of year-round programming, such aspaddle boarding, kayaking, and more.

Ideally this facility would be developed with partners such as AISD, health providers, a nd other interested entities that would be enticed by the facility's regional attraction and potential to draw tourists. Thisfacility must be located with easy access to major highways to serve both Austin and the Central Texas region.

Community Indoor Pool

Community Indoor Pool (Figure 5-6) would be a smaller indoor facility located on the opposite side of Austin from the Premier Indoor Aquatic Center in order to provide equity and easy access for all Austin residents. This facility would be geared to local uses such as lifeguard training, swim lessons, rental use, recreationallap swimming, swim team practices, and much more. The main pool would be 25 yards by 8 ormore lap lanes.

Figure 5.1: Neighborhood Pools

Figure 5.2: Community Pools

Figure 5.3: Regional Center with $\mathbf{2 5}$ Yard Pools

Figure 5.4: Regional Centers with 50 Meter Pools

Figure 5.5: Community Indoor Pool

Figure 5.6: Premier Indoor Aquatic Centers

6.1 Introduction

The definition of sustainability from the City of Austin - Office of Sustainability is the following:
"Sustainability means finding a balance among three sets of goals:

- prospenty and jobs,
- conservation a nd the environment, a nd
- community health, equity, a nd cultural vitality.

It meanstaking positive, proactive steps to protect Austin's quality of life now, and forfuture generations."

6.2 Sustainable Aquatic System

In relation to the Austin Aquatic System, sustainability should be applied on several fronts, including the following:

Facilities

1. Are equitably accessible throughout the City with consideration to neighborhoods with high social needs, underserved areas, and future growth trends
2. Plans for the functional life of a facility at 25 to 30 years maximum and determines the potential for renovation ordecommissioning after the functional life
3. Provides facilities that exemplify environmental sustainability and energy efficiency
4. Are up to curent standards and codes, such as ADA, health, safety and pool codes (including a ssoc iated build ings, parking, dec ks, etc.)
5. Conserve water

Budget/Cost

1. Operates within approved budget parameters
2. Generates revenue to an established percent of operating expenses

Staffing

1. Are operated by a manageable number of staff - a quantity that the City is able to train, hire, and reta in to keep the poolsopen for the desired seasons and hours
2. Offers a comfortable working environment
3. Promotes institutional knowledge of systems by hiring and retaining qualified water safety, maintenance, and administrative staff
4. Plans for succession and upward mobility of staff for retention purposes

Maintenance/Operations

1. Provides a clean and safe pool and bathhouse environment for patrons and staff
2. Plans and budgets for scheduled equipment maintenance and replacement
3. Is maintained in an efficient manner by:

- Providing a centralized facility for maintenance
- Providing adequate storage of equipment
- Sta ndardizing all equipment used system-wide
- Incorporating state of the art computerized, remote monitoring of mechanic al systems in the pool facilities

4. Minimizes unexpected capital costs and unplanned pool closures due to equipment failure

Programming

1. Provides facilities that are conducive to hosting a variety of programs to meet various user needs
2. Provides indoor year-round facilities for training, fitness and programming
3. Provides unique and trending programming opportunities to attract new customers not traditionally served and reflects growing population demographics (i.e., single adults, baby boomers, etc.)
4. Utilizes partnerships to promote water safety, programs, and to enhance outreach
5. Instillsthe value of a quatic in future generationsthrough youth programsand community enga gement

These aspects of susta ina bility must be monitored regularly to mainta in a sustainable system. To a c complish this, baselines must be established where possible. Figure 6.1, Aquatic Facility Sustainability, identifies levels of deviation from the baseline with recommended actionsonce that threshold is reached, and the required period of evaluation for monitoring the condition. Baseline values must be established for each benchmark category, and these values should be updated annually as new data becomes available. The actions recommended in the Aquatic Facility Sustainability table apply when a pool reachesthe indicated deviation in any benchmark category. The processoutlined in Figure 6.1 is activated when a threshold is reached in any of the five benchmark categories.

- A 15% deviation above the baseline indic ates a slightly elevated condition that should be monitored annually to determine if the condition continues to worsen.
- A 16% to 30% deviation above the baseline indicates a condition that should be monitored semiannually with the minor repairs made to improve the condition.
- A 31% to 50% deviation above the baseline indicates a failing system that should be monitored monthly. The cost of major repairs should be evaluated against the long-term recommendation for the pool based upon the Site Suitability Ranking Process. If the amount of repairs is too costly, the longterm recommendation should be implemented, whether that includes redevelopment, renovation, replacement, consolidation with improvements at a nearby pool, or decommissioning.
- A deviation of above 50% indicates a faulty condition that must be remedied immediately. If the condition cannot be remediated and brought up to a sustainable level for the next five years, then the long tem recommendation should be implemented.

Figure 6.1: Aquatic Facility Sustainability

6.3 Benchmark Categories

This section describes the five categories representing thresholds that should be monitored to benchmark a sustainable system. Not all information desirable for benchmarking is currently available; however, the missing data (actual cost per participant figures) will eventually become available as a result of this Master Plan. The curent (2017) baseline values for Water Use, Attendance, Annual Ma intenance Repairs, and Demographics can be implemented immediately and are presented in Tables 6.1 through 6.4.

These tables are sorted so that the highest performing pools appear at the top and the lowest performing pools appear at the bottom. In some cases, data is unavailable, so the value is entered as N/A. The data needed for the final baseline value, Actual Cost per Participant, will be available in the near future and can be used to complete the final sustainability benchmark threshold table. Additionally, the baselines should be adjusted annually as changes are implemented to the aquatic system, which cause the median to adjust. Baseline values using numbers other than the median may be desirable in the future, based on the performance of future aquatic improvements.

Numbers foreach of these susta inability thresholds should be undated annually (asdescribed in Section 6.2). Foreach category, the values are compared to the median or baseline, which is shown at the lower portion of the tables. The values for these thresholds show a deviation from the median (or middle) performing pool. Four different thresholds are used to indicate this deviation (ranges correspond to Figure 6.1). These ranges indicate a deviation from the median in a less desirable or less sustainable direction and are highlighted in the threshold tables using the following colors.

- 0% to 15% over median - Green
- 15% to 30% overmedian - Yellow
- 30\% to 50% over median - Light Pink
- More than 50% over median - Dark Pink

These thresholds are intended to activate the recommendations in Figure 6.1, Aquatic Facility Susta inability (activated when reached in any category). These recommendationsculminate, once the highest threshold is reached, in the applic ation of the Site Suitability Ranking Process (Chapter 7). This process will help determine the future aquatic use of the site, in conjunction with a public engagement process involving the local community.

6.3.1 Water Use

This category (Table 6.1) pertains to the overall cost of operation as wastewater and drainage fees are also based upon water use. Excessive water use also indicates a leak in the system, either in the pipes or walls. Actual gallons used by each pool are considered instead of water cost because rates may vary, and, for comparison, use is calculated per 1,000 gallons of pool volume (rightmost column).

For the 2016 numbers included in the table, G ovalle has by far the highest water use by 1,000 gallons of pool volume (and most overall), making it the worst performing pool for this category and placing it over the highest threshold (more than 50% over the median) shown in dark pink. If factors causing this elevated water use are repaired, the pool should no longer exceed the sustainability thresholds. Curently, the median value of all operational pools is used as a baseline, but with more new pools coming on line in the nearfuture, the newer and more efficient pools should be used as the baseline.

It should be noted that some poolswaterusage numbers include otherportions of the park. Therefore, a more consistent system of monitoring the water use specifically for each pool should be developed for future use. Examples include locations where District Parks or Recreation Center usage may be lumped into the pool water use or where an imigation meter was monitored (Walnut Creek, Dove Springs, Montopolis, and Mabel Davis).

6.3.2 Attendance

Declining attendance may be indic ative of several factors, such asa poorlocation, changing demographics, difficulty of access, or undesirable conditions. For this initial analysis, the baseline, shown in Table 6.2, is the median of attendance of all pools using a factor of pool capacity to actual summer season attendance over the three-yearperiod from 2014 through 2016. This Average/Capacity Ratio providesa measurement of usage that controls for the potential attendance, allowing the comparison of pools of different sizes.

Fourteen (14) PARD pools are operating above the 15% or above thresholds, including two (2) above the highest threshold: Mabel Davis and Civitan. The Average/Capacity Ratio of these two pools is less than half of the median pool, indic ating that they are experiencing limited use compared to their potential. If lower attendance rates are a result of easily correctable factors, usage should stabilize once these issues are remedied. Otherwise, the trend will likely continue, prompting the need to reevaluate the site (see Chapter 7).

6.3.3 Annual Maintenance Repairs

The need for multiple unexpected or mandated pool repairs is indicative of a failing facility. The annual maintained repair costs for 2009-2016, as well as the antic ipated costs for2017, can be seen in Table 6.3 with the median cost representing the baseline, which is shown for both the past and antic ipated repairs. Because they have not yet been expended, the antic ipated future costs are more important for comparison, so the pools are sorted by the 2017 numbers.

Thirteen (13) PARD pools are operating above the 15% or above threshold, including nine (9) above the highest threshold. The cost of these repairs should be considered with consideration to repairs that might be needed in the future as a reoccuming requirement for costly repairs is an indication of an unsustainable facility. If a pool remains (or will likely remain) above one of these higher thresholds, even after repairs are made, the future of the site (redevelopment ordecommission) should be considered in a manner consistent with the Site Suitability Ranking process and the recommendations of this Master Plan.

Table 6.1: Water Use Thresholds

					Summer $2016{ }^{\text {1 }}$	
POOL	Curent Facility Type	Pool Size (gallons)	Volume per $1,000 \mathrm{gal}$	Square Feet of Pool	Water Used (gallons)	Water Used per 1,000 Gallon Pool Volume
Canyon Vista ${ }^{3}$	Neighborhood	212,625	213	3,280	N/A	N/A
Ramsey	Neighborhood	145,000	145	3,800	28,300	195
Dottie J ordan	Neighborhood	151,257	151	4,550	41,000	271
Westenfield	Neighborhood	123,071	123	4,393	88,000	715
Bartholomew	Municipal	231,382	231	7,740	318,000	1,374
Dick Nichols	Neighborhood	383,905	384	10,463	624,000	1,625
Martin	Neighborhood	203,000	203	4,880	401,000	1,975
Dittmar	Neighborhood	258,000	258	6,531	767,700	2,976
Northwest (50m)	Municipal	578,945	579	15,642	2,058,300	3,555
Balcones	Neighborhood	128,000	128	4,583	495,700	3,873
Kennemer	Neighborhood	160,000	160	4,224	666,000	4,163
Springwoods	Municipal	115,192	115	4,400	625,500	5,430
Montopolis	Neighborhood	203,000	203	4,880	1,204,400	5,933
Rosewood	Neighborhood	300,000	300	8,670	1,821,000	6,070
Walnut Creek	Municipal	584,308	584	14,951	3,575,200	6,119
Garison (50m)	Municipal	557,356	557	14,486	3,434,000	6,161
West Austin	Neighborhood	44,250	44	1,500	289,000	6,531
Mabel Davis (50m)	Municipal	506,800	507	11,717	3,462,400	6,832
Murchison	Neighborhood	160,000	160	4,224	1,125,700	7,036
Brentwood	Neighborhood	72,000	72	2,731	588,000	8,167
Patterson	Neighborhood	75,404	75	2,731	625,000	8,289
Reed	Neighborhood	75,404	75	2,731	645,000	8,554
Little Stacy	Wading	14,025	14	1,500	123,900	8,834
Big Sta cy	Neighborhood	200,500	201	4,000	2,214,700	11,046
Metz	Neighborhood	145,000	145	3,992	2,176,000	15,007
G illis	Neighborhood	144,340	144	2,550	3,058,000	21,186
Givens	Neighborhood	464,450	464	1,220	10,642,000	22,913
Dove Springs	Neighborhood	269,169	269	11,365	6,209,800	23,070
Parque Zaragoza	Neighborhood	169,980	170	3,992	4,243,000	24,962
Civitan	Neighborhood	72,000	72	3,515	2,167,000	30,097
Shipe ${ }^{2}$	Neignborhood	159,025	159	5,250	5,660,000	35,592
Govalle	Neighborhood	72,000	72	2,400	12,723,000	176,708
Median 6,531						
				Average		15,008
				0% to 15% over Median		7,511
				15% to 30% over Median		8,490
				30 to 50% over Median		9,797
				More than 50\%	ver Median	Over 9,797

[^3]Table 6.2: Attendance Thresholds

Table 6.3: Annual Maintenance Repair Thresholds

			2009-2016	2017	2009-2017
POOL	Curent Facility Type	Square Feet of Pool	$\begin{aligned} & \text { 2009-2016 } \\ & \text { Repairs }^{1} \end{aligned}$	2017 Anticipated Repairs ${ }^{1}$	Total 20092017 Repairs
Bartholomew	Municipal	7,740	N/A	\$0	\$0
Springwoods	Munic ipal	4,400	N/A	\$0	\$0
Canyon Vista	Neighborhood	3,280	\$26,254	\$696	\$26,950
Little Stacy	Wading	1,500	\$14,500	\$750	\$15,250
Big Stacy	Neighborhood	4,000	\$149,295	\$915	\$150,210
Westenfield	Neighborhood	4,393	N/A	\$1,250	\$1,250
Rosewood	Neighborhood	8,670	\$1,035,387	\$2,484	\$1,037,871
Martin	Neighborhood	4,880	\$1,159	\$3,435	\$4,594
Dottie J ord an	Neighborhood	4,550	\$23,050	\$3,538	\$26,588
Dove Springs	Neighborhood	11,365	\$2,500	\$3,654	\$6,154
Reed	Neighborhood	2,731	\$129,976	\$3,975	\$133,951
West Austin	Neighborhood	1,500	\$410,386	\$5,200	\$415,586
Balcones	Neighborhood	4,583	\$2,000	\$5,370	\$7,370
Murchison	Neighborhood	4,224	\$110,954	\$5,893	\$116,847
Dick Nichols	Neighbornood	10,463	\$3,000	\$6,576	\$9,576
Ramsey	Neighbornood	3,800	\$7,800	\$6,842	\$14,642
Kennemer	Neighbornood	4,224	\$70,583	\$7,362	\$77,945
Montopolis	Neighbornood	4,880	\$19,226	\$7,517	\$26,743
Dittmar	Neighborhood	6,531	\$1,881	\$7,804	\$9,685
Civitan	Neighborhood	3,515	N/A	\$8,631	\$8,631
G illis	Neighborhood	2,550	\$34,938	\$8,806	\$43,744
Mabel Davis (50m)	Municipal	11,717	\$4,970	\$10,419	\$15,389
Brentwood	Neighborhood	2,731	\$5,212	\$10,524	\$15,736
Givens	Neighborhood	1,220	\$55,919	\$11,060	\$66,979
Gamison (50m)	Munic ipal	14,486	\$546,883	\$12,068	\$558,951
Patterson	Neighborhood	2,731	\$31,586	\$28,934	\$60,520
Northwest (50m)	Municipal	15,642	\$387,989	\$28,998	\$416,987
Parque Zaragoza	Neighborhood	3,992	\$143,762	\$39,230	\$182,992
Metz	Neighborhood	3,992	\$129,749	\$41,813	\$171,562
Walnut Creek	Munic ipal	14,951	\$36,642	\$48,890	\$85,532
Govalle	Neighborhood	2,400	\$31,498	\$85,232	\$116,730
Shipe	Neighborhood	5,250	\$14,500	\$93,984	\$108,484
1. Source: Austin PARD Aquatic Division Maintenance Staff			edian	\$7,102	\$35,347
			verage	\$15,683	\$122,920
2. Includes wading pool		0\%to 15\%over Median		\$8,167	\$40,649
		15\% to 30\%over Median		\$9,233	\$45,951
		30 to 50\% over Median		\$11,043	\$53,021
		More than 50\% over Median		Over \$11,043	Over \$53,021

6.3.4 Demographics

This category, which can be seen in Table 6.4, should be reevaluated approximately every five years to analyze any demographic shifts in the areas surrounding each pool (a 20 -minute walk and a 10-minute drive). The ratio of the population of each service area to the median is used to detemine the demographic thresholds. In order to allow for the comparison of pools, regardless of their classification, a combination of the two service area measurements is used (an average of the two ratios), which is used to sort the pools in the table.
Depending on the location, it may be more appropriate to a pply the 20-minute walk or 10-minute drive ratio instead of the average. Because the numbers represent a ratio of the median, the thresholds are the same for all measured ratios (20-minute walk, 10-minute drive, a nd average). Only Reed exceedsthe 30% threshold for all three measurements. Canyon Vista exceeds this threshold for the 20 -minute walk and the average ratio. As demographics cannot be addressed with pool improvements, these thresholds indicate potentially unsusta ina ble fa cilities.

Table 6.4: Demographic Thresholds

POOL	Curent Facility Type	20-Minute Walk		10-Minute Drive		Average Ratio
		Population	Ratio to Median	Total	Ratio to Median	
Kennemer	Neighborhood	16,168	2.2	150,730	1.4	1.8
Shipe	Neighborhood	14,473	2.0	145,122	1.4	1.7
Patterson	Neighborhood	9,453	1.3	166,328	1.6	1.4
Pa rque Zaragoza	Neighborhood	11,770	1.6	116,922	1.1	1.3
Rosewood	Neighborhood	11,688	1.6	115,620	1.1	1.3
Westenfield	Neighborhood	8,854	1.2	133,500	1.3	1.2
G illis	Neighborhood	11,195	1.5	94,032	0.9	1.2
Brentwood	Neighborhood	8,526	1.2	118,118	1.1	1.1
Big Stacy	Neighborhood	8,814	1.2	112,262	1.1	1.1
Montopolis	Neighborhood	8,865	1.2	109,324	1.0	1.1
Gamison	Municipal	7,227	1.0	131,337	1.2	1.1
Mabel Davis	Municipal	4,944	0.7	162,915	1.5	1.1
Bartholomew	Municipal	7,406	1.0	126,444	1.2	1.1
Murchison	Neighborhood	9,819	1.3	89,236	0.8	1.1
Balcones	Neighborhood	5,045	0.7	148,656	1.4	1.0
Givens	Neighborhood	7,199	1.0	110,419	1.0	1.0
Metz	Neighborhood	7,816	1.1	97,098	0.9	1.0
Dove Springs	Neighborhood	9,870	1.3	66,337	0.6	1.0
Dottie J ordan	Neighborhood	7,475	1.0	95,246	0.9	1.0
Wa Inut Creek	Municipal	1,715	0.2	179,317	1.7	1.0
West Austin	Neighborhood	7,759	1.0	81,072	0.8	0.9
Dittmar	Neighborhood	4,932	0.7	110,049	1.0	0.9
Little Stacy	Wading	7,512	1.0	72,106	0.7	0.8
Ramsey	Neighborhood	5,806	0.8	96,523	0.9	0.8
Martin	Neighborhood	6,029	0.8	92,993	0.9	0.8
Civitan	Neighborhood	5,407	0.7	102,077	1.0	0.8
Spring woods	Municipal	3,857	0.5	123,518	1.2	0.8
Govalle	Neighborhood	5,426	0.7	97,008	0.9	0.8
Northwest	Municipal	5,888	0.8	85,683	0.8	0.8
Dick Nichols	Neighborhood	5,568	0.8	76,293	0.7	0.7
Canyon Vista	Neighborhood	4,624	0.6	69,673	0.7	0.6
Deep Eddy	Municipal	2,814	0.4	93,485	0.9	0.6
Reed	Neighborhood	3,765	0.5	68,029	0.6	0.6
Median		7,406	1.0	105,701	1	1.0
0% to 15% over Median15% to 30% over Median30 to 50% over MedianMore than $\mathbf{5 0 \%}$ over Median						0.8
						0.7
						0.5
						Under 0.5

In general, the thresholds need to be applied with consideration to the current (or potential) pool classification. For example, Wa Inut Creek exceeds the highest threshold (least sustainable) fora 20-minute walk population ratio but has the highest ratio (most sustainable) for 10-minute drive. Since this pool is a Municipal Pool, the threshold for a 20-minute walk is of limited concem. No poolsexceed the highest threshold for the average ratio or the ratio of the most a pplicable travel area (20 -minute walk or 10-minute drive).

6.3.5 Actual Cost per Patron (Future)

It is also recommended that additional metrics be collected to determine the Actual Cost per Participant. Although these metric sare not currently available, a ta ble should be created to indicate the actual total cost of operation per pool divided by the summer attendance. Cost factors should include all utilities, chemicals, maintenance, and labor costs for pool staff, including a portion of the administration. It is the Consultant's understanding that new work order data for repairs and chemical use is currently being recorded for this purpose.

Cost Per Partic ipant Factors

PARD Aquatic Division should keep accurate records of all expenses allocated to individual pools, which should include the following costs but may include others. Costs should be included for the summerswim season, including May (fill month), June, July, and August. Repair costs should be on an annual basis because repairs/maintenance may take place in the off-season.

- Utility Costs (summer sea son)
- Water
- Wastewater
- Stormwater/Drainage
- Electric
- Cable/Wi-Fi
- Chemic al Costs (summer season)
- Staff Costs (summer season)
- Lifeguards
- Managers
- Attendants
- Portion of Administration Staff
- Maintenance Costs (full year)
- Scheduled repairs and maintenance
- Unscheduled repairs and maintenance
- Maintenance supplies

These costsshould be used to develop a totalcostperpool and then compared to the actualattendance for the summer swim season (total costs divided by actual attendance). The summer season should be used because all pools are open at that time, whereas only a few pools are open in the off-season. This process provides a common denominator for accurate comparisons. The table and process for evaluation will be similar to the other Sustainability Benchmark tables, where the median is developed and the deviation above the median is measured.

In addition, thisdata will allow the calculation of total cost pergallon of pool volume which can then be used to compare to pools in Austin and throughout the country.

This page intentionally blank.

7.1 Introduction

The Site Suitability Ranking Process was developed to outline and illustrate the process by which existing and potential aquatic facilities will be assessed for potential improvements by the City of Austin Parks and Recreation Department (PARD). The results of this process will provide a method to rate facilities for future opportunities. The process wasalso formulated so that it could be applied to future sites under consideration forthe development of an aquatic facility (see Chapter8forC olony Park). Barton Springs, the currently closed pools, and the sprayground sites were not part of the analysis. The process also allows for the adjustment of ratings when conditions at a site change. Throughout the process, a higher score was always assigned to a result (criteria or element) that was more desirable for development or redevelopment of the site.

The flow chart in Figure 7.1 illustrates and summarizes the steps of the process for determining Site Suitability Rankings for each site. The process incorporates both the input gathered from the public plus an extensive a mount of data relevant to the assessment of a site fordevelopment or redevelopment asan aquatic facility.
Figure 7.1: Site Suitability Fow Chart

7.2 Data Sources and Descriptions

The following text providesbackground forthe data sourcesinc luded in this process. The Site Suitability Ratings Key (Table 7.1) provides the source of the data for each element in this a nalysis with the rating from 1 to 10 assigned to the data range of potential values.

7.2.1 Aerial

Aerial imagery provided by Google Earth was used to measure the approximate size of each site and to determine the presence of several elements, including Entrance/Drive, Walkways, and Crosswalks. This imagery was also used to measure the distance between the site and pool entrance (Sub-Chapter E) and between the pooland the restrooms (Restrooms).

7.2.2 Assessment

The data for the Operations criterion was derived from the Aquatic Facilities Needs Assessment that was completed by BCI in 2014 plus commentary from PARD maintenance staff. This data can be seen in Table 7.11.

7.2.3 Austin Energy

The data for the number of electric phases was provided by Austin Energy.

7.2.4 Austin Water Uility

Austin WaterUtility provided information forWater, Reclaimed Water, and Wastewater utilities. Mea surements were then made using ArcGIS software.

7.2.5 Calculated

Calculated refers to Attendance/Capacity Ratio and Service Area Overlap (20 Min. Walk). Attendance/ Capacity Ratio wascalculated by dividing totalcapacity (calculated based on aerial mea surements of pool and site) by annual attendance (provided by PARD). Service Area Overlap was calculated using ArcGIS to determine the percentage of each service area that overlapped with the service area of a nother pool.

7.2.6 CAMPO

CAMPO (Capital Area Metropolitan Planning Organization) provided data for traffic volume on streets in Austin. The data was used for the Heavily Trafficked Roadways element and was accessed through the organization website (http://www.campotexas.org/).

7.2.7 COA GIS

COA GIS refers to GIS data provided by the City of Austin, which was downloaded from the city website (http://www.austintexas.gov/department/gis-and-maps). This data was used to determine the presence of specific conditions in or near each site.

7.2.8 COATN

COATN (City of Austin Telec ommunications Network) data was used to determine the presence or potential for the City's fiber optic network.

7.2.9 ESRI Business Analyst

Most of the demographic data used in this process was provided by ESRI Business Analyst for 20-minute walk and 10 -minute drive time areas of each pool site.

Table 7.1: Site Suitability Ratings Key

Criteria Eement	Neighborhood or Community/ Regional	Data Source	Rating										
			10	9	8	7	6	5	4	3	2	1	0
Infrastructure													
Elec tric Service Provider	Both	COA GIS	Austin Energy										Other
Electric Service (Phases)	Both	Austin Energy	Three Phase					Two Phase					Single Phase
Water (Dist. to 4" Line in ft.)	Both	Austin Water	At Site		Within 300			300-1000			Over 1000		None
Reclaimed Water (Dist. in ft.)	Both	Austin Water	At Site		Within 300			300-1000			Over 1000		None
Wastewater (Dist. to 8"Sewer Line in ft.)	Both	Austin Water	At Site		Within 100			100-300		300-500			None
Pool Condition	Both	Assessment	Excellent			Good		Fair			Poor		Nonexistent
Bathhouse Condition	Both	Assessment	Excellent			Good		Fair			Poor		Nonexistent
Storage Conditions	Both	Assessment	Excellent			Good		Fair			Poor		Nonexistent
COATN Service Area (Wi-Fi)	Both	COATN	Cument		Potential								No
Environmental													
Trees (Number)													
$2^{\prime \prime}$ to 19 " in Diameter	Both	PARD GIS	0	10	20	30	40	50	60	70	80	90	100 or more
19 "to 24 " in Diameter	Both	PARD GIS	0	2	4	6	8	10	12	14	16	18	20 or more
Over 24" in Diameter (Including Heritage)	Both	PARD GIS	0	2	4	6	8	10	12	14	16	18	20 or more
Grow Zones	Both	COA GIS	No										Yes
Aquifer Recharge	Both	COA GIS	No										Yes
Pollinator Habitat	Both	COA GIS	No										Yes
Wetla ${ }^{\text {a }}$	Both	COA GIS	No										Yes
Rock Outcrop	Both	COA GIS	No										Yes
Springs	Both	COA GIS	No										Yes
Environmental Sensitivity	Both	COA GIS	Low							Very-Somewhat Limited			High
Soil Suitability	Both	COA GIS	Not Limited				Somewhat Limited						Very Limited
Regulatory													
Flood Zones													
25-Year Floodplain	Both	COA GIS	No										Yes
100-Year Floodplain	Both	COA GIS	No										Yes
500-Year Floodplain	Both	FEMA	No										Yes
Zoning Designation	Both	COA GIS	P, UNZ		P-NP		P-H-NP	P-HD-NCCD-NP					I-RR, SF-2, SF-3
Sub-Chapter E (Distance from Road in ft.)	Both	Aerial	50 or Less	100	150	200	250	300	350	400	450	500	Over 500
Erosion Hazard Review Buffer	Both	COA GIS	No										Yes
Resource Buffers	Both	COA GIS	No										CEF Buffer
Watershed Regulation Areas	Both	COA GIS	Urban	Suburban Development			Suburban Water Supply			Water Supply Rural			Barton Springs
Water Quality Zones	Both	COA GIS	No					Transitional					Critical
Endangered Species	Both	USFWS	No										Yes
Bathhouse	Both	Assessment	Yes					Restroom					No
Restrooms (Distance from Pool in ft.)	Both	Aerial	At Pool		50			75			100		Over 150
Operations													
Maintenance Staff/Equipment Ease of Access	Both	Assessment	Excellent			Good		Fair			Poor		Nonexistent
Simplic ity of Equipment	Both	Assessment	Excellent			Good		Fair			Poor		Nonexistent
Equipment Condition/Replacement Cost	Both	Assessment	Excellent			Good		Fair			Poor		Nonexistent
Lawn/Landscaped Area	Both	Assessment	Excellent			Good		Fair			Poor		Nonexistent
Employee Safety Measures	Both	Assessment	Excellent			Good		Fair			Poor		Nonexistent

7.2.10 円MA

FEMA data for Effective Floodplain was used for the 500 -year floodplain area, which were not included in COA GISdata.

7.2.11 Google Street View

Google Street View was used to verify the presence of traffic control devices near each site and as part of the overall a nalysis of pedestrian and bicycle connectivity.

7.2.12 Parks and Recreation (PARD)

This data was provided directly by the Austin Parks and Recreation Department (PARD). Some information was provided in spreadsheet format, and other information consisted of construction drawings of existing pools.

7.2.13 PARD GIS

PARD GIS refers to spatial data collected and provided directly by the Parks and Recreation Department.

7.2.14 USFWS

Data provided by the US Fish and Wild life Service was used to determine whether sites included areas considered to be part of the ranging area of endangered species.

7.3 Criteria and Elements

The text in this section defines and summarizes the criteria and elements included in the Site Suitability Ranking Process.

7.3.1 Demographics (Table 7.2)

The Demographics criterion evaluates each aquatic facility site based on the existing and potential users of the pool. This criterion is important because the purpose of an aquatic facility is to serve users in Austin. Accordingly, an analysis of the characteristic s of these potential users is essential. The elements in this criterion represent a collections of population-based, need-based (equity), and user-based metrics.

20-Minute Walk

A 20 -minute walk represents the longest walk range in common use for measuring walkability. This range waschosen to include the largest amount of residents likely to walk to a pool. Additionally, these facilities have limited parking, so users are expected to a mive using some other mode of transportation. In general, 5 and 10 minute walk times are more commonly used to measure walkability. However, a pool visit represents a longervisit, so residents are more likely to walk a longerdistance. Portland, Oregon, for example, uses a 20-minute walk to define walkability in neighborhoods (20-Minute Neighborhood Concept). This model, which also includes other factors, has been used in other cities including Detroit, MI; Eugene, OR; and Baltimore, MD. A recent article on the AARP website describes "20-Minute Villages" with a goal of having all basic needs within a 20-minute travel time, preferable by walking. According to the article, destinations should be a 5-, 10-, or 20-minute walk, depending on the travel purpose. ${ }^{1}$

- Children

Fa milies with children represent the largest user group for aquatic facilities, so more children lead to a higher rating. Children need placesto play and keep cool, particularly during the summer months. More children yields a higher rating.

[^4]Table 7.2: Demographics

Table 7.3: Capacity

Pool Name	Deck Space S.F.	Total Main Pool S. F.	Pool Perimeter LF.	Wading Pool S.F.	Deep Water S. \mathbf{F}^{1}	Diving Area S.F.	Shallow Water S.F.	Deep Water Capacity at 1 person $125 \mathrm{Si}=$	Diving Area Capacity at 1 person 1300 S. E.	Snallow Water Capacity at 1 perison/ 15 S.	Total Capacity
Balcones	3,500	4,853	314				4,853	0	0	324	324
Bartholomew	13,340	7,740				650	7,090	0	2	473	475
Big Stacy	2,700	4,000	280		1,870		2,130	75	0	142	217
Brentwood	2,700	2,400	200	331			2,731	0	0	182	182
Canyon Vista	5,400	3,280	245			1,854	1,426	0	6	95	101
Civitan	1,350	2,400	200				2,400	0	0	160	160
Colony Park	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA
Deep Eddy	7,800	21,329	630		7,500		13,829	300	0	922	1222
Dick Nic hols	2,925	9,848	420	615	2,863		7,600	115	0	507	621
Dittmar	1,710	6,531	455			1,420	5,111	0	5	341	345
Dottie J ordan	5,350	4,230	302	320	908		3,642	36	0	243	279
Dove Springs	6,435	10,540	425	825	2,500		8,865	100	0	591	691
Ganison	8,114	12,275	480	2,211		1,685	12,801	0	6	853	859
Gillis	1,798	2,550	205		1,020		1,530	41	0	102	143
Givens	3,200	10,700	500	1,220		1,660	10,260	0	6	684	690
Govalle	603	2,400	200				2,400	0	0	160	160
Kennemer	4,836	4,224	300		930		3,294	37	0	220	257
Little Stacy	960	1,500	160				1,500	0	0	100	100
Mabel Davis	7,833	11,717	465		873	2,427	8,417	35	8	561	604
Martin	5,970	4,880	308		1,800		3,080	72	0	205	277
Metz	2,569	3,992	275		1,800		2,192	72	0	146	218
Montopolis	5,820	4,880	308		1,800		3,080	72	0	205	277
Murc hishon	4,026	4,224	300		950		3,274	38	0	218	256
Northwest	10,508	13,392	528	2,250		1,075	14,567	0	4	971	975
Parque Zaragoza	2,674	3,992	275		2,000		1,992	80	0	133	213
Patterson	1,484	2,400	200	331			2,731	0	0	182	182
Ramsey	2,844	3,800	258		1,386		2,414	55	0	161	216
Reed	3,500	2,400	200	331			2,731	0	0	182	182
Rosewood	3,800	8,670	386		3,750		4,920	150	0	328	478
Shipe	3,200	4,000	280	1,250	2,184		3,066	87	0	204	292
Springwoods	5,000	4,400	325				4,400	0	0	293	293
Walnut Creek Park	7,081	10,643	485	576		1,920	9,299	0	6	620	626
West Austin	2,655	1,500	120				1,500	0	0	100	100
Westenfield	2700	4393	382				4,393	0	0	293	293

1. Non-diving area over 5 ' depth.
2. Utilizes Texas Department of Health Standards for Swimming Pools and Spas 25 TAC Section 265.184
3. Civitan wading pool closed

- Seniors

Seniors represent a growing population that, like children, are likely to be free to use aquatic facilities during the day on weekdays. Seniors today are increasingly requesting access to fitness activities, often provided by parks and recreation departments. A higher number of seniors leads to a higher rating.

- Total Population

Residents living neara pool represent the most likely users of the facility. Demand fora facility tends to increase with the size of the nearby population, so larger populations receive a higher rating.

- Median Household Inc ome

Lower income households are more likely to rely on public pools over private facilities, so a lower median income results in a higher rating.

- Population Growth (5-Year)

Growth in population will result in an increase in demand for facilities. Accordingly, a higher growth rate leads to a higher rating.

- Social Needs and Conditions Index

The Social NeedsIndexvalue wasc alculated in Arc GISusing the scoresorigina lly presented in Aquatic Facilities Needs Assessment. The Census Tract values from the assessment were adjusted to fit the 20-minute minute walk areasusing the "Intersect" function with higherneed resulting in a higherrating.

The complete Social Needsand ConditionsIndexcan be found in AppendixB. The processconsidered the following seven factors:

- Household income
- Poverty
- Single parent households
- Education level
- Unemployment
- Crime
- Population density

A higher level of need corresponds to a higher rating for this element.

10-Minute Drive

Industry standards are less a p parent ford rive timesthan forwalk times. However, survey results consistently indic ate that a pproxima tely (90%) of users a re willing to drive between 5 and 30 minutesfor park facilities. As a result, a 5 -minute drive would be applicable to the most frequent and short-term uses. Only around 5% of respondents indicate a willingness to travel over 30 minutes, so that represents the high end of service areas.

During the assessment, fifty percent (50\%) of Austin aquatic users responded that they currently drive between 20 and 30 minutes to use facilities. Most of the remaining users (44\%) traveled less than 10 minutes. Approximately 50% of residents indic ated a willing ness to drive between 5 and 15 minutes and roughly 30% indic ated a willingness to drive up to 30 minutes.

Therefore, a 10-minute drive time was used for a community pool (or larger) because a larger pool has more a menities, and, as a result, residents will likely be willing to tra vel a greaterlength of time to use these pools. (A 20-minute walk is similarto a 5 -minute drive). The local users (within 10-minutes) will represent the more frequent users and are, therefore, more important when considering the location of an aquatic facility.

- Children - See 20-Minute Walk elements
- Seniors - See 20-Minute Walk elements
- Total Population - See 20-Minute Walk elements
- Median Household Income - See 20-Minute Walk elements
- Population Growth (5-Year) - See 20-Minute Walk elements

Capacity (based on surface area)

The capacity of a pool represent the potential number of users that could be present at a given time, and, therefore, is helpful to measure the pool's potential to serve Austin residents (greatercapacity increases rating). Table 7.3 shows how the capacity of the pools were calculated.

Attendance (5-Year Avg.)

The attendance over the previous five years indicated the actual level of use for a pool (rating increases with attendance). Improvements made at existing pools with high attendance will benefit a greater number of residents.

Attendance/Capacity Ratio

The Attendance/Capacity ratio shows how the measured attendance compares to the capacity (or potential attendance). A high Attendance/Capacity indicates that usage of the pool might be limited by the size. Accordingly, such a pool would benefit from expansion, so a higher ratio receives a higher rating.

7.3.2 Site Conditions (Table 7.4)

The Site Conditions criterion is critic al because expansion of a facility has certa in requirements. Additionally, some conditions make a site more conducive to development.

Entrance/ Drive

This element refers to the presence or lack of a vehicle entrance (presence yields highest rating). One would need to be added if not present.

Parking Spaces (Count)

This element represents the total number of spaces present on the site (more spaces result in a higher rating). Additional spacesmay be needed foran expanded facility.

Site Area (in Acres)

The total size of the site limits the potential fora largerfacility. If the site lacksthe required space, expansion is not possible. A larger site receives a higher rating.

Grade Constraints

The presence of steep slopes can make development difficult or completely unfeasible. Such conditions are measured from "low" to "severe" with "severe" receiving the lowest rating. Grade constra ints are only considered for an expanded site (Community or Regional Pool).

Health, Safety, Welfare Issues

The scores used for Health, Safety, Welfare Issues were derived from data representing four different health and safety measurements. The values for this data are presented in Table 7.5.

Designated Historical Features (Count)

This element is a count of historic al features on a site (rating decreases with more features). More features represent more areas that might need to be avoided or more features that could require relocation.

Historical Structure (Pool House or Pool)

Some of the pools and pool houses at Austin pools are designated historic, while others might be considered so by some residents based on their age. A historic structure would likely impose some limitations to modification or redevelopment. The age of structure results in a lower rating with designated historic receiving the lowest.

Table 7．4：Site Conditions

		$\left\lvert\, \begin{aligned} & 0 \\ & \text { 2 } \end{aligned}\right.$	\bigcirc		烒	$\stackrel{1}{2}$			$\left\|\begin{array}{c} . \frac{0}{c} \\ 0 \\ \frac{.3}{1} \\ \frac{0}{2} \\ 0 . \end{array}\right\|$	\circ	안	안	안	$\left\|\begin{array}{l} \circ \\ \hline- \\ \hline \end{array}\right\|$	$\underset{\sim}{\mathrm{O}}$	$\stackrel{\infty}{\circ}$	$\left\lvert\, \begin{array}{\|c\|c\|} \mathbf{~ H} \\ \hline \end{array}\right.$	$\begin{array}{l\|} \hline \\ 2 \end{array}$		2			안	안	$\stackrel{0}{0}$	$\begin{aligned} & \underset{\sim}{\mathbf{N}} \\ & \hline \end{aligned}$		夺							안
		－	0	－	0	0	0	\bigcirc	O－1	0	0	\bigcirc	0	0	\bigcirc	0	0	0	0	－	－	\bigcirc	0	\bigcirc	0	\bigcirc	\bigcirc	0		－	$-$		－	－	－
		\|⿳⿵人一⿲丶丶㇒一⿱口内	$\begin{array}{\|c\|} \hline 0 \\ \infty \end{array}$	oి	ò	రిరి	\|	§	$\left\|\begin{array}{l} \circ \\ \hline 0 \\ \hline 0 \end{array}\right\|$	$\left\|\begin{array}{c} \circ \\ \vdots \\ \hline 0 \end{array}\right\|$	Oిరి	$\begin{array}{\|c\|c} \stackrel{\circ}{\mathrm{q}} \\ \stackrel{y}{2} \end{array}$	రింి	$\stackrel{\circ}{\mathrm{O}}$	ஷ̀ํ	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{m}}}{ }$	$\stackrel{\circ}{\circ}$	مे̀	$\begin{array}{\|c} \circ \\ \text { è } \end{array}$	$\stackrel{\circ}{\circ}$	ヘั̀	oి	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \text { గn } \end{aligned}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\stackrel{\rightharpoonup}{\mathrm{q}}}$	oे	かっ	ก			$\stackrel{\circ}{\mathrm{N}}$		กู	웅	－
		$\frac{1}{\Sigma}$	Σ	\sum^{0}	－	\checkmark	$\left\|\sum_{i}\right\|$	$\left\|\sum_{i}\right\|$	\cdots	Σ	n	－	－	Σ	\sum_{i}	$\frac{0}{2}$	$\left\|\sum_{1}\right\|$	－	－	$\left\|\begin{array}{l} 0 \\ \sum^{1} \end{array}\right\|$	\rightarrow	－	－	－	Σ	－	－			\sum	\sum_{1}	－	Σ	\sum^{0}	\sum_{i}
		$\stackrel{\text { H }}{ }$	$\left\|\begin{array}{c} 0 \\ \infty \end{array}\right\|$	0	$\stackrel{+}{i}$	N	$\left\|\begin{array}{l} n \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} \underset{m}{n} \end{array}\right\|$	$\left\|\begin{array}{c} \infty \\ 0 \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \underset{i}{2} \end{aligned}\right.$	9	$\stackrel{m}{n}$	$\left\|\begin{array}{l} 0 \\ \dot{\gamma} \end{array}\right\|$	0	$\stackrel{\text { ¢ }}{\sim}$	$\left\|\begin{array}{c} n \\ i \end{array}\right\|$	\hat{o}	$\left\lvert\, \begin{gathered} \tilde{O} \end{gathered}\right.$	$\left\|\begin{array}{c} n \\ 0 \end{array}\right\|$	$\stackrel{m}{\underset{i}{i}}$	$\left\|\begin{array}{c} n \\ \underset{i}{n} \end{array}\right\|$	$\underset{\sim}{\mathrm{i}}$	$\left\|\begin{array}{l} n \\ i \end{array}\right\|$	$\stackrel{+}{6}$	\hat{o}	0	\bigcirc		－	$\stackrel{\square}{\circ}$	$\underline{1}$	$\stackrel{\odot}{\square}$	N	$\stackrel{\bigcirc}{\circ}$
		N	0	9	－	$\stackrel{0}{7}$	\bigcirc	\bigcirc	\cdots	ก	역	$\stackrel{\text { N }}{ }$	V	¢	\bigcirc	$\underset{\sim}{q}$	N	$\stackrel{\sim}{m}$	\bigcirc	の	9	N	$\stackrel{\sim}{m}$	m	－7	\sim	－	\rightarrow		$\stackrel{\square}{2}$	0	－	$\stackrel{\bullet}{\sim}$	0	\bigcirc
		$\stackrel{\stackrel{y}{v}}{\substack{0}}$	$\stackrel{y}{v}$	$\stackrel{\unlhd}{\underset{\sim}{0}}$	안	$\stackrel{\underset{\sim}{\underset{\sim}{x}}}{ }$	은	$\stackrel{\stackrel{y}{0}}{\underset{\sim}{c}}$	$\stackrel{y}{\tau}$	$\stackrel{\stackrel{\Omega}{\partial}}{\underset{\sim}{2}}$	$\stackrel{\stackrel{y}{0}}{\succ}$	$\stackrel{\stackrel{y}{v}}{\substack{0}}$	$\stackrel{\mathscr{\sigma}}{\stackrel{\sim}{\tau}}$	$\stackrel{y}{\substack{c}}$	은	$\stackrel{』}{\underset{\sim}{0}}$	을	$\stackrel{\stackrel{y}{0}}{\underset{\sim}{2}} \mid$	$\stackrel{\square}{2}$	$\stackrel{\stackrel{y}{\Delta}}{\underset{\sim}{x}}$	$\stackrel{\stackrel{\sim}{\tau}}{\sim}$	$\stackrel{y}{\nu}$	$\stackrel{\varrho}{\sim}$	$\stackrel{\stackrel{y}{\Delta}}{\underset{\sim}{x}}$	$\stackrel{\sim}{\nu}$	은	안	\bigcirc		$\stackrel{y}{\sim}$	안	$\stackrel{\sim}{\Delta}$	$\stackrel{\sim}{\sim}$	안	안
管	$\begin{aligned} & 00 \\ & \text { en } \\ & \frac{\pi}{2} \\ & \overline{0} \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \substack{0 \\ 0 \\ 0 \\ \frac{0}{j} \\ \hline \\ \hline} \\ \hline \end{array}$	$\left\|\begin{array}{c} 3 \\ 0 \\ e \\ \vdots \\ 0 \\ 0 \\ 0 \\ \frac{7}{0} \\ 0 \\ 0 \end{array}\right\|$	$\begin{aligned} & \vec{v} \\ & \tilde{0} \\ & \hat{n} \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \substack{\mathfrak{y} \\ \underset{y}{c} \\ c \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0} \end{aligned}$	$\begin{array}{\|} \\ \stackrel{c}{c} \\ \stackrel{y}{\geq} \\ \vdots \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline \frac{0}{0} \\ \dot{u} \\ \stackrel{0}{\omega} \\ \dot{\Delta} \\ \hline \end{array}$			$\begin{aligned} & \frac{c}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	n 0 -2 0 0 0 0 0 0	$$	$\begin{aligned} & \underline{\underline{n}} \\ & \underline{\bar{\prime}} \end{aligned}$	$\begin{aligned} & n \\ & \stackrel{n}{0} \\ & \underset{0}{2} \end{aligned}$	0 0 0 0 0					$\begin{aligned} & \mathrm{y} \\ & \mathbf{y} \\ & \hline \end{aligned}$			$\begin{aligned} & \text { t } \\ & 0 \\ & 3 \\ & \vdots \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$			${ }_{0}$		$\begin{aligned} & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & 0 \\ & 0 \\ & \end{aligned}$	－			$=$ \vdots \vdots \vdots \vdots 3	

Table 7.5: Health and Safety Issues

Pool Name	Health Department Issues	ADA Accessibility Dollar Amount	ADA Score	Staff Safety	Chemical Storage Conditions	Total	Total Score (\%)
Balcones	5	\$49,440	5	5	5	20	50\%
Bartholomew	10	\$23,100	7	5	10	32	80\%
Big Stacy	10	\$172,850	0	7	7	24	60\%
Brentwood	7	\$7,000	10	5	5	27	68\%
Canyon Vista	10	\$26,900	5	2	7	24	60\%
Civitan	5	\$38,600	5	7	7	24	60\%
Colony Park	NA						
Deep Eddy	10	\$30,040	5	5	7	27	68\%
Dick Nichols	5	\$22,750	7	7	7	26	65\%
Dittmar	5	\$34,650	5	7	7	24	60\%
Dottie J ordan	5	\$68,090	2	5	5	17	43\%
Dove Springs	5	\$16,630	7	7	5	24	60\%
Ganison	2	\$53,100	2	5	5	14	35\%
Gillis	7	\$13,600	7	2	2	18	45\%
Givens	2	\$24,150	7	2	2	13	33\%
Govalle	7	\$21,490	7	7	2	23	58\%
Kennemer	7	\$19,260	7	7	7	28	70\%
Little Stacy	2	\$23,770	7	7	2	18	45\%
Mabel Davis	10	\$44,090	5	2	5	22	55\%
Martin	5	\$22,430	7	2	7	21	53\%
Metz	5	\$20,980	7	7	5	24	60\%
Montopolis	5	\$20,240	7	2	7	21	53\%
Murchison	7	\$19,650	7	7	7	28	70\%
Northwest	5	\$28,000	5	2	5	17	43\%
Parque Zaragoza	5	\$56,650	2	7	7	21	53\%
Patterson	10	\$24,890	7	7	7	31	78\%
Ramsey	5	\$29,600	5	7	5	22	55\%
Reed	10	\$12,890	7	7	2	26	65\%
Rosewood	10	\$37,570	5	2	5	22	55\%
Shipe	5	\$19,320	7	7	2	21	53\%
Springwoods	10	\$5,600	10	7	5	32	80\%
Walnut Creek Park	7	\$39,050	5	5	5	22	55\%
West Austin	7	\$31,560	5	7	7	26	65\%
Westenfield	10	\$6,500	10	10	5	35	88\%

legend
Health Department Issues - Issues needing correction according the the Environmental Health Services Division on 8/2/2016
ADA Accessibility - Dollar amount from PARD Assessment
Staff safety - Mainly pools where staff has to go down into pits sc ore lower.
Chemical Storage - Based on where the chemic als are stored and the condition of the enclosure.

Scoring	ADA Scoring
$10 \quad$ Excellent - New - No Issues Noted	0 Over $\$ 75,000$
$7 \quad$ Good	$2 \$ 50,000-\$ 75,000$
$5 \quad$ Fair	$5 \quad \$ 25,000-\$ 50,000$
$2 \quad$ Poor	$7 \quad \$ 10,000-\$ 25,000$
$0 \quad$ Nonexistent	10 Less than $\$ 10,000$
NA Not applicable	

7.3.3 Location (Table 7.6)

This criterion considers the location of a pool site with regard to adjacent elements and characteristics.

Heavily Trafficked Roadways (Traffic Counts)

For this element, high traffic roads are considered according to their capacity to generate and deliver noise and air pollution to the adjacent pool site. Additionally, this high traffic roads may be more difficult to cross. Traffic is counted based on average daily traffic volume with higher traffic resulting in a lower rating.

Distance from Road

The distance from the road reduces the impact of noise and air pollution from the adjacent roadway (rating increases with distance).

Railroads

Like roadways, railroads generate noise, partic ularly for freight lines. Light rail also generates some noise. This element indic ates the presence of either light rail or freight within 500 ft . of the pool site. An adjacent freight railway results in the lowest rating.

Right Zones (Noise Level)

Location within a flight zone also results in unwanted noise. This element measures the noise at the pool site from aircraft in decibels. Higher decibels lead to a lower rating.

Competing Elements (Count)

Competing Elements represent a count of facilities that serve similar needs for the same pool of residents (those living within a 20 minute walk of an Austin pool). Residents are unlikely to use the same program or facility offered by different agencies. Additionally, a resident cannot use two facilities at one time. The Service Area Overlap measurement evaluates how much of the 20 minute walk area is also served by a nother Austin pool. Additional competing a menities results in a lower rating.

- Other PARD Aquatic Facilities (20-Minute Walk)
- Service Area Overlap (Percentage of overlap within 20-Minute Walk area)
- Private Aquatic Facilities (20-Minute Walk)
- Programs by HOA/Private Orgs. (20-Minute Walk)

Symbiotic Eements (Count)

These Symbiotic Elements represent a count of adjacent amenities that bring people to the area near the pool, providing potential users who may visit the pool after using these other amenities. Additionally, a variety of amenities in one location increases the chances that a visitor will choose that location over others.

- Schools/ Daycare Providers (5-Minute Walk)
- Recreation Centers (5-Minute Walk)
- Other Park Amenities (5-Minute Walk)

7.3.4 Accessibility (Table 7.7)

This criterion evaluates the aquatic facilities based on elements that affect access to the sites, including elements related to road access, transit access, and pedestrian and bicycle connectivity. These elements are important because they provide vital information about how efficiently and safely a site can be accessed.

Adjacent Roadway Class

A higher roadway class has the potential to provide access to a greater number of users more efficiently． Location adjacent to a busier road also provides additional exposure for the facility，which can lead to increased attendance．

Table 7．6：Location

$\frac{n}{0}$		－	ก	－	\cdots	0	ค	－	9	$\stackrel{\sim}{1}$	0	\bigcirc	$\stackrel{\sim}{\square}$	$\stackrel{-1}{ }$	n	$\underset{\sim}{7}$	∞	\bigcirc	$\stackrel{-1}{-1}$	\bigcirc	¢	の	∞	\bigcirc	$\stackrel{\sim}{\square}$	9	\sim	の	ค	9	$\stackrel{1}{9}$	－	$\stackrel{\infty}{\square}$	\wedge	∞
		－	－	0	－	0	\bigcirc	－	－	0	－	－	－	－	－	－	－	－	－	－	－	－	－	0	0	\sim	0	0	0	m	0	－	0	－	0
E		\bigcirc	\bigcirc	－	－	－	－	－	－	0	0	0	N	－	m	－	－	－	－	－	-1	－	－	－	O	－	0	0	0	\bigcirc	N	－	－	－	0
		\bigcirc	0	－	－	\bigcirc	\bigcirc	0	－	－	0	－	－	－	0	－	－	－	0	0	0	－	－	－	0	0	－	－	－	－	0	－	－	－	0
		－	－	－	－	0	0	0	－	－	0	－	\rightarrow	－	0	0	－	－	0	0	0	－	－	N	0	0	N	0	－	－	－	－	0	－	0
		oे	$\stackrel{\rightharpoonup}{\mathrm{m}}$	ooi	Oిల	oి	$\left\|\begin{array}{c} \infty \\ \infty \\ \infty \end{array}\right\|$	oे	읏	oे	ol	8이	80	Oి	$\stackrel{c}{\mathrm{M}}$	$\left\|\begin{array}{c} \circ \\ \stackrel{\rightharpoonup}{\circ} \\ \hline \end{array}\right\|$	$\left.\begin{array}{\|c} \circ \\ \stackrel{\circ}{1} \end{array} \right\rvert\,$	৪ి	$\begin{aligned} & 0 \\ & \hline 0 \\ & \infty \\ & \infty \end{aligned}$	∞	$\stackrel{\stackrel{2}{\mathrm{~N}}}{\substack{2}}$	oి	$\begin{array}{\|c} \circ \\ \stackrel{\rightharpoonup}{0} \\ \hline \end{array}$	융	$\left\lvert\, \begin{gathered} \circ \\ \hline \mathrm{N} \\ \hline \end{gathered}\right.$	$\begin{gathered} \text { oे } \\ \text { むे } \end{gathered}$	$\begin{array}{\|c} \stackrel{\circ}{\mathrm{M}} \\ \hline \end{array}$	$\left\|\begin{array}{l} \stackrel{\circ}{0} \\ \mid \end{array}\right\|$	∞	$\stackrel{\stackrel{\circ}{1}}{\stackrel{1}{2}}$	$\|\stackrel{\stackrel{\circ}{\mathrm{N}}}{ }\|$	Oㅇ	oి	ì	OిOి
		－	－	－	－	0	－	0	－	0	0	O	0	－	－	0	0	－	－1	－	－1	－	-1	0	0	\sim	0	\bigcirc	－	－	0	－	0	－	\sim
		$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ C \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ \vdots \\ 0 \\ \vdots \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ \vdots \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$	$\left\|\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ \vdots \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ \vdots \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ \vdots \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ C \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ \hline \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ \frac{1}{0} \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$	$\begin{aligned} & 0 \\ & \stackrel{y}{0} \end{aligned}$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$	$\stackrel{\text { ¢ }}{\text { ¢ }}$
		$\left\|\begin{array}{l} 0 \\ \frac{0}{0} \\ \text { 2 } \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 0 \\ & C \\ & 0 \\ & 2 \end{aligned}\right.$	$\begin{aligned} & \underset{\sim}{0} \\ & \underset{\sim}{0} \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & \\ & 2 \\ & 2 \end{aligned}\right.$	$\left\|\begin{array}{l} 0 \\ C \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$	$\left\|\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 0 \\ & \vdots \\ & 0 \\ & \vdots \\ & \hline \end{aligned}\right.$	$\left\|\begin{array}{c} 0 \\ \vdots \\ 0 \\ Z \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ \vdots \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ \underset{0}{0} \\ \mathbf{Z} \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ \vdots \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ \vdots \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ \underset{C}{0} \\ \mathbf{Z} \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ c \\ 0 \\ 2 \end{array}\right\|$	$\begin{array}{\|l} \stackrel{D}{\underset{\sim}{u}} \\ \underset{\sim}{0} \\ \end{array}$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 5 \\ 0 \\ 2 \end{array}\right\|$		$\left\|\begin{array}{l} 0 \\ C \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ \stackrel{0}{c} \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$		$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	$\left\|\begin{array}{l} 0 \\ C \\ 0 \\ 2 \end{array}\right\|$	$\stackrel{\square}{C}$	苞
		$\left\lvert\, \begin{gathered} \underset{\sim}{n} \\ \hline \end{gathered}\right.$	N	$\underset{\sim}{\infty}$	$\stackrel{\sim}{\circ}$	$\stackrel{\stackrel{\mathrm{O}}{\mathrm{~m}}}{ } \mid$	운	\mathfrak{q}	$\|\stackrel{8}{\circ}\|$	\mathfrak{y}	$\|\underset{\sim}{N}\|$	$\stackrel{\circ}{1}$	$\left\|\begin{array}{c} 0 \\ \mathbf{n} \\ -i \end{array}\right\|$	$\left\|\begin{array}{l} \underset{\infty}{\infty} \\ \sim \end{array}\right\|$	$\left\|\begin{array}{c} \infty \\ -7 \end{array}\right\|$	$\left\|\begin{array}{l} \mathrm{H} \\ \mathrm{n} \end{array}\right\|$	$\stackrel{\underset{\sim}{m}}{ }$	ก	$\stackrel{\circ}{\sim}$	$\stackrel{\Omega}{\stackrel{n}{N}}$	$\left\|\begin{array}{c} \infty \\ \hline-1 \end{array}\right\|$	$\stackrel{\sim}{\sim}$	$\stackrel{n}{\mathrm{n}}$	$\mid \stackrel{n}{\mathbf{O}}$	$\left\|\begin{array}{l} \stackrel{\rightharpoonup}{0} \\ 0 \end{array}\right\|$	$\|\underset{o}{\mid c}\|$	$\left\|\begin{array}{c} \infty \\ \ddot{q} \end{array}\right\|$	示	$\left\|\begin{array}{l} \infty \\ \underset{m}{\infty} \end{array}\right\|$	O-	욱	N－0	$\left\|\begin{array}{l} \mathrm{O} \\ \underset{i}{1} \end{array}\right\|$	$\underset{\sim}{\mathcal{G}}$	응
		$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\begin{aligned} & \text { O} \\ & \text { On } \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 0 \\ & \text { n } \end{aligned}$	$\left\|\begin{array}{c} 0 \\ n \\ n \end{array}\right\|$	$\left\|\begin{array}{c} \mathrm{O} \\ \underset{N}{2} \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ \underset{n}{n} \\ m \end{array}\right\|$	$\left\|\begin{array}{c} \stackrel{n}{n} \\ \underset{n}{n} \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ \underset{~}{3} \end{array}\right\|$	$\left\|\begin{array}{l} 8 \\ \mathbf{O} \\ \mathbf{n} \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ 1 \\ 0 \\ \infty \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 8 \\ & 0 \\ & \sim \\ & \sim \end{aligned}\right.$	$\left\|\begin{array}{c} 0 \\ n \\ n \\ \infty \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ \stackrel{0}{n} \\ \stackrel{N}{N} \end{array}\right\|$		$\left\|\begin{array}{c} 0 \\ i n \\ i n \\ n \end{array}\right\|$	$\left\|\begin{array}{c} 8 \\ 0 \\ n \\ n \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	8	$\begin{aligned} & \underset{\sim}{N} \\ & \end{aligned}$	$\stackrel{\varangle}{\Sigma}$	$\left\|\begin{array}{c} o \\ \underset{m}{2} \end{array}\right\|$	$\left\|\begin{array}{l\|l\|l\|l\|} \hline 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} \mathbf{O} \\ \underset{n}{n} \\ i \end{array}\right\|$	$\left\|\begin{array}{c} 8 \\ \stackrel{8}{\hat{n}} \\ i \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ \underset{1}{2} \\ \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ 0 \\ \stackrel{y}{m} \\ \hline \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ \infty \\ \underset{\sim}{1} \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ \underset{m}{n} \\ \hline \end{array}\right\|$	$\left\|\begin{array}{c} \underset{9}{9} \\ \hat{n} \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 9 \\ \hline \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 0 \\ & -7 \\ & 6 \\ & 0 \\ & -1 \end{aligned}\right.$	$\left\|\begin{array}{l} \underset{\sim}{\underset{\sim}{*}} \\ \underset{\sim}{*} \end{array}\right\|$	\bar{O}	Q \sim N N \sim
$\begin{array}{r} 6 \\ \hline 8 \\ \hline 8 \\ \hline \end{array}$	$\begin{aligned} & \underline{y} \\ & \frac{1}{\pi} \\ & \frac{\pi}{8} \\ & 8 \\ & \hline \end{aligned}$		$\begin{array}{\|c} 3 \\ 0 \\ \varepsilon \\ \vdots \\ \frac{0}{0} \\ \frac{1}{y} \\ \\ \hline \end{array}$	$\begin{aligned} & \lambda \\ & 0 \\ & 0 \\ & 0 \\ & n \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{array}{\|c} \substack{c \\ \underset{\sim}{n} \\ \hdashline \\ \hline} \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline \frac{\lambda}{c} \\ 0 \\ 0 \\ u \\ 0 \\ \varrho \\ 0 \\ 0 \\ \hline \end{array}$	$$	玄	$\begin{gathered} \frac{c}{c} \\ \frac{0}{0} \\ \frac{0}{0} \\ \hline \frac{0}{7} \\ 0 \\ \hline \end{gathered}$	Dove Springs	$\begin{array}{\|c\|} \hline \stackrel{C}{\hat{O}} \\ \underset{\sim}{E} \\ \underset{O}{0} \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \underline{\bar{O}} \\ \hline \end{array}$		$\begin{array}{\|c} \underline{\overline{0}} \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$		$\begin{aligned} & \underset{c}{\lambda} \\ & 0 \\ & \tilde{n} \\ & \frac{0}{ \pm} \\ & \vdots \end{aligned}$	$\left\lvert\, \begin{aligned} & \frac{n}{\lambda} \\ & \frac{n}{0} \\ & \frac{1}{0} \\ & \frac{0}{0} \\ & \sum_{0} \end{aligned}\right.$		$\begin{aligned} & n \\ & 0 \\ & \sum \end{aligned}$					$\left\|\begin{array}{c} \frac{c}{\hat{h}} \\ \underset{\sim}{4} \\ \underset{\sim}{0} \\ \hline \end{array}\right\|$	$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{0} \\ \underset{\sim}{0} \\ \underset{\sim}{\Upsilon} \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ \underset{\sim}{2} \end{array}\right\|$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 3 \\ & \mathbb{Z} \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|c} 0.0 \\ \stackrel{.}{\hat{n}} \\ \hline \end{array}$	$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			

Table 7．7：Accessibility

	$\begin{aligned} & \overline{\overline{\mathrm{G}}} \\ & 0 \stackrel{0}{0} \\ & 0 \end{aligned}$				$\stackrel{\vdots}{\overline{1}}$						$3:=$	$\left\|\begin{array}{l\|} \hline 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\begin{array}{c\|c} \hline 0 & 0 \\ \hline & 0 \\ \hline \end{array}$		$\stackrel{\rightharpoonup}{\bar{\rightharpoonup}}$							艺	－	$0 \left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{l\|l\|l\|l\|l\|l\|l\|} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{l\|l\|} \hline \\ 0 & 0 \\ 0 \\ 0 & 0 \\ \hline \end{array}$,		－		安
$\begin{aligned} & 气 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{array}{\|l\|l} 0 \\ \\ \hline \end{array}$				$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$			$\begin{array}{c\|c} 0 \\ & \\ \hline \end{array}$	$v \left\lvert\, \begin{gathered} 0 \\ 0 \\ 0 \end{gathered}\right.$		$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ \vdots \\ \vdots \\ \vdots \end{array}\right\|$	$\begin{gathered} 0 \\ 0 \\ \\ \\ \hline \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 2 \end{aligned}$			$-1\left\|\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right\|$				－	$+\left\|\begin{array}{c} 0 \\ \vdots \\ \frac{1}{2} \end{array}\right\|$	$\begin{aligned} & 0 \\ & \\ & \\ & \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \vdots \\ & \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \end{aligned}$	－	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\left\lvert\, \begin{gathered} 0 \\ \hline 0 \\ \hline 0 \end{gathered}\right.$	\％		N
	$\begin{aligned} & \mathbf{y} \\ & \frac{ \pm}{\pi} \end{aligned}$					$\left\|\begin{array}{l} 0 \\ \vdots \\ 0 \\ 2 \end{array}\right\|$						$\left\|\begin{array}{l} 0 \\ \vdots \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ \vdots \\ 0 \\ 2 \end{array}\right\|$			－	$\left\|\begin{array}{c} 0 \\ \vdots \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} \stackrel{\otimes}{\varepsilon} \\ \stackrel{\circ}{n} \end{array}\right\|$				$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \vdots \end{aligned}\right.$	$\begin{array}{ll} 0 \\ \\ \\ \end{array}$		$\stackrel{\rightharpoonup}{\text { 㐅}}$	$\left[\begin{array}{c} 0 \\ \vdots \\ \frac{1}{2} \end{array}\right.$	$\stackrel{0}{6}$	$\begin{aligned} & \mathrm{y} \\ & \hline ⿲ 二 丨 匕 刂 \\ & \hline \end{aligned}$		$\begin{gathered} 0 \\ \hline \end{gathered}$		$\begin{array}{\|c} 0 \\ \frac{1}{2} \\ \hline \end{array}$	ㅎ	－
	－		立		－	$\begin{aligned} & 3 \\ & b \\ & b \\ & \hline \end{aligned}$	$\begin{array}{r\|c\|} \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$			$\begin{aligned} & =0 \\ & \hline 10 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{l\|l\|l\|} \hline 0 & 0 \\ \hline & 0 \\ \hline \end{array}$	$\left.\begin{aligned} & 2 \\ & \hline \\ & 0 \\ & \hline \end{aligned} \right\rvert\,$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	－	㐫		－	－	ニ	\％			$\begin{array}{r\|l\|l\|} \substack{3 \\ 0 \\ 0 \\ 0 \\ 0} \end{array}$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	－	$\stackrel{\rightharpoonup}{\circ}$	－		或	¢	－	－	¢	－	－
				$\left\|\begin{array}{l} 0 \\ \vdots \\ 0 \\ 2 \end{array}\right\|$	$\begin{array}{l\|l\|} 0 & 0 \\ & 0 \\ & 2 \\ 2 & \end{array}$				$\begin{gathered} 0 \\ \hline \\ \hline \end{gathered}$									$\left.\left\lvert\, \begin{array}{c} 0 \\ \vdots \\ 0 \\ 0 \end{array}\right.\right):,$	$\begin{aligned} & 0 \\ & \vdots \\ & \vdots \\ & 2 \end{aligned}$			$\begin{array}{\|c\|c} \stackrel{0}{0} \\ \stackrel{\ddots}{2} & \stackrel{\rightharpoonup}{\succ} \\ \hline \end{array}$		$\stackrel{\stackrel{\rightharpoonup}{\stackrel{\omega}{\succ}} \mid}{ }$						$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 2 \\ & \hline \end{aligned}$			2		$\stackrel{\sim}{\circ}$
	$\stackrel{\mathrm{o}}{\mathbf{u}}$	$\underset{\underset{\sim}{\circlearrowright}}{\stackrel{\sim}{\sim}}$				$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$						$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ \vdots \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ \vdots \\ \vdots \\ 2 \end{array}\right\|$	$\stackrel{\sim}{\sim}$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ \vdots \end{array}\right\|$	$\begin{gathered} 0 \\ \\ \\ \\ \hline \end{gathered}$	$\left\|\begin{array}{l} 0 \\ \vdots \\ 0 \\ 2 \end{array}\right\|$			$\begin{array}{c\|c} 0 \\ \\ & 0 \\ \hline \end{array}$		$\begin{aligned} & 0 \\ & \vdots \\ & 0 \\ & 2 \end{aligned}$	$\stackrel{\sim}{\sim}$	$\stackrel{\Perp}{\sim}$	$\stackrel{\otimes}{+}$	$\begin{aligned} & 0 \\ & \\ & \end{aligned}$				$\begin{gathered} 0 \\ \stackrel{0}{n} \\ \hline \end{gathered}$	$\stackrel{B}{3}$	$$	들		$\stackrel{\smile}{\smile}$
							\hat{y}					$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ \stackrel{y}{6} \\ \vdots 人 \end{array}\right\|$		$\left\|\begin{array}{l} 0 \\ \underset{\varrho}{0} \\ \vdots \end{array}\right\|$													$\begin{gathered} \stackrel{0}{6} \\ \stackrel{0}{2} \end{gathered}$		$\begin{aligned} & \text { ते } \\ & \stackrel{\rightharpoonup}{\pi} \\ & \sum \end{aligned}$	$\stackrel{c}{0}$	$$		，	\％
	苞					안					$\stackrel{\square}{2} \stackrel{1}{2}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \dot{\circ} \\ & \frac{2}{4} \end{aligned}$			-0 을 ㄴ 1		$\stackrel{y}{2}$?				$\stackrel{\sim}{\sim}$		$\stackrel{\sim}{\sim}$		$\stackrel{\sim}{\circlearrowright}$	$\stackrel{\sim}{\sim}$					\bigcirc	$\stackrel{\sim}{\sim}$		$\stackrel{\sim}{\sim}$
																						$\left\|\begin{array}{l} \overline{0} \\ 0 \\ 0 \end{array}\right\|$													交
															$\begin{gathered} \hat{y} \\ 0 \\ 0 \end{gathered}$						$\underline{\underline{x}}$	$\begin{array}{\|c} \left.\begin{array}{c} N \\ 0 \\ \Sigma \\ \hline \end{array} \right\rvert\, \end{array}$										$\begin{array}{\|l} \text { n } \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \text { n } \\ \hline \end{array}$			

Transit Access

Transit stops near an aquatic site allow formore users to access the facility. High ratings are given based on the distance from the closest tra nsit stop with the highest rating a ssigned to sites with stops at the pool location.

Pedestrian Connec tivity

Pedestrian Connectivity is measured using a series of elements. Walkways/Trails, Crosswalks, and Traffic Controlsare measured based on whether they are present from any or all for the potential access points for the site or park. Higher ratings are assigned to sites with infrastructure at more locations. The Overall element looks at the quality, size, and maintenance of the pedestrian facilities in general. For example, if crosswalks lack curb cuts or sidewalks are na rrow or only on one side of street, a lower overall rating is assigned.

- Walkways/Trails
- Crosswalks
- Traffic Controls
- Overall

Bicycle Connectivity

Bicycle Connectivity is also measured using a series of elements. Lanesare measured based on whether they are present from any or all of the potential access points for the site or park. Higher ratings are assigned to sites with infrastructure on all sides. The Trails element assigns a rating based on the number of trails leading to the site (highest score to 2 ormore). The Overall element looks at the quality, size, and maintenance of the bicycle facilities in general. For example, if bike lanesare intermittent, a loweroverall rating is assigned, and a higher score is assigned to overall for low traffic residential streets on one or more sides.

- Lanes
- Trails (Count)
- Overall

7.3.5 Infrastructure (Table 7.8)

Thisc riterion evalua testhe utilitiesa nd support facilitiesneeded at an aquatic site. The presence and cond ition of these elements directly impact the requirements for redevelopment.

Eectric Senvice Provider

Electric Service Provider indic ates whether the site is served by Austin Energy (higher rating) or a nother provider (lower rating). The use of other providers inc reasescosts to PARD.

Eectric Senvice (Phases)

The number of phases is important because three phase electric (highest rating) is required by modem pool mechanical systems to operate efficiently. Any site lacking three phase will require upgrades to meet this requirement.

Water (Dist to 4" Line)

A 4" water line is required for the expansion of any aquatic facility, so the distance (measured in feet) is important because it will be more costly to connect to a more distant line. A shorterdistance is assigned a higher rating.

Rec laimed Water (Dist to Line)

Reclaimed Water service is important for providing imigation to the site. A shorter distance (in feet) is assigned a higher rating because it will be more costly to connect to a more distant line.

Table 7.8: Infrastructure

Wastewater (Dist to $\mathbf{8 "}^{\prime \prime}$ Sewer Line)

Because an 8 " sewer line is desirable for the expansion of any aquatic facility, the distance (measured in feet) is important. A shorter distance is assigned a higher rating.

Pool Condition

The condition of the pool itself is important because more extensive improvements will be required as the condition of a pooldeclines (lower rating). The values are based on observations of the current condition at the time of the Assessment.

Bathhouse Condition

The renovation requirements for a bathhouse, like the pool, increase as the condition declines (higher score for better condition). These values are based on the number of issuescited in the Assessment (ADA access, walls, roof, electric, structural, doors, plumbing, etc.).

Storage Conditions

This element assignsa rating based on where the chemic als are stored and the condition of the enclosure.

COATN Service Area (Wi-Fi)

This element indicates whether a site has Wi-Fi service provided by COATN or has the potential to have service. No service or potential is assigned the lowest rating.

7.3.6 Environmental (Table 7.9)

This criterion establishes ratings for elements based on the impact to the existing natural environment. These ratings are lower where environmental impact is more significant. Overall, the site is less desirable for development due to higher potential impacts to the natural environment. The environmental impact of development is important because maintaining susta inable natural spaces is part of the mission of PARD.

Trees (Number)

Using the "Tree Inventory 2016" shapefile, this element counts the number of trees that would potentially be impacted by expansion of the pool site. Three separate elements consider different sizes of trees, and in each case, more trees results in a lower rating. The count for Neighborhood Pool is based on the existing site, while the Community/Regional count is based on a 250 foot radius from the pool location.

- $2^{\prime \prime}$ to 19 " in Diameter
- $19^{\prime \prime}$ to $24^{\prime \prime}$ in Diameter
- Over 24" in Dia meter (Including Herita ge)

Grow Zones

According to the "Grow Zones" shapefile metadata, Grow Zones are "areas that are within City of Austin publicly-owned land that have been identified as Grow Zones in a collaboration between Parks and Recreation and Watershed Protection Departments. Contains... acreage, watershed designations and a description of the prescribed maintenance regime that will enable restoration of healthy ecological function."

No aquatic sites contain grow zones; however, if a grow zone is located within 250 feet of the site, a low rating is assigned for this element for the Community/Regional Pool classification.

Aquifer Recharge

According to the "Recharge Zones" shapefile metadata, "Regulatory boundaries of Edwards Aquifer Recharge Zone based on the adoption of the Texas Commission on Environmental Quality (TECQ) Recharge Zone Boundary, defined in September of 2005. The data is loosely defined by surface exposure of the lithology of the Edwards and Georgetown Formations as mapped in 2006. This data has been

Table 7．9：Environmental

																						范					荨				$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{0}} \mid$			（1）
																																		号
	은	$\stackrel{\circ}{2}$	2	$\stackrel{\sim}{0}$	2	2	2			2	2			2%	2			2		2	2	2	2	2	2	2	2	2	2	2	2	2		2
		2	2	2	2	2	2	2	2	2	2		2 O	2%	2	2		2%	2	2	2	2	2	2	2	2	2	N	2	2	2	2		2
		2	2	2	2	2	2	2	2	$\stackrel{\circ}{2}$	2		2%	2	2	2		2	2	2	2	2	2	2	2	2	2	O	2	N	2	2	2	2
		2	2	2	2	2	2	$\stackrel{\circ}{2}$	2	2	2		2%	2%	2	2		2%	2	앙	2	2	2	2	2	2	2	2	2	${ }_{\sim}$	2	$\stackrel{1}{2}$	$\stackrel{\circ}{2}$	2
		$\stackrel{\omega}{c}$	2	2	2	$\stackrel{\breve{0}}{\sim}$	2	2	$\stackrel{\stackrel{\rightharpoonup}{\bullet}}{\sim}$	$\stackrel{\stackrel{\sim}{\sim}}{\sim}$	2		2 O	2%	\bigcirc	2	2	$\stackrel{\circ}{2}$	2	2	2	2	$\stackrel{\sim}{\sim}$	2	2	2	2	$\stackrel{\square}{\circ}$	2	2	$\stackrel{\smile}{\sim}$	2	2	$\stackrel{\sim}{\sim}$
		2	웅	웃	2	2				$\stackrel{\circ}{2}$			2%	$\stackrel{\sim}{2}$	2	2		\bigcirc	2	2	2	2	2	2	2	2	2	0	2	2	2	2	2	앙
		m		7	\wedge	－		$\frac{¢}{2}$		\bigcirc			－	$\rightarrow \sim$	－	d		$\bigcirc \stackrel{\sim}{\sim}$	－	－	∞		N	\bigcirc	－	9		m	N	－	\sim		－	\sim
$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\stackrel{\rightharpoonup}{0}$	\sim	9	$\underset{\sim}{\sim}$	in	0	－	$\stackrel{\nwarrow}{2}$		\bigcirc	m		0∞	∞ ？	¢	A		m ～	\sim	\sim	n		－	\bigcirc	\wedge	\bigcirc		－	ำ		\sim		－	\pm
		\pm		®	ๆ	\bigcirc		$\stackrel{\varangle}{2}$	\bigcirc	m			in	$\stackrel{\circ}{\circ}$	\％	\％	\cdots	＾）	g	g	¢	m	$\stackrel{\sim}{\sim}$	\pm	\％	A	¢	$\underset{\sim}{1}$	m		7	\sim	\sim	8
		$\left\lvert\, \begin{gathered} \tilde{u} \\ 0 \\ \dot{5} \\ \frac{0}{\tilde{n}} \\ \hline \end{gathered}\right.$		3 0 0 0 0 0	5				$\left\|\begin{array}{c} \frac{c}{0} \\ \stackrel{y}{u} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$			$\left\|\begin{array}{c} c \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$					b_{6}^{6}				${ }^{\circ}$	${ }_{2}$	$\begin{array}{\|l\|} \frac{8}{2} \\ \vdots \\ \frac{y}{2} \\ \hline \end{array}$	$\stackrel{\square}{2}$			这	¢	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ \vdots \\ 8 \end{array}\right\|$	읓		$\frac{5}{3}$		

produced by the City of Austin for the sole purpose of aiding intemal processes and is not warranted for any other use. No warranty is made by the City of Austin regarding its accuracy or completeness."

If all or a portion of a site is located within an aquifer recharge zone, that site is assigned a low score for this element.

Pollinator Habitat

This element utilizes the "Pollinator Habitat" shapefile, which catalogs locations within City of Austin parks. No existing aquatic sitesconta in a known pollinatorhabitat, but if one is loc ated within 250 feet of the site, a low rating is assigned for this element for the Community/Regional Pool classification.

Wetlands

This data was prepared by the City of Austin Watershed Protection Department. According to the metadata, "wetland CEFs (Critical Environmental Features) were digitized from construction plans, environmental assessments, and City of Austin staff field observations. Features were digitized into a versioned SDE (Spatial Database Engine) database in Arc Map. Wetland delineation may be determined through a process of negotiation with land development interests and generally reflect the most protective arrangement that could be obtained. Additionally, 'fringe wetlands' were drawn using a standard 2' width on eitherside of a waterway."

If an aquatic site contains a wetland, it is assigned a low rating for this element. If a wetland is located within 250 feet, it is assigned a low rating for only the Community/Regional Pool classification.

Rock Outcrop

A rock outcrop is an above ground rockformation formed from bedrock. The presence of a rock outcrop makes development more difficult and costly. These formations may also be site features to be preserved.

The presence of a rock outcrop on site leads to a low rating (high rating for no rock outcrop). If one is located within 250 feet of the site, the site will receive a high rating for Neighborhood Pool and a low rating for Community/Regional Pool.

Springs

The metadata for the "Spring" shapefile states that the data was "digitized from construction plans, environmental assessments and City of Austin staff review and field observations." The data refers to a spring, areas of seepage, and some artificial features.

Springs were not located on any of the existing sites, but a low score is assigned to a site with a spring within 250 feet for the Community/Regional classification.

Environmental Sensitivity

While this layer was provided by COA GIS, it was created using two layers prepared by other agencies. According to the metadata for the shapefile, "This layer is the result of the union of two layers, CAPCOG's (Capital Area Council of Govemments) Vacant Land Inventory and TxDOTs (Texas Department of Transportation) G ISST(Geogra phic Information System Screening Tool). Any 1km grid with a SUM of greater than 30 was deemed to be highly environmentally sensitive. Any parcel with an improvement value of less than $1 / 20$ th of the land value wascategorized as vacant. This way environmental sensitivity could be viewed in the context of a given parcel's development status."

Environmental sensitivity is measured Low, Medium, or High with a higher rating assigned to a lowerlevel of sensitivity.

Soil Suitability

This data provided by the City of Austin, but the soil survey was completed by the Natural Resources Conservation Service (NRCS). According to the metadata, "The information was prepared by digitizing maps, by compiling information onto a planimetric correct base and digitizing, or by revising digitized
maps using remotely sensed and other information. This data set consists of georeferenced digital map data and computerized attribute data. The map data are in a soil survey area extent format and include a detailed, field verified inventory of soils and miscellaneous areas that normally occur in a repeatable pattem on the landscape and that can be cartographically shown at the scale mapped.... The soil map units are linked to attributes in the National Soil Information System relational database, which gives the proportionate extent of the component soils a nd their properties."

The suitability of each soil type was verified using tabular data provided by NRCS. The suitability of soils ranged from "Not Limited" to "Very Limited" with most sites scoring somewhere between. Not Limited received the highest rating and Very Limited received the lowest.

7.3.7 Regulatory (Table 7.10)

This criterion establishes ratings based on Regulatory requirements associated with each element. These elements are important because Regulatory requirements can cause delays, increase costs, or even prevent site development altogether.

Aood Zones

Flood zones represent flood prone areas where development should be avoided. For all floodplain designations (25,100 , or 500), a low rating wasassigned if the site waslocated within the designated area and a high rating was assigned if it was not. If a site was outside of a floodplain but one was located within 250 feet, the site was assigned a high rating for Neighborhood Pool and a low rating for a Community/ Regional Pool.

- 25-Year Floodplain
- 100-Year Floodpla in
- 500-Year Floodplain

Zoning Designation

This element assigns ratings based on the zoning classification assigned to an aquatic site. Lower score are assigned to classifications that may be more limiting to potential development.

Sub-Chapter E (Distance from Road)

Sub-Chapter E consists of a series of regulatory requirements (see Chapter 2). This element is concemed with the requirement fora shaded sidewalk to the entrance to the aquatic site. Accordingly, this element assigns a rating based on the distance from the road in feet to the entrance of the aquatic facility. A greater distance results in a lower score.

Erosion Hazard Review Buffer

The metadata for the shapefile states, "This dataset was created to show all areas where an erosion hazard zone a nalysis will be required for a ny proposed development. THIS LAYER DOES NOTREPRESENTA CALCULATED EROSION HAZARD ZONE. It simply indicates whether or not an erosion hazard zone a nalysis is needed per LDC."

If part of an aquatic site contains an Erosion Hazard Review Buffer, the site is assigned a low rating for this elements. If an Erosion Hazard Review Buffer is located within 250 feet of the site, the site is assigned a low rating for only the Community/Regional classification. A high rating is assigned if no buffer is present on or near the site.

		产	$\begin{aligned} & \bar{o} \\ & \dot{\circ} \\ & \dot{4} \end{aligned}$	$\begin{aligned} & \bar{\circ} \\ & \stackrel{\circ}{\mathrm{o}} \\ & \dot{4} \end{aligned}$	$\begin{aligned} & \bar{\circ} \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	$\stackrel{\sim}{\square}$	\bigcirc	$\left\|\frac{\pi}{z}\right\|$		$\begin{aligned} & \bar{\circ} \\ & \dot{\partial} \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$	$\begin{aligned} & \bar{\circ} \\ & \vdots \\ & \dot{2} \end{aligned}$	$\begin{aligned} & \bar{\circ} \\ & \dot{\partial} \\ & \dot{4} \end{aligned}$	$\left\|\begin{array}{l} \bar{\circ} \\ \vdots \\ \stackrel{\rightharpoonup}{4} \end{array}\right\|$	$\begin{aligned} & \bar{\circ} \\ & \stackrel{\circ}{4} \\ & \dot{4} \end{aligned}$	－	$\left\|\begin{array}{l} \bar{o} \\ \dot{a} \\ \dot{4} \end{array}\right\|$	$\stackrel{\sim}{9}$	$\left\|\begin{array}{l} \bar{\circ} \\ \frac{\partial}{4} \\ \dot{4} \end{array}\right\|$	$\stackrel{\square}{\square}$	$\left.\begin{aligned} & \overline{0} \\ & \dot{\partial} \\ & \dot{4} \end{aligned} \right\rvert\,$	$\stackrel{\rightharpoonup}{4}$	$\begin{aligned} & \bar{\circ} \\ & \stackrel{\rightharpoonup}{4} \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$	$\begin{aligned} & \bar{\circ} \\ & \stackrel{\circ}{4} \\ & \stackrel{7}{2} \end{aligned}$	$\left\|\begin{array}{l} \bar{\circ} \\ \stackrel{\partial}{4} \\ \stackrel{\rightharpoonup}{2} \end{array}\right\|$	$\left\|\begin{array}{l} \bar{o} \\ \dot{\circ} \\ \dot{2} \end{array}\right\|$	$\begin{aligned} & \bar{\circ} \\ & \vdots \\ & \dot{4} \end{aligned}$	8		$\begin{aligned} & \bar{\circ} \\ & \vdots \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$	$\begin{aligned} & \bar{\circ} \\ & \vdots \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$	O	$\stackrel{\rightharpoonup}{\mathrm{b}}$		\％	－
	$\begin{array}{\|c} \hline 8 \\ \frac{8}{2} \\ \frac{0}{5} \\ \boxed{8} \\ \hline \end{array}$	$\stackrel{y}{\sim}$	$\stackrel{y}{\nu}$	$\stackrel{\stackrel{\bowtie}{\sim}}{\sim}$		o	2	$\left\lvert\, \begin{aligned} & \frac{\pi}{z} \\ & \hline \end{aligned}\right.$	$\stackrel{\hookrightarrow}{\sim}$	$\stackrel{y}{\sim} \mid$	$\stackrel{y}{\sim} \mid$	$\stackrel{\Perp}{\square}$	$\stackrel{\stackrel{4}{\nu}}{ }$	$\stackrel{\stackrel{y}{\nu}}{\sim}$	2	$\stackrel{\smile}{¢}$	2	$\stackrel{\sim}{\sim}$	2	$\stackrel{\Perp}{\square}$	$\stackrel{\smile}{¢}$	$\stackrel{\sim}{\sim}$	$\stackrel{\unlhd}{\nu}$	$\stackrel{\unlhd}{\square}$	$\stackrel{\breve{\nu}}{ }$	$\stackrel{\square}{\square}$			$\stackrel{\Perp}{\sim}$	\pm	2		$\stackrel{\Perp}{*}$	2	$\stackrel{\sim}{\sim}$
		$\stackrel{\substack{¢}}{\sim}$	2	2	2	$\stackrel{\wedge}{\sim}$	2	2	2	2	2	2	2	2	$\stackrel{\square}{2}$	2	2	2	2	2	2	2	$\stackrel{\circ}{2}$	2	2	2	2	$\stackrel{1}{2}$	2	2	2	2	2	2	2
		2	$\overline{0}$ 0 0 0 0 0	$\begin{aligned} & \overline{0} \\ & \stackrel{U}{U} \\ & 0 \\ & 0 . \end{aligned}$			2	2	$\stackrel{3}{2}$			$$	2	2	$\left.\begin{aligned} & \overline{0} \\ & 0.0 \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & i \end{aligned} \right\rvert\,$	$\left\|\begin{array}{c\|} \overline{0} \\ 0 \\ \vdots \\ U \\ 0 \\ 0 \\ \sim \end{array}\right\|$	$\left\|\begin{array}{l} \overline{0} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \sim \end{array}\right\|$	$\stackrel{\circ}{2}$	$\overline{0}$ 0 0 0 0 0 in	$\stackrel{\circ}{2}$	2	2	2	2	$\begin{aligned} & \overline{0} \\ & \stackrel{y}{E} \\ & \dot{U} \\ & 0 \\ & \dot{0} \end{aligned}$	$\stackrel{\sim}{\sim}$	2			$\begin{gathered} \overline{0} \\ : 0 \\ \vdots \\ \hline \end{gathered}$	2			2	2
		$\left\|\begin{array}{c} c \\ 0 \\ \stackrel{e}{訁} \\ \frac{0}{v} \end{array}\right\|$	$\begin{gathered} \stackrel{5}{0} \\ \stackrel{0}{5} \end{gathered}$	$\begin{aligned} & \stackrel{5}{0} \\ & \stackrel{0}{5} \end{aligned}$								$\begin{aligned} & \check{\nwarrow} \\ & \stackrel{y}{\circ} \\ & \hline \end{aligned}$			$\left.\begin{array}{\|c\|c} c \\ 0 \\ \stackrel{0}{5} \end{array} \right\rvert\,$	$\left\|\begin{array}{c} c \\ 0 \\ \stackrel{5}{5} \end{array}\right\|$	$\left.\begin{aligned} & \text { ¢ } \\ & \stackrel{0}{5} \end{aligned} \right\rvert\,$	$\begin{aligned} & \text { cion } \\ & \stackrel{0}{5} \end{aligned}$	$\begin{aligned} & \text { cix } \\ & \stackrel{0}{5} \end{aligned}$		$\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{5}{0} \\ & \stackrel{0}{5} \end{aligned}$		$\begin{aligned} & \text { ᄃ10 } \\ & \stackrel{0}{5} \end{aligned}$	$\begin{aligned} & 5 \\ & \stackrel{5}{5} \\ & \stackrel{0}{5} \end{aligned}$	$\frac{\text { y }}{5}$	$\begin{aligned} & \substack{0 \\ 0 \\ \\ \hline} \end{aligned}$	®		$\begin{aligned} & \stackrel{\nwarrow}{0} \\ & \substack{5 \\ \hline} \end{aligned}$	$\begin{gathered} \stackrel{ᄃ}{0} \\ \end{gathered}$	解		$\begin{aligned} & \stackrel{5}{0} \\ & \stackrel{5}{5} \end{aligned}$	¢
		2	2	2	2	$\stackrel{3}{2}$	2		8	2	2	2	2	2	2	2	2	2	$\stackrel{1}{2}$	$\stackrel{1}{2}$	2	2	2	2	2	2	2	2	$\begin{aligned} & \overrightarrow{9} \\ & \stackrel{\rightharpoonup}{u} \\ & \hline \end{aligned}$	$\stackrel{1}{2}$	2		2	$\stackrel{\circ}{2}$	\％
		2	$\stackrel{y}{\succ}$		$\stackrel{\stackrel{\imath}{\gtrless}}{\sim}$	$\stackrel{\circ}{2}$	2	2	2	2	2		2	2	$\stackrel{\sim}{\sim}$			2		2	2	2	2	2	2	$\stackrel{\smile}{\bullet}$	2	$\stackrel{1}{2}$	$\stackrel{\stackrel{4}{\sim}}{\sim}$	2	$\stackrel{\ominus}{\sim}$		2	2	2
		$\stackrel{\circ}{\mathrm{m}}$	～	$\stackrel{\sim}{\sim}$	\％	$\stackrel{?}{\mathrm{~m}}$	in	封	$\stackrel{\circ}{0}$	\％	$\stackrel{\sim}{N}$	$\stackrel{1}{1}$	$\stackrel{\circ}{\stackrel{0}{m}} \underset{-}{1}$	品	$\stackrel{\infty}{\square}$	岃	$\underset{\sim}{\sim}$	ก	$\stackrel{\text { d }}{4}$	$\stackrel{\text { ® }}{\sim}$	$\stackrel{\square}{0}$	ํ	迤	ถ	$\stackrel{\square}{1}$	ㄱ	กָ	앙	¢	$\stackrel{\sim}{\sim}$	\％	$\stackrel{0}{0}$	$\stackrel{0}{m}$	～	N
	$$	a	$\left\|\sum_{i}^{n}\right\|$	\sum_{i}^{0}	$\underset{i}{n}$	$\left\|\begin{array}{c} 0 \\ \underset{\sim}{\dot{n}} \\ \dot{\sim} \end{array}\right\|$	$\left\|\begin{array}{c} \underset{\sim}{2} \\ \dot{N} \\ \dot{\omega} \end{array}\right\|$	\bigcirc		a	\bigcirc	\sum_{i}^{0}	\sum_{i}^{0}	\sum_{i}^{0}	$\left\|\begin{array}{c} n \\ i \end{array}\right\|$	$\left\|\sum_{i}^{n}\right\|$	$\left\lvert\, \begin{aligned} & n \\ & \lambda_{i} \\ & \hline \end{aligned}\right.$	$\begin{gathered} 0 \\ \stackrel{n}{\dot{N}} \\ \stackrel{N}{\omega} \end{gathered}$	\sum_{i}^{0}	$\sum_{i_{i}^{\prime}}^{0}$	\sum_{i}^{0}	$\sum_{\mathrm{c}_{\mathrm{L}}^{0}}^{0}$	\sum_{i}^{0}	$\stackrel{M}{u n}$	－	$\sum_{i}^{n} \mid$	$\sum_{i}^{n} \mid$	$\underset{3}{N}$	$\begin{aligned} & z_{1}^{2} \\ & \stackrel{4}{n} \end{aligned}$	$\underset{i}{n}$		$\stackrel{\sim}{\Upsilon}$	a	\sum_{i}^{0}	$\sum_{\text {a }}$
	域	2	\bigcirc	2	2	2	2	2	$\stackrel{\unlhd}{\square}$	누N	$\stackrel{0}{2}$	$\stackrel{\unlhd}{\square}$	$\stackrel{\leftrightarrow}{\square}$	2	$\stackrel{\measuredangle}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{\square}{1}$	$\stackrel{\circ}{2}$	O－1	2	$\stackrel{\smile}{\circlearrowright}$	구	2	2	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{¢}$	2	2	\＆	$\stackrel{\smile}{\stackrel{\bullet}{\sim}}$	$\stackrel{0}{\sim}$	¢	2	2	$\stackrel{\sim}{\sim}$
	気	$\stackrel{3}{2}$	\bigcirc	$\stackrel{\sim}{7}$	∞	2	2	$\stackrel{\circ}{2}$	$\stackrel{\breve{\nu}}{\sim}$	$\stackrel{\circ}{2}$	2	$\stackrel{\breve{0}}{\sim}$	운	$\stackrel{3}{2}$	\bigcirc	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	2	\％	2	$\stackrel{\sim}{0}$	2	2	2	$\stackrel{\square}{\circ}$	$\stackrel{\sim}{\stackrel{\sim}{\sim}}$	2	2	2	in	$\stackrel{\sim}{N}$	O	2	2	$\stackrel{\circ}{2}$
	¢	2	กั	$\stackrel{\sim}{7}$	∞	2	2	2	2	2	2	$\stackrel{\unlhd}{\square}$	2	2	¢	\％	$\stackrel{\sim}{1}$	2	－	2	2	2	$\stackrel{1}{2}$	2	$\stackrel{\circ}{\circ}$	$\stackrel{\smile}{\bullet}$	2	2	2	ㅇN	ㄴNN	2	2	2	$\stackrel{\circ}{2}$
		$\left\|\begin{array}{c} 0 \\ 0 \\ \frac{0}{\tilde{n}} \\ \hline i \end{array}\right\|$		$\begin{aligned} & \overrightarrow{0} \\ & \stackrel{0}{n} \\ & \stackrel{0}{0} \end{aligned}$				$\begin{array}{\|c\|} \hline \frac{2}{0} \\ 00 \\ \hat{\imath} \\ \vdots \\ \vdots \\ \hline 0 \\ \hline \end{array}$			嫘		u 0 0 0 0 0 0 0 0 0		$\stackrel{\text { \％}}{0}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & \sum_{2}^{n} \\ & \stackrel{\pi}{0} \\ & \stackrel{0}{0} \\ & \frac{0}{2} \end{aligned}$		$\begin{aligned} & N \\ & \stackrel{N}{\Sigma} \\ & \hline \end{aligned}$		By			$$		－	$\begin{array}{\|c\|} \hline 0 \\ 0 \\ 0_{0} \\ 0 \\ \\ \hline \end{array}$	会	号			

Resource Buffers

The metadata from the "Biologic Resource Buffer" shapefile reads, "This dataset represents CEF buffers identified during the development review process since 1995. Prior to 1995, data is either unavailable or lost. CEF buffers were digitized from construction plans, environmental assessments, and City of Austin staff field observations into a versioned SDE database using ArcMap. Actual buffers size for any particular feature may be determined through a process of negotiation with la nd development interests, and may differ from standard dimensions stated in the La nd Development Code."

The data refersto a seriesofenvironmentalc haracteristics, ma ny of which a re included in the Environmental criterion. This data is included because the buffers are more regulatory in nature, and much of the data is not duplicated in anotherelement. The highest rating was assigned to a site that did not include resource buffers, and the lowest rating was assigned to those that did include a buffer. If a buffer was outside of the pool site but within 250 feet, it wasassigned a high rating for Neighborhood Pool and a low rating for a Community/Regional Pool.

Watershed Regulation Areas

The metadata for this shapefile states that "this layer represents the watershed regulation areas inside the extent of the City of Austin's jurisdiction. The Barton Creek Watershed Ordinance introduced stream set back requirements that created five water quality zones with enumerated development restrictions for each one." The Watershed Regulation a reas are assigned ratings from high to low in the following order: Urban, Suburban Development, Water Supply Suburban, Water Supply Rural, Barton Spring Zone.

Water Quality Zones

According to the metadata, this shapefile includes "critical water quality zone \& water quality transition zone buffers for all creeks within the City of Austin jurisdiction. Guidelines for buffer c reation are detailed in chapters 25-8-92 through 25-8-93 of the C ity of Austin La nd Development Code (LDC)."

Sites with critical water quality zones are assigned the lowest score, while sites with transitional zones are assigned a middle score. Sites with no buffer zones are assigned the highest rating. If a critical or transitional zone is located within 250 feet of the aquatic site, the associated lower rating is assigned to the Community/Regional classification.

Endangered Species

According to the U.S. Fish and Wildlife Service, "Critical habitat is a term defined and used in the Act. It is a specific geographic area(s) that contains features essential for the conservation of a threatened or endangered species and that may require special management and protection. Critical habitat may include an area that is not currently occupied by the species but that will be needed for its recovery."

This element identifies the location of critical habitat of two species of salamander, the Jollyville Plateau Salamander (threatened) and the Austin Blind Salamander (endangered). If the aquatic site includes critical habitat, it is assigned a low rating (no critical habitat yieldsa high rating).

Bathhouse

This element indicates whether an aquatic site has a bathhouse. The site is assigned the highest rating if a bathhouse is present and a middle rating if a restroom is present but no bathhouse. The lowest rating is a ssigned if neither is present on the site.

Restrooms (Distance from Pool)

This element measures the distance between an aquatic site the nearest restroom in feet. The highest rating is assigned where the pool has a restroom within the site area. The lowest rating is assigned to an a quatic site over 150 feet from a restroom.

7.3.8 Operations (Table 7.11)

The Operations criterion measures conditions related to the maintenance, access, and operation of the existing aquatic sites. These elements were evaluated by BCI as part of the Aquatic Assessment and were updated by PARD maintenance staff.

Maintenance Staff/ Equipment Ease of Access

This element evaluates the ease of equipment access by staff. A low rating is assigned where staff must descend into a pit. A higher rating is assigned if equipment is easier to access.

Simplicity of Equipment

A lower rating is assigned for gravity sand requiring more valves. A filter with a high rate that is easier to operate receives a higher rating.

Equipment Condition/ Replacement Cost

This element refers primarily to replacement cost with lower ratings for the gravity sand filters, which typically have cast iron valves and piping. Higher ratings are assigned for high rate sand with newer PVC piping.

Lawn/ Landscaped Area

Larger landscaped areas require more maintenance and receive a lower rating.

Employee Safety Measures

Refers prima rily to facilities that require staff to enter a pit, which receives a lower rating.
Tables 7.2 through 7.11 present the data foreach of the eight criteria, one table for each of the criteria plus tables for two individual elements (Health/Safety issues and Attendance/Pool Capacity). The data foreach element is provided by pool site. This data wasconverted to scoresforeach element based on the distribution of values shown in the Site Suitability Ratings Key (Table 7.1).

Table 7.11: Operations

Operations					
Pool Name	Equipment ease of access	Simplicity of Equipment	Equipment Condition / Replacement Cost	Lawn/Landscape Area	Employee Safety Measures
Balcones	Poor	Good	Fair	Good	Fair
Bartholomew	Good	Excellent	Excellent	Fair	Fair
Big Stacy	Good	Fair	Poor	Poor	Good
Brentwood	Fa ir	Good	Fair	Good	Fair
Canyon Vista	Poor	Poor	Poor	Excellent	Poor
Civitan	Poor	Good	Poor	Fa ir	Good
Colony Park	NA	NA	NA	NA	NA
Deep Eddy	Poor	Poor	Poor	3	Fair
Dick Nichols	Fair	Good	Good	Fair	Good
Dittmar	Poor	Good	Good	Poor	Good
Dottie J ordan	Fa ir	Good	Fair	Poor	Fair
Dove Springs	Good	Good	Fair	Poor	Good
Gamison	Fair	Poor	Poor	Fair	Fair
Gillis	Poor	Poor	Poor	Good	Poor
Givens	Poor	Poor	Poor	Fair	Poor
Govalle	Good	Good	Poor	Fair	Good

Operations					
Pool Name	Equipmentease of access	Simplicity of Equipment	Equipment Condition / Replacement Cost	Lawn/ Landscape Area	Employee Safety Measures
Kennemer	Good	Good	Fa ir	Fair	Good
Little Stacy	Fair	Good	Fa ir	Poor	Good
Mabel Davis	Poor	Poor	Poor	Fair	Poor
Martin	Poor	Poor	Poor	Good	Poor
Metz	Fair	Good	Good	Poor	Good
Montopolis	Poor	Poor	Poor	Fair	Poor
Murchison	Good	Good	Good	Fair	Good
Northwest	Poor	Poor	Poor	Fair	Poor
Parque Zaragoza	Fair	Good	Good	Fair	Good
Patterson	Good	Good	Good	Fair	Good
Ramsey	Fair	Good	Good	Fair	Good
Reed	Good	Good	Good	Fair	Good
Rosewood	Poor	Poor	Poor	Good	Poor
Shipe	Fair	Good	Fair	Fair	Good
Springwoods	Good	Good	Good	Poor	Good
Walnut Creek	Fair	Poor	Poor	Fair	Fair
West Austin	Good	Good	Good	Good	Good
Westenfield	Good	Excellent	Excellent	Poor	Excellent

legend

Equipment ease of access-Low rating for a pit - higher rating for easier access
Simplicity of Equipment-Lower rating for gravity sand requiring more valves-higher rating of easierto operate
Equipment condition/replacement cost-prima rily replacement cost with the lower ratings for gravity sand filters, which typically have cast iron valves and piping a nd higher ratings for high rate sand with newer PVC piping
Landscape area - Larger landscaped areas require more maintenance and receive a lowerrating
Employee Safety - Pools where staff must enter a pit receive a lower rating

7.4 Process and Weighting

The scoresforeach element were generally assigned a rating of 0 to 10 based on the range of possible results. Some elements conta ined quantitative data, while some elements were qualitative in nature. Quantitative elements were given rating of 0 to 10 based on the range of results, and any number from 0 to 10 was a possible rating for these elements. For example, a population of over 12,000 within a 20 -minute walk was given a rating of 10 , and aspopulation decreased, the rating dec lined until the population wasbelow 2,000 , a rating of 0 .

Qualitative elements typically had fewer than 10 possible scores; however, the range of options were distributed through the rating scale. Some elements had only two options, receiving either 0 or 10 points. In all cases, a higher score was given to a result that was more desirable for redevelopment or improvement of the site. The Site Suitability evaluation for each of the 34 aquatic facility sites is location in Appendix A.

7.4.1 Element Importance and Scoring

The eight criteria each contained between 5 and 12 elements, for a total of 78 elements considered as part of this a nalysis. Each element was assigned an Importance Factor, measured as a percentage, so that the collective total of the elements within each criterion add up to 100%. The Importance Factors were assigned based on the level of importance that each element should have with regard to decisions to improve or redevelop a site. The Importance Factors can be seen in Table 7.12.

The Consultant and the PARD Technical Team (TT) evaluated each of the elements to determine the Importance Factor that should be assigned. Public input from the Needs Assessment, this Master Plan, and the SWM 512 engagement, which took place between the Assessment and the Master Plan, was utilized as part of the determination of these Importance Factors. Every effort was made to ensure that the Importance Factors were assigned to represent how applicable and critical the element would be to future development decisions, because the purpose of this process was to evaluate the sites as objectively as possible. For example, the location of a site within the floodplain is much more important than the zoning designation, because a floodplain will greatly limit the possibility for development and is much more difficult to change than a zoning designation. (Also, none of the zoning designations at these sites placed significant barriers to development.)

Table 7.12: Importance Factors

Criteria/ Elements	Importance Factor	
	Neighborhood	Community/ Regional
Demographics		
20-Minute Walk		
Children	10\%	3\%
Seniors	5\%	2\%
Total Population	15\%	5\%
Median Household Income	5\%	3\%
Population Growth (5-Year)	5\%	3\%
Social Needs and Conditions Index	15\%	10\%
10-Minute Drive		
Children	3\%	10\%
Seniors	2\%	6\%
Total Population	6\%	15\%
Median Household Income	3\%	5\%
Population Growth (5-Year)	3\%	8\%
Capacity (based on surface area)	8\%	10\%
Attendance (5-YearAvg.)	10\%	10\%
Attendance/Capacity Ra tio	10\%	10\%
Demographics Total (Out of 100)	100\%	100\%
Site Conditions		
Entrance/Drive	10\%	5\%
Parking Spa ces (Count)	10\%	14\%
Site Area (Acres)	40\%	50\%
Grade Constraints	0\%	14\%
Health, Safety, Welfa re Issues	20\%	5\%
Designated Historic al Features (Count)	10\%	6\%
Historic al Structure (Pool House or Pool)	10\%	6\%
Site Total (O ut of 100)	100\%	100\%
Location		
Heavily Trafficked Roadways (Traffic C ounts)	5\%	5\%
Distance from Road	5\%	5\%
Railroads	5\%	5\%
Flight Zones (Noise Level - Decibels)	5\%	5\%
Competing Elements (Count)		
Other PARD Aquatic Fac ilities (20 Min. Walk)	20\%	8\%
Service Area Overlap (20 Min. Walk)	20\%	8\%
Private Aquatic Facilities (20 Min. Walk)	7\%	3\%

Criteria/ Elements	Importance Factor	
	Neighborhood	Community/Regional
Programs By HOA/Private Orgs. (20 Min. Walk)	3\%	2\%
Symbiotic Elements (Count)		
Schools/Daycare Providers (5 Minute Walk)	10\%	19\%
Recreation Centers (5 Minute Walk)	10\%	20\%
Other Park Amenities (5 Minute Walk)	10\%	20\%
Location Total (Out of 100)	100\%	100\%
Accessibility		
Adjacent Roadway Class	5\%	5\%
Transit Access	15\%	15\%
Pedestrian Connectivity		
Walkway/Trails	15\%	15\%
Crosswalks	5\%	5\%
Traffic Controls	5\%	5\%
Overall	15\%	15\%
Bic ycle Connectivity		
Lanes	10\%	10\%
Trails (Count)	15\%	15\%
Overall	15\%	15\%
Accessibility Total (Out of 100)	100\%	100\%
Infrastructure		
Electric Service Provider	10\%	10\%
Electric Service (Phases)	5\%	10\%
Water (Dist. to 4" Line in ft.)	10\%	20\%
Reclaimed Water (Dist. in ft.)	10\%	15\%
Wastewater (Dist. to 8" Sewer Line in ft.)	5\%	15\%
Pool Condition	25\%	10\%
Bathhouse Condition	20\%	10\%
Storage Conditions	10\%	5\%
COATN Senvice Area (Wi-Fi)	5\%	5\%
Infrastructure Total (Out of 100)	100\%	100\%
Environmental		
Trees (Number)		
2"to 19" in Diameter	3\%	5\%
19 " to 24" in Diameter	3\%	5\%
Over 24" in Diameter (Including Heritage)	11\%	15\%
Grow Zones	13\%	10\%
Aquifer Recharge	13\%	13\%
Pollinator Habitat	6\%	5\%
Wetlands	13\%	10\%
Rock Outcrop	13\%	13\%
Springs	13\%	13\%
Environmental Sensitivity	6\%	5\%
Soil Suitability	6\%	5\%
Environmental Total (Out of 100)	100\%	100\%
Regulatory		
Flood Zones		
25-Year Floodplain	20\%	20\%
100-Year Floodpla in	10\%	10\%
500-Year Floodpla in	5\%	5\%
Zoning Designation	5\%	5\%

Criteria/ Elements	Importance Factor	
	Neighborhood	Community/Regional
Sub-ChapterE (Distance from Road in ft.)	5%	5%
Erosion Hazard Review Buffer	9%	10%
Resource Buffers	20%	20%
Watershed Regulation Areas	10%	10%
WaterQuality Zones	3%	5%
Endangered Species	3%	5%
Bathhouse	5%	2%
Restrooms (Distance from Pool in ft.)	5%	2%
Regulatory Total (Out of 100)	100%	100%
Operations		
Maintenance Staff/Equipment Ease of Access	20%	20%
Simplicity of Equipment	20%	20%
Equipment Condition/Replacement Cost	30%	30%
Lawn/Landscaped Area	20%	20%
Employee Safety Measures	10%	10%
Operations Total (Out of 100)	100%	100%

The process required that the importance of each element be compared with each of the elements within the criterion. Because the number of elements varies between criteria, the Importance Factor of an element cannot be compared to the Importance Factor of an element of a different criterion. The rating for each element (between 0 and 10) was then multiplied by the Importance Factor to determine an Element Score. The sum of Element Scores within each criteria represents the Criterion Score. Each criterion has a possible score of between 0 and 100.

7.4.2 Criteria Weighting

Once the scores for each criterion were determined, weights were required for the eight criteria. Like the elements they contain, the criteria varied in significance to a future decision process. For example, the Demographics criterion was assigned a higher weight than Operations, because the quantity and social characteristics of the population within the service area of a facility greatly impacts its potential level of use, while improvements to operations can be accomplished through the replacement or relocation of equipment.

7.4.3 Pool Classification Potential

Both the Importance Factors for elements and the weights for the criteria were modified to two improvement scenarios: Neighborhood Pool and Community/Regional Pool. The creation of these two scenarios was necessary because the site requirements vary significantly between a small neighborhood pool and the largerpooltypesthat serve a widerarea. Fora Neighborhood Pool, the number of children within a 20-minute walk is more important than the numberwithin a 10-minute drive because users of these pools are much more likely to live nearby. Most of the users of a Community or Regional pool will a mive by automobile, placing a greater demand for parking. Additionally, a larger pool requires a larger site to accommodate additional a menities.

7.4.4 Sustainable Aquatic Systems

The Site Suitability Ranking Process is a critical component to the Sustainable Aquatic Systems in Austin. The criteria and elements, along with their corresponding weights and Importance Factors, are designed to promote both sustaina bility of operationsand equity in servic esfor aquatic systems in Austin. Ac cordingly, the process placesthe highest weight on the demographicsthat represent the users of the pools, including those most in need of services. The remaining seven criteria focus on the aquatic site itself, evaluating a multitude of elements that impact the long-term sustainability of a site for aquatic services, which are evaluated both at the neighborhood level (Neighborhood Pool) and multi-neighborhood or regional level (Community/ Regional Pool).

7.5 Analysis

The scores for each criterion by pool can be seen in Table 7.14, Site Suitability Ranking Summary. This table also shows the weights assigned to each criterion underthe two scenarios. The Site Suitability Rating Score for each pool site can be seen below the scores by criterion, including separate scores for the Neighborhood and Community/Regional scenarios. The Site Suitability Rating Score represents the summation of the criteria scores multiplied by the criteria weights. Scorescould theoretic ally range from 0 to 100 . Actual results ranged from 42 to 81 for Neighborhood Pool and 46 to 71 for Community or Regional Pool.

The processforcalculating the Site Suita bility Ranking Score ispresented in Table 7.13, which uses Balc onesas an example. The Criteria Scores are calculated by pool site using the associated elements (sum of Element Scores). The data for the individual Element Scoresislocated in AppendixA. The Site Suitability Ranking Score represents the sum of the eight (8) Weighted Scores, which ascalculated by multiplying the Criteria Scores by the Weight. The process is applied twice, once for Neighborhood Pool and once for Community or Regional Pool. Separate calculations are required because the Weights and Criteria Scores vary depending on the potential pool size.

Table 7.13: Site Suitability Ranking Sc ore

Balcones	Neighborhood Pool					Community or Regional Pool				
Criteria	$\begin{aligned} & \text { \# } \\ & \text { O } \\ & \mathbf{0} \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \text { U } \\ & .0 \\ & \text { 을 } \\ & \hline \end{aligned}$	\%	aıos рฆцб!әм	$\begin{aligned} & \text { \# } \\ & \frac{0}{010} \\ & \mathbf{1 1} \end{aligned}$			[
Demographics	20\%	\times	40	$=$	8	20\%	x	58	=	12
Site Conditions	20\%	x	90	$=$	18	20\%	\times	86	$=$	17
Location	15\%	x	73	$=$	11	15\%	\times	48	$=$	7
Accessibility	10\%	x	47	$=$	5	10\%	x	45	$=$	4
Infrastructure	20\%	x	53	$=$	11	10\%	x	58	$=$	6
Environmental	5\%	x	78	$=$	4	10\%	x	77	$=$	8
Regulatory	5\%	x	95	$=$	5	12\%	x	92	$=$	11
Operations	5\%	x	52	$=$	3	3\%	x	29	$=$	1
Sum of 8 Weighted Scores	100\%				63	100\%				66

Using the scores from this site suita bility process, the pool sites were then ranked (a ga inst each other) by pool type. Sitesthat cannot be redeveloped asa largerpool, because they are too small (lessthan an acre) orare located within the floodplain (25 or 100 year), were not ranked for the larger pool types. These rankings are shown in the bottom three rows of the Site Suitability Ranking Summary (Table 7.14). These rankingswere used to determine the Capital Improvement Schedule and the names of the pools are color coded accordingly on Tables 7.14 and 7.15. The Capital Improvement Schedule can be seen by location on Figure 7.2 with the colors matching Tables 7.14 and 7.15. The Site Suitability Ranking Summary for Neighborhood Pools only can be seen in Table 7.15.

Table 7.14: Site Suitability Ranking Summary

[^5] have minimum of 4.0 acres (5 acres minimum prefered)
NA - Not applic able due to location in a 25 or 100 year flood plain or site size is less than 1 acre Therofore the poolc annot be

| Color Coding Legend - Capital Improvement Schedule | $0-5$ years |
| :--- | :--- | :--- |

* 2014 Aquatic Needs Assessment Critical Pools - likely to fail within 5 years.

Table 7.15: Site Suitability Ranking Summary for Neighborhood Pools

Aquatic Facilis Critenia	Weight		$\begin{gathered} \frac{3}{0} \\ \frac{6}{2} \\ \frac{0}{0} \\ \frac{5}{8} \end{gathered}$	$\begin{gathered} \vec{c} \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{array}{\|l} \mathrm{D} \\ 0 \\ 0 \\ \text { en } \\ \mathrm{d} \\ \hline \end{array}$		$\stackrel{*}{5}$			$\begin{array}{\|c} \hline \stackrel{y}{\mathbf{a}} \\ \text { 尃 } \\ \hline \end{array}$								$\begin{array}{\|l} 2 \\ \tilde{6} \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \\ & \hline \mathbf{E} \\ & \hline \end{aligned}$	$\begin{array}{\|c} \mathbf{N} \\ \mathbf{y} \\ \hline \end{array}$		$\left\|\begin{array}{c} \frac{5}{0} \\ \frac{0}{5} \\ \frac{5}{\Sigma} \\ \Sigma \end{array}\right\|$					$\begin{aligned} & \text { च } \\ & \mathbf{U} \end{aligned}$		$\begin{array}{\|l\|l} \stackrel{*}{0} \\ \frac{2}{\hbar} \end{array}$				
Demographics	20\%	40	68	68	55	32	49	41	46	52	59	69	61	61	61	50	72	39	56	52	56	68	46	56	68	60	38	22	73	66	34	36	34	51
Stite Conditions	20\%	90	96	72	69	52	48	74	94	92	84	92	84	44	80	67	76	21	90	85	81	90	94	82	54	62	44	33	73	27	96	92	23	56
Location	15\%	73	69	47	67	70	38	56	72	75	74	74	82	55	73	62	62	50	64	67	48	53	67	71	44	61	68	65	59	66	70	78	53	27
Accessibility	10\%	47	47	42	56	58	61	70	66	35	31	38	42	37	45	50	40	28	48	51	54	53	58	28	46	58	54	33	62	45	22	28	48	68
Infrastructure	20\%	53	100	56	48	37	43	55	61	65	58	62	62	32	49	40	56	44	48	60	52	51	56	47	38	55	48	45	54	36	69	60	66	78
Environmental	5\%	78	91	83	91	81	98	77	78	85	80	91	91	78	93	79	93	76	90	89	85	88	72	97	89	84	91	75	77	87	76	94	90	72
Regulatory	5\%	95	89	98	88	74	91	76	85	96	60	87	92	81	98	95	95	92	95	94	99	94	95	95	51	90	100	59	90	87	90	95	96	93
Operations	5\%	52	79	41	58	36	41	23	62	50	48	54	35	30	26	51	60	50	26	30	56	26	66	26	62	66	62	66	30	56	60	35	70	78
SIE SUITABIITY	100\%	63	81	61	62	50	51	58	69	68	64	71	69	49	64	57	66	42	63	65	62	65	67	61	53	62	54	43	65	52	64	63	50	60
RANKING		14	1	21	17	30	29	24	3	5	11	2	3	32	11	25	7	34	14	8	17	8	6	21	27	17	26	33	8	28	11	14	30	23
Color Coding Legend - Capital Improvement Schedule									0-5	years						$6-10$	years						11-20	ars						$20+\mathrm{y}$	years			

Figure 7.2: Capital Improvement Schedule (Based on the Site Suitability Ranking Process)

The aquatic sites were also ranked for Community Pools (see Table 7.16) and Regional Pools (see Table 7.17). Community Pool rankings were limited to sites 1.1 acres (the size of the smallest existing Municipal PoolSpringwoods) or larger. Regional Pool rankings were limited to sites of 4 acres or more. The top ten aquatic sites for Community Pools and top five for Regional Pools are listed below.

Table 7.16: Community Pool Ranking

Aquatic Facility Ste		$\begin{aligned} & y \\ & \underline{y} \\ & 0 \\ & \underline{y} \\ & \cline { 1 - 1 } \end{aligned}$	$\begin{aligned} & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ס } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \lambda \\ & \text { 안 } \\ & \text { in } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\underline{n}$$\underline{y}$$\underline{u}$$\underline{y}$$\underline{y}$$\underline{u}$	$\begin{aligned} & \frac{1}{0} \\ & E \\ & \text { E } \\ & \hline \end{aligned}$	Dove Springs	$\begin{aligned} & \text { c } \\ & \hline 0 \\ & \text { 首 } \\ & 0 \\ & 0 \end{aligned}$	n	$\begin{aligned} & 0 \\ & \hline \overline{10} \\ & \text { O } \\ & 0 \end{aligned}$	Mabel Davis	$\begin{aligned} & \frac{c}{n} \\ & \frac{\pi}{\Sigma} \end{aligned}$	$\begin{aligned} & N \\ & \sum \\ & \sum \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{n}{0} \\ & \frac{0}{9} \\ & 0 \\ & 0 \\ & 2 \end{aligned}$		$\begin{aligned} & \text { y } \\ & 0 \\ & 3 \\ & \vdots \\ & 0 \\ & z \end{aligned}$	n0000oㄹ릉	$\begin{aligned} & \underline{U} \\ & \text { dy } \\ & u \\ & \mathbf{H} \\ & \underline{E} \\ & \vdots \end{aligned}$
Criteria	Weight																		
Demographics	20\%	58	74	58	53	49	61	58	71	63	53	71	52	54	64	44	59	50	56
Site Conditions	20\%	86	92	26	39	82	28	63	66	70	23	79	31	30	45	36	86	35	78
Location	15\%	48	53	49	46	54	54	59	67	57	43	39	64	46	46	52	55	45	60
Accessibility	10\%	45	44	56	69	65	35	37	42	44	50	45	51	51	53	55	27	22	28
Infrastructure	10\%	58	100	57	66	60	67	72	72	60	61	57	69	64	57	61	54	67	58
Environmental	10\%	77	79	88	78	79	83	92	88	92	73	89	86	83	88	71	97	77	94
Regulatory	12\%	92	48	53	76	78	91	77	92	48	45	94	83	94	94	94	59	62	90
Operations	3\%	52	79	58	23	62	50	54	35	26	51	26	30	56	26	66	26	60	35
SIE SUITABILTY RATING SCORE	100\%	66	72	52	58	66	57	64	70	61	47	67	58	56	61	56	63	49	66
RANKING		4	1	17	12	5	14	7	2	9	19	3	13	14	10	16	7	18	5

1. Facilities which are of appropriate minimum site size and are not in the 25 -year or 100 -year floodplain. Ranked with 1 as the top or highest score. Community Pools must have a minimum size of 1.1 acres (2 acres minimum preferred).

Table 7.17: Regional Pools Ranking

Aquatic Facility Site									
Criteria	Weight								
Demographics	20\%	58	74	49	71	63	71	59	56
Site Conditions	20\%	86	92	82	66	70	79	86	78
Location	15\%	48	53	54	67	57	39	55	60
Accessibility	10\%	45	44	65	42	44	45	27	28
Infrastructure	10\%	58	100	60	72	60	57	54	58
Environmental	10\%	77	79	79	88	92	89	97	94
Regulatory	12\%	92	48	78	92	48	94	59	90
Operations	3\%	52	79	62	35	26	26	26	35
SIE SUITABIUTY RATING SCORE	100\%	66	72	66	70	61	67	63	66
RANKING		4	1	5	2	8	3	7	5

1. Facilities which are of appropriate minimum site size and are not in the 25 -year or 100-year floodplain. Ranked with 1 as the top or highest score. Regional Pools must have minimum of 4.0 acres (5 acres minimum preferred).

Community Pool

- Bartholomew
- Gamison
- Mabel Davis
- Balcones
- Walnut Creek (tied)
- Dick Nichols (tied)
- Northwest (tied)
- Dove Springs(tied)
- Givens
- Montopolis

Regional Pool

- Bartholomew
- Gamison
- Mabel Davis
- Balcones
- Walnut Creek (tied)
- Dick Nichols (tied)

7.6 Implementation

The Site Suitability Ranking for a pool is intended to be used as a tool in the decision-making process once conditions at a facility deteriorate to the point where continued operation in its current state is no longer susta inable. The Site Suita bility Ranking will be an essential tool once the facility reachesthe Fa ulty Operation state ora 50% deviation from the ba seline (see Chapter 6 for details on Aquatic Facility Susta inability). These tools must be used in conjunction with community engagement in order to determine the future of any aquatic facility in Austin.

Once a threshold is reached, this process provides an important resource to reference and employ when determining the future of aquatic opportunities in Austin. The results of this process supply a detailed data-based evaluation of an aquatic site, which provide the City of Austin and the Parks and Recreation Department with an objective measurement of both the performance and sustainability of an existing or potential aquatic facility.

This page intentionally blank.

Thischapterpresentsthe recommendationsthat follow from the analysesand public engagement conducted throughout the Aquatic Assessment, SWIM 512, and Master Plan development process. This chapter provides details of recommended changes to facilities, operations, policies, partnerships, and programs in Austin. It is important to reiterate that this master is a living document that needs to be reviewed and revised (every 5 years) to respond to changing demographics and urban growth pattems of the City of Austin. Additionally, the implementation of these recommendations should include follow-up public input processes to ensure that any proposed changes meet the aquatic needs of the local community.

8.1 A Sustainable and Equitable Aquatic System

Chapter 5 outlined the characteristics of the various classifications of proposed aquatic facilities, including Neighborhood Pools, Community Pools, Regional Aquatic Centers, an IndoorCommunity Pool, a nd a Premier Indoor Aquatic Center. Section 8.2 describes how these pool classifications would be applied to the longterm vision of a more sustainable aquatic system that a lso addresses equity in the provision of a quatic facilities and services.

Chapter 6 outlined the components of a sustainable aquatic system within five topical areas: Facilities; Budget/ Cost; Staffing; Maintenance/Operations; and Programming. Chapter 6 then provided the components of mea suring a sustaina ble system within a frameworkofa Susta ina bility Model with recommendationsforba seline establishment in the areas of water use, attendance, annual maintenance repairs, and demographics. Actual cost per patron was recommended as a future measurement. It is recommended that this procedure be implemented immediately to work in conjunction with the Site Suitability Ranking to begin the process of determining the short- a nd long-term disposition of each aquatic facility.

No public pools may be decommissioned absent an affirmative vote of the Austin City Council. Prior to Council decision regarding the potential initiation of a decommissioning process, Council must receive a staff presentation and conduct a public hearing.

8.2 Aquatic Facilities and Distribution

8.2.1 City-Wide System Description

Based upon the need to develop a more susta inable and equitable system and the desires of the public as engaged throughout the process, Figure 8.1 demonstrates potential future aquatic service areas. This map,

Aquatic Service Areas - 20 Year Plan, identifies the location of facilities for a system of aquatic facilities of varying sizes and market areas.

Figure 8.1 also shows areas to be served by proposed pools, based on the underserved areas identified in Chapter 2. The number one area identified in the process of developing the master plan is the Northeast quadrant of the City. The community of Colony Park has had a long history of pursuing a partnership with the City of Austin for an aquatic facility. Based on input received, this community haslobbied for an aquatic facility for several decades. The outcome of this petition has not yet been realized and has had an adverse effect on the relationship between the City of Austin and this community. On a brighter note, the City of Austin Neighborhood Housing and Community Development Department, in partnership with the Colony Park neighborhood and the City of Austin Parks and Recreation Department (PARD), recently adopted the Colony Park District Park Master plan as part of the Colony Park Susta ina ble Community Initiative (CPSCI). The plan for the 93 acre Colony District Park, which includes the Tumer-Roberts Recreation Center and Multi Use Facility, outlines the development of major park improvements, which include multi-purpose sports fields and other park amenities. More importantly, the master plan integrates an aquatic facility into the development of the park.

According to the proposed aquatic system, many existing pools would be upgraded from their current classification of Neighborhood or Municipal Pools to Community Pools or Regional Aquatic Centers. An upgrade to these new classifications does not necessarily indicate that the physical size of the pool will be expanded. In many cases, the upgrades include additional a menities, such as waterslides, zero depth entry, or interactive play features, but no increase in the size of the pool. Instead, the existing size of the pool wasa positive element (see Chapter 7) for determining sites to upgrade because expansion of the pool would not be required.

Regional Aquatic Centers

Pools would be upgraded to Regional Aquatic Centers at the following sites:

- Balcones
- Bartholomew (completed in 2014)
- Ganison
- Northwest
- Deep Eddy (servesasa unique regional facility)

Community Pools

Pools would be upgraded (ordeveloped) to Community Pools at the following sites:

- Dick Nichols
- Dittmar
- Dove Springs
- Givens
- Montopolis
- Springwoods
- Walnut Creek

Neighborhood Pools

The gaps between Regional and Community facilities will be filled by the existing Neighborhood Pools. The Site Suitability Ranking Processand Sustainability Processes should be utilized to determine whethera pool should be renovated/replaced, consolidated with a nother pool, ordecommissioned. Ideally, a proactive approach will be applied in which a Neighborhood Pool will not be decommissioned until an adjacent facility within the same market area is developed or upgraded, avoiding further gaps in services.

When a Neighborhood Pool is determined to be unsustainable and is scheduled for decommissioning, PARD should work closely with the impacted neighborhoods to determine an altemate use. Pools must
not be abandoned in place asthey will become an eyesore, detracting from the neighborhood and the park (also a safety hazard). The pool must be demolished and an altemative use developed in its place, based upon the park and community needs. The pool locations could become athletic fields or courts, pic nic facilities, playgrounds, skate parks, or other uses.

New Aquatic Facilities

The following areas have been identified as potential locations of new aquatic facilities, based on public input and the a nalysis of this master plan. Of primary importance is the addition of an aquatic facility in the Northeast quadrant of the City, which contains the Colony Park/Lakeside communities.

Proposed new aquatic facilities:

1. Colony Park/Lakeside Community - To serve this underserved area (See Table 8.1 for preliminary ranking of Colony Park asa site fora new aquatic facility.)
2. Northeast (new) - To serve an underserved area (east of I-35 and north of Highway 290)
3. Northwest (new) - To serve as a long-term replacement of Canyon Vista. Canyon Vista Pool is leased from Round Rock ISD and subject to removal aspart of potential school expansion. In addition, the market area warrants a larger pool and more features than Canyon Vista can offer on its limited footprint
4. Southeast (new) - To serve this growing population, including some areas with high social needs
5. Southwest (new) - To serve this growing area of Austin. There are several HOA pools in the area, but the continued growth and crowding at Dick Nichols indicates a strong need.

The Site Suitability Ranking Process, presented in Chapter 7, wasapplied to the potential Colony Park site, and the results can be seen in Table 8.1. Much of the infrastructure has not yet been built for the planned aquatic facility at thisloc ation. Accordingly, some elements including the entire operations category were omitted from the analysis. This site's score will likely increase as infrastruc ture is added at the park, since infrastructure represented its lowest scoring criteria. The site received high scores for several other c riteria.

Aquatic Facility Stie			$\begin{aligned} & \text { 늗 } \\ & \text { N } \\ & \text { 르́ } \\ & \text { 응 } \\ & \hline \end{aligned}$
Criteria	Facility Potential	Weight	
Demographics	Neighborhood	20\%	57
Site Conditions	Neighborhood	20\%	88
Location	Neighborhood	15\%	80
Accessibility	Neighborhood	10\%	45
Infrastructure	Neighborhood	20\%	25
Environmental	Neighborhood	5\%	81
Regulatory	Neighbornood	5\%	84
Operations	Neighborhood	5\%	N/A
SIIE SUTABIITY RATING SCORE	Neighborhood	100\%	62
RANKING	Neighborhood		17

8.2.2 New Indoor Facilities

The location of the Premier Indoor Facility has not yet been determined; however, the process of selecting a locations should undergo a complete public engagement process, and potential sites should be subjected to the Site Suitability Ranking Process identified in Chapter 7 . Figure 8.1 illustrates a potential location for the facility based on a centrallocation with access to major roads.

A second proposed indoor facility would be a Community Indoor facility to serve the southem portion of the City. Potential locations are Gamison or Mabel Davis. Mabel Davis has surfaced as a favorable site if the previous use of portions of the site as a landfill does not restrict further development. This issue should be furtherresearched. Partnershipswith private organizationsand public a gencies(including Austin Independent School District and other educational institutions) should be considered as part of the development of both of these indoor facilities.

Figure 8.1: Aquatic Service Areas-20 Year Plan

8.2.3 Existing Facility Recommendations

Table 8.2, Aquatic Facility Recommendations, provides a summary of the facility recommendations in this plan. More specific detail can be found in Appendix E (Individual Pool Recommendations and Costs). The City should also refer to the Aquatic Facilities Needs Assessment Appendix I for more detail on specific improvements that need to be made to each facility in the interim. Table 8.1 identifies the following:

- Proposed facility category
- Recommendations for the pool, buildings, and site
- Recommended timeframe for the improvements (0-2 years, 3-5 years, 6-10 years, and 11-20 years)
- Budget costs for the pool, deck, pool house, pump building, and site
- Construction Cost Subtotal
- Total Project Cost with Owner Costs (including engineering and design, 2% for art, permitting, CIP inspections, PARD Project Management, etc.)

8.2.4 Capital Cost Estimates

Table 8.2 identifies a total project cost of just over $\$ 57$ million for the new facilities recommended to fill service area gaps and for the new centralized aquatic maintenance facility. The table also identifies a total of all project costs at just over $\$ 193$ million, if the City were to improve and upgrade all of its current facilities and add the new facilities.

Realistic a lly, the City should consolidate some of itsolderand lowerranking pools (based on the Site Suita bility Ranking Process), which are close to other facilities, within a floodplain, or rank lower for other reasons. The long-term reduction in the number of Neighborhood Pools by ten pools would reduce the total cost to a pproximately $\$ 152$ million.

Several major contributing factors lead to the high capital costs, inc luding:

- The age of facilities, leading to the need for total replacement of the pool, pool house, filtration system, and pool deck for many pools
- Requirements for Silver LEED Certification, which increase construction and initial development costs, but should lead to energy savings and reduced operational costs in the long run
- Upgrades to the utility connections to include minimum 4" water lines, 8 " sanitary sewers, and fire hydrants
- Stormwater detention and quality control measures
- Requirements for restrooms and showersat all pools (currently some facilities have no restrooms at the pool)
- The need to provide larger pool houses with family restrooms/gender neutral restrooms, improved office space, and concessions in larger facilities at every facility
- Sub-Chapter E requirements for shaded walks a nd bicycle access from the right-of-way to the pool
- Other regulatory and project management costs

8.3 Austin's Unique Aquatic Facilities

The City of Austin has three very unique and iconic year-round outdoor swimming facilities in Barton Springs Pool, Deep Eddy Pool, a nd Big Stacy Pool. Barton Springs was not included in the a nalysis in this Master Plan process as it has its own master plan in place. All three pools should continue to be updated and remain open for the foreseeable future.

8.3.1 Barton Springs Pool

The Barton Springs Pool Master Plan identifies the pool and its infrastructure: "The Pool is, of course, the centerpiece of the park and its reason to exist. The Pool we know today was built in the late 1920's with the
construction of two dams a c ross Ba rton Creek that still exist, creating nea rly two a cres of pool water surface. When it was built, the Pool captured the waters of Eliza Spring and the Main Spring, but the 1975 bypass tunnel diverted Eliza's waters. So today, except when flooding overtops the upstream dam, the Main spring is the primary source of water for the Pool. It emerges from fissures in the exposed rock of the aquifer, just to the west of the diving board. Under non-flood conditions, all of the creek water is diverted around the Pool through the bypass tunnel." ${ }^{1}$

The City of Austin website identifies that the pool itself measures two acres in size and is fed from underground springswith a n average temperature of 68-70 degrees, id eal foryear-round swimming. Barton Springs attracts a diverse crowd of both Austin residents and visitors and has seen record setting numbers of visitors nearing 800,000 in recent years.
"The Springs serves as home to the endangered Barton Springs Salamander, and is listed as a federally protected habitat. The pool is closed to the public every Thursday to allow for the vigorous and methodical cleaning methods required to help maintain the pool area for wildlife and guests alike. Depths of the pool range from 0 ' to 18 ' with surrounding grassy a reasforpatronsto lounge upon. Adjacent to the poolbathhouse is Splash!, an educational exhibit were patronscan leam about the history a nd biology of Ba rton Springs a nd the Edwards Aquifer which feeds it." ${ }^{2}$

On January 15, 2009, City Council passed a Resolution adopting the "Barton Springs Pool Master Plan: Concepts for Preservation and Improvement." Barton Springs Pool was not included in the Site Suitability Rating Process because it has a separate master plan. Therefore, it was outside of the scope of services for this project.

8.3.2 Deep Eddy Pool

The historic Deep Eddy Pool was first constructed in 1915 and is the oldest public swimming pool in Texas. It began asa swimming hole in the Colorado River, according to the Friends of Deep Eddy website. Like Barton Springs, Deep Eddy is a freshwater swimming pool. The water is cleaned out and replaced with fresh well water every day on a ltemating sides of the pool. The 600,000-gallon concrete pool is surround ed by grass a nd trees. The pool has averaged over 150,000 users per yearfor the past several years.

The Friends of Deep Eddy website describes the pool as follows: ${ }^{3}$
"Deep Eddy Pool is a historic, man-made swimming pool in Austin, Texas, United States. Deep Eddy is the oldest swimming pool in Texas and has bathhouse built during the Depression-era, by the Works Progress Administration. The pool began as a swimming hole in the Colorado River, became a resort in the 1920s, and is today a popularswimming pool operated by the City of Austin.

Deep Eddy began simply as a swimming hole in the Colorado River that flows through Austin. Cold springs rose from the river banks and people swam in the river where a large boulder formed an eddy. In 1915, A.J. Eilers, Sr. bought the land surrounding the swimming hole a nd built the concrete pool. The pool served as the centerpiece of a resort, the Deep Eddy Bathing Beach, which featured cabins, camping, and concessions. Lorena's Diving Horse was one popular attraction. As seen in historic photographs, a ramp led to a 50 foot tall diving platform overthe pool'sdeep end from which the horse and rider would dive. Other pool amenities included a zip line across the pool and a tall slide, while other attractions included a diving baby and a Ferris wheel.

In 1935, the City of Austin bought the property for $\$ 10,000$. Two weeks after the purchase, a massive flood on the Colorado River destroyed the bathhouse and other improvements, and filled the pool with mud and debris. The Works Progress Administration rebuilt the bathhouse a nd the pool opened as a public park in July 1936.

Over time, the city has put the property to a variety of uses. While the pool continues in operation, the city separated the westem edge of the land as a park and playground named after A.J. Eilers. The

[^6]city also converted Deep Eddy's bathhouse to altemative uses including a long senvice as a wild life science exhibit. In 2004 for safety reasons, the city removed the 70 -year old, 50 -foot tall cottonwoods that surrounded the pool.

Deep Eddy Pool is listed asa historic landmark on the National Register of Historic Places and has been the inspiration of variousworks of art. Texas musician, Jimmie Dale Gilmore wrote the song 'Deep Eddy Blues' about the pool and the nearby bar, the Deep Eddy Cabaret."

Site Suitability Rating

Ranked 24 out of 34 in the Neighborhood Pool category. The site also ranks 12th in the Community Pool category out of 18 sites. Criteria leading to its low ranking include:

- Demographics: low number of people within walking distance; low Social Needs and Conditions Index; higher median household income; and low population growth
- Location: service area overlap to other pools; no schools, daycare, or recreation centers in the area
- Environmental: low soil suitability
- Regulatory: located in 100-year floodplain
- Operations: poor rating for maintenance staff/equipment ease of use, simplicity of equipment, equipment condition/repair cost, and lawn/landscaped area to maintain. These conditions have worsened since the rankings were done with some well pumps not functioning properly and well water not being suitable for swimming, causing the pool to be closed.

Only the operations scores can be improved through capital upgrades. However, this pool functions more as a regional attraction rather than as Neighborhood Pool, making those ratings less important. In addition, Deep Eddy is a recognized City of Austin landmark and iconic to the fabric of the City. The year-round facility is recognized by the Aquatic Division of PARD as a prominent aquatic facility whose operation and function are a top prionty. Its location, while leading to a lowerscore, is fundamental to the success of the pool.

8.3.3 Big Stacy Pool

Big Stacy Pool was built in 1936 by the Works Progress Administration (WPA). The historic bathhouse is still in use, and new restrooms and showers have been added in recent years. In winter, the pool water is heated by water from an Artesian Well 2,000 feet below the surface. The pool currently operates as a Neighborhood Pool and is a 4,000 square foot rectangular shape (40^{\prime} by 100^{\prime}) with depth from $3^{\prime}-6^{\prime \prime \prime}$ to $10^{\prime}-0^{\prime \prime}$. Big Stac y has a veraged over 66,000 visitors per year, higher than all of the Neighborhood Pools.

Site Suitability Rating

Ranked 21 out of 34 pools in the Neighborhood Pool category. The size of the site does not allow for expansion to a Community or Regional facility.

- The main criteria that contributed to its lower ranking include:
- Location: service area overlap; lack of schools or recreation centers nearby; closeness to a road
- Accessibility: low pedestrian and bicycle connectivity; lack of traffic controls
- Operations: low score for equipment condition and landscaped area to mainta in

The accessibility and operations factors can be improved to increase the ranking through the recommendations in this Master Plan. As a unique facility, the Aquatic Division of PARD recognizes the cultural and social attributes that Big Stacy Pool brings to the Austin Community. Its function is a priority to remain in operation.

8.3.4 Cultural and Historic Context

As with many American cities in the early 20th century, zoning regulations and development codes were created and adopted as master plans throughout the country. Austin was no exception. These plans and zoning codes reshaped the social and infrastructure pattem of Americ an cities. In early J a nuary 1928, the City of Austin Council adopted the 1928 Master Plan. The adoption outlined specific improvements undertaken to create a comprehensive program of 'real city building' that would create the Austin we know today. Included in the 1928 Master Plan was the formal creation and development of 'Parks and Play Grounds' for the City of Austin. Included in the 1928 master plan was the proposed spacing of 'play grounds' at $1 / 2$ mile radius and identified the Barton Springs Pool as an important recreational element within the City of Austin. The 1928 master plan document was influential in prescribing the makeup of recreation within the City of Austin.

The earliest documentation of public pools within the City of Austin occured shortly after the plan was approved, in the early 1930's. This is evident from newspaper clippings announcing the purchase of a swimming pool site by City Counc il for the 'Negro' community. See Figure 8.2.

Figure 8.2: Rosewood Pool Articles

These article clippings represent what is now known as Rosewood Park which today conta ins the Rosewood Pool facility. The 1931 Parks and Recreation report documents the purchase of a nother property expressly for the use of 'Mexicans' residents of the City of Austin. See Figure 8.3.

Figure 8.3: Zaragosa Park Article
A very important addition to the Recreation Department during 1931 was the acquisition of Zaragosa Park for the Mexicans. This park contains 9.52 acres located in the eastern part of the city, and when fully developed will be one of the most attractive parks in the city. There are two concrete tennis courts, which are also used as dance pavilions, a band stand, comfort stations and a full-sized athletic field located on this park.

It is important to note, that Rosewood and Zaragoza pool sites are the first pools designed and build expressly to serve the segregated population of the Austin community. See Figure 8.4.

Figure 8.4: Excerpt from the 1928 Master Plan

By the end of the 1930's, the City of Austin managed ten (10) pools for recreation purposes. Those pools include, Rosewood, Zara goza, West Austin, Metz, Stacy (Big), Stacy Wading Pool, Shipe and Palm pools. The Palm pool site is no longer in operation. Also included are Barton Springsand Deep Eddy. Deep Eddy having been developed privately began to be managed by the City of Austin in the early 1930's. Also, of note is that the majority of these pools were constructed in conjunction with the Works Progress Administration (WPA) during the great depression.

As the City of Austin expanded in population and area, additional pool facilities were designed and constructed. During the 1940's only one (1) additional pool, Ramsey Pool was added to the facility list. The 1950's decade experienced a nother building boom of pool facilities. A total of six (6) pools were added to the pool facility inventory. Those include Northwest, Brentwood, Patterson, Givens, Govalle and Reed pools. Of these facilities, Northwest and Givens represent the first 50 yard and 50 meter pools for the system. Included at these large pool facilities were diving boards. This design and build ing of these pool facilities continued to be influenced by the standard segregation practice of this period. Pools were being built 'equally' to serve white and non-white residences.

During the 1960's, four pools were added, those include St. J ohn, Bartholomew, Kealing and Civitan. Of these pools, St. John and Kealing are no longer operating. Bartholomew pool also contained 50 meter lap lanes and a diving well and represents the first desegregated aquatic facility for the City of Austin.

During the 1970'sthe following poolswere designed and built: Kennemer, Murchishon, Montopolis and Martin Pools. During thistime frame, Dottie J ordan, not designed or built by the City of Austin, began to be managed by the Park and Recreation Department. The 1980's sa w a notherdesign and building boom for pool facilities.

These pools include Balcones, Walnut Creek, Mabel Davis, Gamison and Dittmar. Mabel Davis and Walnut Creek are representative of larger 50 meter pools including a diving well component. Canyon Vista was also built during the 1980's. This pool is sited on Round Rock Independent School District (RRISD) grounds but is maintained and managed by the Parks and Recreation Department. The 1990's saw the design and construction of two new pool facilities. Those are Dick Nichols and Dove Springs. Both of these pools offer the potential for 50 meter swim lanes. See Figure 8.5.

To understand the development pressuresassociated with the aquatic master plan document, consideration must be given to the social framework and historic al context that the existing aquatic system developed from. Socially, most if not all of the existing pools represent a strong community identity. Many of the city's public pools have served multiple generations of the same families over the decades. During the course of developing the master plan, countless individuals throughout the system expressed cherished memories of activitiesat these pools. "I lea med to swim here", "we use to hang out at the pool all summerlong", "I lea med to swim here and now my grandchildren are also leaming to swim here" are all sentiments expressed by residents. Pools, where currently located, are cherished community elements that provide a sense of place and identity for residents of all ages.

Although Rosewood and Zaragosa pools were explicitly built to serve segregated communities, these pools became just ascherished by their remaining heritage familiesasotherneighborhood pools, and now serve as strong points of community pride. At a largersc ale, the existing system representsthe embodiment of physical and social distance that was supported and practiced by local jurisdictions. The development of pools for specific 'races' was a practice that established pools not for the greater good or for ease of management, but rather to strengthen an ideology detrimental to equitable growth and recreational opportunities for all citizens.

As the City of Austin grew, the proposed siting of pools as a neighborhood amenity became a much more difficult proposition. Operating and maintenance of those facilities became increasingly difficult and complex. Fig 8.5 graphically depicts the spread of pools further from the center chronologically. It exemplifies how the system grew as a 'promised' a menity without an equitable and susta inable framework.

To address the cultural and historical importance of the existing pool system, an understanding of modem historic preservation concepts must be provided. Historic Preservation is a planning tool that guides the rehabilitation and redevelopment of historic buildings, structures and sites. Understanding the architectural and/or historical significance of a resource is key in a planning process. Evaluation of significance is based on the Secretary of the Interior's National Register C riteria for Evaluation. A historic resource must be associated with an important historic context and retaining historic integrity of those features necessary to convey its significance. Following are some considerations for how historic preservation can be factored in as a component of the Aquatics Master Plan.

The threshold for a historic resource is 50 years. Once a resource, such as a building, object or site, nears 50 years old, it is prudent to evaluate its architectural and/or historical significance as a way of understanding how best to preserve/adapt/re-purpose the resource forfuture use. There are several pools that are currently officially designated historic resources as either individual structures or as part of a historic district.

In the absence of a full historic context, which would entail a formal evaluation of the architectural and historical significance of all Austin pools, following are several considerations:

- There are several pools that are formally designated as historic resources:
- Barton Springs Pool (City of Austin Historic Landmark, State Antiquities La ndmark, National Register of Historic Places)
- Deep Eddy (City of Austin Historic Landmark, National Register of Historic Resources)
- Shipe Pool (Park and Pool are contributing resources to the Hyde Park Local Historic District and National Register Historic District)
- West Austin Pool (Park and Pool are contributing resources to the West Line National Register Historic District)

Figure 8．5：PARD Pools Locations and Dates

PARD Pools：

Locations and Dates

$\begin{array}{ll}\text { 國 } & 1920 ' \mathrm{~s} \\ \text { 国 } & 1930 ' \mathrm{~s} \\ \text { 皿 } & 1940 ' \mathrm{~s}\end{array}$

Legend

$\begin{array}{lll}1950 ' s & \text { 1980＇s } \\ \text { 1960＇s } & \text { 1990＇s } \\ \text { 1970＇s } & \text { City of Austin Parks }\end{array}$

27 November 2017 hardya and may not have been prenared for or and may not have been prepared for or be suitable for legal，engineering，or surveying purposes．It does not represent
an on－the－ground survey and represents only an on－the－ground survey and represents only
the approximate relative location of property the approximate relative location of property
boundaries．This product has been produced by the Parks and Recreation Department for the sole purpose of geographic reference．
No warranty is made by the City of Austin No warranty is made by the City of Austin
regarding specific accuracy or completeness regarding specific accuracy or completenes． Miles

- Most pools more than 50 years old, assuming that they mainta in historic integrity, would be eligible for historic designation for their role as a civic asset within the community, not unlike a school or library.
- Further, there are historic poolsthat would meet additional criteria related to unique design orbecause the history of the pool has additional historic al factors to consider. These include:
- Rosewood Pool and Parque Zaragoza Pool were the first public municipal pools for the African American and Mexican American communities, respectively, during the Jim Crow era of segregation.
- Many of the pools developed during the 1930s are reflective of the New Deal era of development of Austin. Collectively, these pools, along with parks, civic buildings, roads and bridges, reflect an importantera of development.
- There may be social history, significant events, or association with a historic figure that the department has not documented that have occurred at a pool.

Historic preservation, as a planning tool, can guide the preservation and redevelopment of pools. It is expected the build ings and sites adapt overtime to accommodate ADA accessibility, susta inability a nd new innovations. The goal is to maintain the historic integrity. It is important to note that all pools have community value regardless of its age, Aquatic facilities are important assets for the greater community. Further, historic preservation is one of many planning tools that can be utilized in a planning process along with equity, sustainability, and accessibility. These factors are identified, expressed and are a key component of the aquatic masterplan document and have been weighted as part of this planning process.

The fact that a pool is historic does not remove the facility from being a candidate for decommissioning, but can certainly be an important factor in the decision-making process identified in the aquatic master plan document. Furthermore, if a pool was decommissioned, consideration should be given to documenting the struc ture aspart of the history of the site development of a park and if possible, adapting the pool structure or coping for a new use. There are many examples where historic elements such as pools have been repurposed for newer uses while maintaining historic and social context. The plans for the newly designed Govalle Pool for example, provides for the outline of the original pool as part of the design of the new pool. The outline is created by scoring pattems and embedded text, providing visitors to the site an idea of where the original pool was located in relationship to the new facility. Another example has been achieved for the newly designed Shipe Pool. The historic integrity of this site was kept intact by utilizing the existing pool area for the location of the new pool. The area where the small wading pool will be decommissioned is being proposed as a play area for small children within the outline of the old pool. Architecturally, both Shipe and Govalle respond to the local community in design of the bathhouse structures. This provides an example of adapting new codes and regulations to existing sites while maintaining historic integrity and social sensitivity. The designs for both of these pool facilitieshonors the cultural values of the communities they serve. Historically, they represent how modem preservation methodscan honor the past while providing for the needs and wants of future generations and managing entities.

8.4 Aquatic Programming Recommendations

8.4.1 Opportunities

- With the SWIM512 process and the vision of the City to renovate and add new aquatic facilities, the input about the need for more "teachable, swimmable" water in the new or renovated facilities will be valuable.
- The success experienced with collaborative efforts such as SwimATX could serve to encourage new and creative cooperative efforts.
- Should the City pursue the concept of an Indoor Aquatic Center, attendance in year-round training, lifeguard and swim instruction will inc rease.
- Should the overall number of aquatic locations decrease, the emphasis on programming could be
less about quantities to cover programming needsat so many locations, to offering quality programs at fewer facilities. Staffing these programs would be more easily accomplished.
- Drowning statistics for minority children are growing in the United States. Collaborations with organizations like Colin's Hope, coupled with efforts from Austin Aquatics and Austin Fire Department and Austin-Travis County EMS, not only emphasize the need for Leam to Swim programs but also elevate public awareness of this tragic statistic and create a political environment for support of public pools and instruction. Model programs in Arizona and throughout the Southwest have proven successful and have received recognition nationwide.

8.4.2 Recommendations

- Utilize videos for parents to determine skill level for correct class placement for swim lessons
- Work with houses of worship, medical offices, and social services agencies to emphasize the need for drowning prevention programs and swim lessons
- Provide promotional materials to these non-traditional partners to get more children enrolled
- Continue to offerevening lessonsand consideroffering weekend lessonsto accommodate the needs of working parents who cannot get their kids to weekday swim lessons
- Automate pool rentals to reduce staff time related to these group uses
- Provide more "teachable" and "swimmable" water in any new facilities, including heating for early season lessons and active adult early moming programs
- Create new programs targeted to Active Adults and Seniors, such as Senior Water Aerobics, Post Mastectomy Aqua Classes, Kayaking, Paddleboarding, and balance and strength screenings programs
- Build on colla borative efforts, such asSwimATX, to provide more tra ining a nd employmentopportunities, particularly through expanded partnerships with local school districts
- Collaborate with other drowning prevention advocates to provide swim lessons and water safety opportunities for underserved families
- Place the focus on drowning prevention and safety as a necessary lifetime skill
- Offer private lesson opportunities to reta in talented instructors and meed customer needs

8.5 Operations, Use Agreements, and Partnerships

8.5.1 Opportunities

The PARD Aquatic Division could provide U.S. Coast Guard Approved Life Vests, which could be sponsored by local hospitals, doctors, and fratemal orders, such asthe Elks, etc. They could be printed with logos aspart of the sponsorship. Pools that provide these free Life Vests have seen a large decrease in the number of assists and rescues and an increase in participation by younger, inexperienced swimmers.

According to Recreation Management's 2017 State of the Industry Report, the number one planned program addition in public aquatic facilities is Special Needs Aquatic Programs, which would be offered through the Centralized Program Division. These programs are continuing to grow throughout the US. They have great potential for funding as well as partnerships with local organizations that support special needs programming. These programs also represent great grant potential from both govemment sources and nonprofit partnerships.

This page intentionally blank.

Table 8.2: Capital Improvement Schedule (See Appendix Efor More Detail)

		Recommendations			Timeframe				Costs						
Pool Name	Proposed Facility Category	Pool	Buildings	Ste	$\left\|\begin{array}{c} 0-2 \\ \text { Years } \end{array}\right\|$	$\left\|\begin{array}{c} 3-5 \\ \text { Years } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { 6-10 } \\ \text { Years } \end{gathered}\right.$	$\left\lvert\, \begin{array}{l\|} 11-20 \\ \text { Years } \end{array}\right.$	Deck	Pool with Filtation	Pool House	Pump House	Ste	Construction Cost Total	Total with Owner Costs (add $30 \%)^{1}$
Balcones	Regional	Replace completely as 25-yard Regional Pool	Majorrenovation	Expand parking; new driveway; stormwater		x			\$210,000	\$1,800,000	\$600,000	\$250,000	\$2,850,000	\$5,710,000	\$7,423,000
Bartholomew	Regional	New--No changes; opened in 2014													
Big Stacy	Neighbormood	Upgrade; no change in size; new deck	Renovate historic bathhouse; expand	Stomwater, ADA parking		x			\$40,500	\$800,000	\$250,000	\$10,000	\$1,400,000	\$2,500,500	\$3,250,650
Brentwood	Neighborhood	Replace completely; zero depth forwading pool	Replace pergola; addition for party/training room, office and fa mily restroom	Accessible parking; new utilities; stormwater		x			\$70,500	\$820,000	\$525,000	\$5,000	\$1,390,000	\$2,810,500	\$3,653,650
Canyon Vista	Neighborhood	Long-tem relocate asa Community Pool	Add bathhouse in interim	Accessible parking and access				\times	\$81,000	\$656,000	\$450,000	\$0	\$1,280,000	\$2,467,000	\$3,207,100
Civitan	Neighborhood	Replace both pools if warranted; consolidate and decommission with improvements at Montopolis	Add bathhouse	Accessible parking; new utilities; stomwater		\times			\$70,500	\$820,000	\$450,000	\$0	\$1,510,000	\$2,850,500	\$3,705,650
Dick Nic hols	Community	Minor changes; add features to pool	Add fa mily restrooms and party/training room	New utilities; stomwater			\times		\$75,000	\$1,980,000	\$250,000	\$25,000	\$1,390,000	\$3,720,000	\$4,836,000
Ditmar	Community	Replace completely; backwash holding tank in interim	Refurbish existing bathhouse; addition for family restroom, party/training room and concessions	Utilities; stomwater			x		\$135,000	\$1,400,000	\$400,000	\$25,000	\$1,820,000	\$3,780,000	\$4,914,000
Dotie Jordan	Neighborhood	Replace completely if possible (within floodplain)	Replace bathhouse	New utilities; stomwater				\times	\$70,500	\$820,000	\$450,000	\$50,000	\$1,700,000	\$3,090,500	\$4,017,650
Dove Springs	Community	Minoraddition to pool; add features	Add family restrooms and party/training room	New utilities; stormwater			x		\$120,000	\$2,120,000	\$350,000	\$25,000	\$1,790,000	\$4,405,000	\$5,726,500
Ganison	Regional	Renovate/expand pool house; replace pool; replace wading pool with family activity pool	Major renovation; expansion for family restroom; office	Expand parking; new utilities; driveway; stomwater	\times				\$210,000	\$2,800,000	\$800,000	\$250,000	\$3,480,000	\$7,540,000	\$9,802,000
Gillis	Neighbormood	Critic al condition; replace completely if waranted	Add a bathhouse	ADA parking and accessible path; new utilities; stormwater		\times			\$70,500	\$820,000	\$450,000	\$0	\$1,410,000	\$2,750,500	\$3,575,650
Givens	Community	Critic al condition; replace completely	Majorrenovation and expansion	Utilities; stomwater	\times				\$135,000	\$1,400,000	\$550,000	\$5,000	\$2,340,000	\$4,430,000	\$5,759,000
Govalle	Neighborhood	Currently being renovated--Not included in this analysis			x										
Kennemer	Neighborhood	Completely replace; backwash holding tank in interim	Renovate bathhouse; add fa mily restroom. first aid room restroom; first aid room	ADA parking and accessible path; new utilities; stormwater			\times		\$70,500	\$820,000	\$250,000	\$0	\$1,250,000	\$2,390,500	\$3,107,650
Litle Stacy	Wading pool	Add zero depth entry; candidate for decommissioning	Add restrooms	ADA parking and accessible path; new utilities; stormwater		x			\$14,400	\$300,000	\$450,000	\$0	\$1,570,000	\$2,334,400	\$3,034,720
Mabel Davis	Indoor-Regional	New Community Indoor Facility; backwash holding tank in interim	New Natatorium	Expand parking; driveway; lighting		\times			\$150,000	\$1,230,000	\$0	\$0	\$2,490,000	\$7,800,000	\$10,140,000
Martin	Neighborhood	Completely replace	Major renovation with addition	Restripe parking; accessible route; stomwater, parking lot lighting		x			\$70,500	\$820,000	\$225,000	\$0	\$1,950,000	\$3,065,500	\$3,985,150
Metz	Neighborhood	Long term replace if warranted	Major renovation and expansion	Utility connections; stomwater parking lot lights			\times		\$70,500	\$820,000	\$125,000	\$0	\$1,710,000	\$2,725,500	\$3,543,150
Montopolis	Community	Completely replace	renovate bathhouse; Add family restrooms, party/training room, and office	Expand parking; new utilities; stormwater	x				\$135,000	\$1,400,000	\$350,000	\$0	\$2,160,000	\$4,045,000	\$5,258,500
Murchison	Neighborhood	Completely replace	Major renovation; expansion for family restroom	New utilities; stormwater			x		\$70,500	\$820,000	\$275,000	\$20,000	\$1,230,000	\$2,415,500	\$3,140,150
Northwest	Regional	Large pool same size; replace wading pool with family activity pool	Major building renovation--No arger footprint	Stomwater detention; new utilities	\times				\$210,000	\$2,800,000	\$800,000	\$250,000	\$2,620,000	\$6,680,000	\$8,684,000
Parque Zaragoza	Neighborhood	Diffic ult to upgrade due to 25 -year floodplain; replace if warranted; good candidate for decommissioning	Current building condemned; new bathhouse if to continue	ADA parking; parking lot light; new utilities			\times		\$70,500	\$820,000	\$450,000	\$0	\$1,850,000	\$3,190,500	\$4,147,650

		Recommendations			Timeframe				Costs							
Pool Name	Proposed Facifity Category	Pool	Buildings	Ste	$\begin{gathered} 0-2 \\ \text { Years } \end{gathered}$	$\left\lvert\, \begin{gathered} 3-5 \\ \text { Years } \end{gathered}\right.$	\| 6-10	Years	$\left\lvert\, \begin{array}{l\|l\|} \hline 11-20 \\ \text { Years } \end{array}\right.$	Deck	Pool with Filtation	Pool House	Pump House	Ste	Construction Cost Total	Total with Owner Costs (add 30\%) ${ }^{1}$
Patterson	Neighborhood	New wading pool; replace main pool	New bathhouse; keep pumphouse with mural if possible	Utilities; stormwater, parking lot lighting				x	\$70,500	\$820,000	\$450,000	\$10,000	\$2,210,000	\$3,560,500	\$4,628,650	
Ramsey	Neighborhood	Maintain in operation until unsustainable; replace if wa manted	Replace bathhouse and pump house	ADA parking; stomwater, parking lot lighting				\times	\$70,500	\$820,000	\$450,000	\$0	\$1,850,000	\$3,190,500	\$4,147,650	
Reed	Neighborhood	Limited room for expansion/upgrade; replace pool if wa ranted	New bathhouse; repupose existing building	ADA parking and access; stomwater, parking lot light				\times	\$70,500	\$820,000	\$450,000	\$10,000	\$2,390,000	\$3,740,500	\$4,862,650	
Rosewood	Neighborhood	Pool recently renovated	New restroom being installed	Stormwater detention				x	\$57,000	\$1,734,000	\$521,000	\$0	\$1,750,000	\$4,062,000	\$5,280,600	
Shipe	Neighborhood	Currently being renovated--Not included in this a nalysis (See Govalle)			x											
Springwoods	Community	Minorchanges to pool, repair deck	Renovate bathhouse; add family restrooms	Expand parking; stomwater				\times	\$75,000	\$880,000	\$300,000	\$10,000	\$1,550,000	\$2,815,000	\$3,659,500	
Walnut Creek	Community	Completely replace/expand	Renovate and expand	New utilities; stormwater		x			\$135,000	\$1,400,000	\$350,000	\$0	\$2,300,000	\$4,185,000	\$5,440,500	
West Austin	Neighborhood	Remain as a small round pool until unsusta inable--No room for expansion	Add shade; storage; family restroom	ADA parking and access; stomwater; parking lot light				\times	\$40,000	\$300,000	\$450,000	\$0	\$1,390,000	\$2,180,000	\$2,834,000	
Westenfield	Neighbormood	Opened in 2014														
NeWSIIIS															Budget Figures	
Colony Park	To Be Determined	New				x									\$5,000,000	
Northwest (to replace Canyon Vista)	Community	New					x								\$5,000,000	
Southeast	Community	New					x								\$5,000,000	
Southwest	Community	New					x								\$5,000,000	
Premier Indoor	Premier Indoor	New				x									\$35,000,000	
Central Aquatic Maintenance Facility	Maintenance					\times								\$2,000,000	\$2,600,000	
															$\begin{array}{r} \$ 57,600,000 \\ \hline \$ 193,400,000 \\ \hline \end{array}$	

The Austin-Americ an Statesman Swim Safe program forAustin Kidsisa great exa mple of a partnership that has inc reased the accessibility and equita bility of swim instruction forc hild ren in need. These types of partnerships could add more program offerings without inc reasing the operating budget.

A world class indoor aquatic facility would certainly make Austin a destination for excellence in aquatics. It could attract local, state, national, and intemational teams and have a positive impact on the economic life of Austin. While considering this type of facility, the most popular a menities that will serve Austin's changing demographics should be considered. The latest programs, including competitive, diving, water polo, synchronized swimming, wall climbing, log rolling, kayaking, and surfing, would attract customers.

With partnerships in mind, the City of Austin could work with private businesses to develop an aquatic center by provid ing tax incentives, land leases, a nd other public/private partnerships with organizations such as USA Swimming. With the industries currently thriving in Austin, naming and sponsorships of such a property could be atta inable.

8.5.2 Pool Season Extension

The public engagement process indic ated a strong desire to extend the swim season, both extensions of the current summer season and more year-round opportunities.

Year-Round Pools

PARD and AISD paid for the installation of heaters at Balcones and Dick Nichols in the past, but the operations costs and difficulty in keeping lifeguards resulted in the closing of the pools in the winter season. The pool houses also had plastic sheets installed to reduce the cold temperatures in the pool house. The heaters a re still in place, but theirfunctional use is not known because they have not been used in several years. Curent year-round pools include the lap pool at Bartholomew (only 4 lap lanes), Springwoods, Big Stacy (heated from an Artesian Well), and the unheated pools at Deep Eddy and Barton Springs. For maximum use, pools to be open year-round should be distributed geographically to serve regions of Austin and have heated water, heated restrooms/changing rooms, and at least 6 lap lanesforswim team practice and lap swimming (the primary users in the off-season). Once indoor pool(s) are developed, the need foroutdooryear-round poolscan be reduced. Geographic ally, Dick Nichols is a logical choice for a year-round pool to serve the south due to its nine lap lanes and heaters in place. Gamison or Mabel Davis are other logic al choices. Both are more centrally located in the south and easierto access. Either Balconesor an updated Northwest are logical candidates to serve the north.

A strong case can be made that the year-round facilities should be located at the 50 meter regional pools (Northwest and Gamison) because of their ability to maximize programming, larger number of lap lanes, and central locations in the north and south.

To accomplish the best possible year-round use of the outdoorpools, support high school and other local swim teams, host a variety of programs, attract more users, and have most potential for success, the following must be accomplished:

- The pool, pooldeck, pool house (restrooms, changing rooms, mechanic al rooms), and the mechanic al systems must be designed to withstand potential cold weather and freezing. The pool houses should be designed for energy efficient temperature control.
- The total environment must be comfortable for all patrons and not just the strongly dedicated lap swimmers.
- PARD will need a larger number of year-round lifeguards and an increased operations budget for lifeguards, pool heaters, water, and chemicals, etc.

Extended Season Use

- The public engagement also indic ated a desire to extend the sea son at both ends, before a nd after the summer swim season, which could mean opening for all of May and September and possibly longer. During these months, temperaturesare still quite warm, and people want to cooloff aswellas exerc ise and recreate at pools. This desire is typical in many communities, but experience throughout
the country has indicated that the number of patrons using pools is much lower when local schools are in session, and the cost/benefit analysis usually results in keeping the pools open primarily during the school summer break.
- If the above measures are implemented, then those year-round pools will be the best candidates to extend the season in geographic ally distributed areas. If the City desires to extend the season at all pools, then PARD will have the extremely difficult task of maintaining a large number of lifeguards before they finish and after they start their school year at high school or college. Additional operations budget will also be required to pay for the lifeguards, water, chemicals, utilities, and maintenance.

8.5.3 Recommendations

- Make Free Life Vests (PFDs) a vailable at all locations for children who cannot pass the swim test
- Rec ruit sponsors for Free Life J ackets (PFDs) at all a quatic facilities in the City
- Increase availability of Leam to Swim programs for children and adults with unique needs through partnerships and sponsors
- Utilize Wi-Fi and internet capabilities for scheduling, certification tracking, communications, and cash management to improve efficiency of aquatic operations
- Consider collaboration with private business to develop aquatic centers by providing tax incentives, land leases, and other public/private partnerships
- Begin to search out potential partners and sponsors for the development of an indoor aquatic facility
- Develop partnerships with club teams, high school teams and other groups, including competitive divers and synchronized swimmers, who might rent pool space at a premier indoor facility
- Seek partnerships with local school districts (and other educational institutions) as part of the development of any indoor aquatic facilities
- Explore opportunities for intemal partnershipswith other PARD division to offer needed programs such as Special NeedsAquatic Programs

8.6 Maintenance Recommendations

8.6.1 Opportunities

Active participation in the Aquatic Master Plan efforts will assist the residents and City officials to mutually understand the true needs of Aquatic Maintenance and the scope of their work.

As the City of Austin makes dec isions on implementation of this Master Plan, Aquatic Maintenance Staff will have the opportunity to participate in the planning of the new facilities and the renovation of those that remain. Their practical knowledge will be helpful to the design team.

8.6.2 Recommendations

- Establish a centralAquatic Ma intenance Facility with storage a reasto ma inta in an inventory of backup pumps and supplies (The goal is to have standardized equipment to allow an efficient inventory so that repairs can be made quic kly.)
- Utilize to provide better storage for program equipment (protected during off-season, better inventory control, pre- and post-sea son testing)
- Synchronize supply inventory control and procurement policies to meet the growing demands of an aging system
- Work towards keeping lines of communication open between Aquatic Operations and Aquatic Maintenance for continuity of maintenance and reduction of emergency c losings
- Consider connecting maintenance facility with proposed Premier Indoor Facility
- Include Wi-Fi and intemet capabilities for chemical controllers and maintenance work orders, as facilities are improved, for greater efficiencies
- Utilize online applications to improve the efficiency of the large and aging aquatic system through centralized tracking of chemic al and maintenance schedules, managing repair orders, inspections, etc.
- Assign full-time staff to pool sites to improve trailing of temporary staff and reduce maintenance burden since these staff can handle chemical and small mechanical issues

8.7 Environmental Sustainability Recommendations and Best Management Practices

With the overall susta ina bility of the aquatic system asa primary goal of this plan, environmental susta inability is a key component. The use of best mana gement practic esenforcesa nd sup portsenvironmental susta ina bility. This plan recommends the following actions:

- Continue to design and operate all new structures to LEED Silver level guidelines as required for all large capital projects for the City
- Utilize variable frequency drive (VFD) pumps for energy efficiency
- Expand use of reclaimed water for inigation where available
- Monitor water use with separate water meters (from the site) at each pool to respond quickly to any leaks, thus sa ving water
- Consider use of smart meters for both pools and pool facilities as a whole
- Utilize xeriscaping (landscaping for crowd control and reduce water use)
- Continue to specify grasses and landscape planting better suited for Austin's climate zone
- Locate poolsnearpublic transportation forease of transportation network use (parking issues at some sites)
- Expand collection of rainwater and gray water for use in inigation
- Reduce paper waste through digital connections, improved by providing Wi-Fi/internet (fiber)
- Utilize improved chemical controllers and automatic fill level controllers
- Ensure that pool backwash flows to 8" or larger sanitary sewer lines rather than into creeks or drainage coridors
- Continue to incorporate settling basins into the system, if backwash must discharge to a creek
- Continuously research Best Management Practices of other large community Aquatic Divisions to leam from their experiences
- Coordinate Best Management Practices with the Offices of Sustainability, Watershed Protection, etc.
- Provide separate water taps and meters for pools to monitor water use
- Utilize natural light and/or LED fixtures in structures
- Utilize low-flow plumbing fixtures
- Consider mechanical pool covers when a pool is not in use to reduce evaporation
- Decommission pools located within 25- and 100-year floodplains (with the exception of Deep Eddy and Barton Springs)
- Use filtration systems to minimize water use, such as the Neptune Benson Defender Series Regenerative Filters currently used and Bartholomew and Westenfield
- Continue to consider the potential decades of use of a pool during the design process with consideration to ease of maintenance, energy use, and impact on the environment
- Consider use of photovoltaic (PV) systems at larger (non-neighborhood) aquatic facilities to offset cost of operation

8.8 Industry Standards and Common Facility Recommendations

The following are general recommendations to be incorporated into the improvements at each pool that correspond to current aquatic industry standardsand the desires of Austin residents ascommunicated in the many levels of public engagement.

8.8.1 Common Pool Improvements

1. Include replacement of the pool deck and addition of equipotential bonding in all pool renovations to meet electricalcode
2. Include zero-depth entry at all wading and activity pools
3. Include water aeration systems at all new or renovated pools that are easily accessed to cool the water
4. Replaced all gravity filter systems with high rate sand filters or regenerative media (reduced water usage)
5. Installed Wi-Fi at each pool to allow for use in pool administration and communication, cash management, maintenance work orders, monitoring of chemical and water level controllers, and ideally for public use
6. Plan for the plumbing and electrical installation of UV systems in the future as they may become required
7. Utilize variable frequency drive (VFD) pumps for energy efficiency
8. Continue to evaluate pool shell construction methods and options to meet their specific needs, as well as most preferred coatings
9. Provide shade structures both on the deck/grass area a nd over portions of the pool

8.8.2 Common Site Improvements

1. Bring the number of parking spaces up to the minimum for the classification of recommended pool
2. Provide bicycle racks
3. Provide parking improvements to paving, curbs, accessible spaces, and lighting
4. Improve driveways and access roads
5. Provide sidewalks from the parking lot to the bathhouse entrance
6. Provide wayfinding signage
7. Provide required stormwater detention and quality treatment
8. Improve site grading and drainage
9. Provide 4" water service for domestic and pool use
10. Provide 2" water service for imigation
11. Provide fire hydrants near the bathhouse with 8 " water service
12. Provide 8" sanitary wastewater service
13. Provide independent meter for pool water use

8.8.3 Access/ Connectivity

1. Reloc ated or rebuilt pools or bathhouses may triggerAccess/C onnec tivity Criteria: COA Sub-C hapter E ordinance may require improved facilities to be asclose to the street aspossible and a shaded path to be provided between site elements. Sub-C hapter E requires the following:

- Accessible pedestrian and bicycle connections from adjacent street right-of-way to bathhouse entrance
- Sidewalks with shading from the street right-of-way to the bathhouse entrance

2. General Access/Connectivity Improvements: Install new building doorway, entrance gate, and wayfinding signage

8.8.4 Common Building Improvements

1. If the existing pool size remains the same, the existing number of plumbing fixtures can by code remain the same.
2. If the existing pool is modified or enlarged, calculations for new plumbing fixtures required are based on 1 person per $50 \mathrm{ft}^{2}$ of water, which has been acceptable to the Local Authority Having J urisdic tion (AHJ) recently in otherCOA pool replacements.
3. The required number of plumbing fixtures is calculated per the Texas Department of State Health Servic es (DSHS) 25 TAC, 265.201(f)(1).
4. While it is not noted on each pool bathhouse, the existing plumbing fixtures on the whole do not meet current ADA requirements.

8.9 Marketing Recommendations

- Increase the use of social media (Facebook, Twitter, Instagram, etc.) and the marketing budget to allow for expanded marketing efforts (photos, videos, and more) to promote the facilities, programs, and to a ssist in Lifeguard rec ruitment
- Create new special events and networking opportunitiesthrough aquatic programming targeted at young adults without children to promote aquatic use by this demographic
- Get creative in partnering with fitness centers, physical therapists, hospitals, health insurance providers, fitness non-profit organizations, and clubs for sponsorships, leases, and rentals to increase revenue and promote new or renovated facilities
- Get involved with Comorate Sponsorships for Naming Rights to help to recover capital improvement costs or financially support programming. This collaboration could be done "in house" or through a Public RelationsorAdvertising Agency

8.10 Potential Increased Revenue Generation Methods

The topic of revenue generation has not been a mandate from the City or PARD leadership during the development of this Master Plan or the preceding Aquatic Assessment, but it would contribute to a more susta inable aquatic system, whic h has been a strong goal. The following opportunitiesforrevenue generation should be further explored by PARD Staff, PARD leadership, and the City. Ultimately, City Council should consider approval of some of these opportunities, based upon City policies, such as fees, charges, and na ming rights.

8.10.1 Fees and Charges

Throughout the three phases of the Aquatic Master Planning process, residents have indic ated their love for free Neighborhood Pools but also indicated a willingness to pay a fee if required or needed. The proposed system provides a variety of a quatic opportunities with the Neighborhood Pools remaining free and varying
fees for the Community and Regional pools. A process should be developed to waive fees at these new facilities for those with financial needs.

The survey performed as part of the SWIM 512 program (Phase II) identified that 69% of the respondents are either Extremely Likely (34\%), or Likely (35%) to be willing to pay a fee at pools, which do not currently charge. The addition of a minimal $\$ 1$ fee at the current Neighborhood Pools would generate approximately $\$ 434,000$ in revenue based upon the average attendance at the pools between 2002 and 2014. Additionally, the City of Austin could offer an annual membership, which would provide the City with funding upfront at the beginning of the season.

Attendance may decline due to the fee, additional expenses would be required to have staff to collect the fees or check membership cards. The increase in funds could be used toward debt payment on bonds. This method also places the costs directly on the persons that benefit from the pools. If this option is implemented, it would be advisable to implement a scholarship program to assist low-income children and families who may be unable to afford the usage fees.

An increase of $\$ 1$ perpoolvisitorat the Munic ipal Poolscould result in a inc rease of revenuesof a p proximately $\$ 300,000$ based on the average attendance from 2002-2015. An increase of $\$ 1$ at Barton Springs will result in an additional $\$ 468,000$ based on the average attendance from 2002-2015. Using the inflation adjusted average revenue for the past five years (2010-2014), raising the highest fee (non-resident adults) at Barton Springsto $\$ 10$ and scaling otherfees accordingly would result in an add itional $\$ 1.8$ million peryear in revenues, assuming similar attendance figures. The Consultants recognize that fees collected at pools will be directed to the City's General Fund.

The curent fee rates at Municipal Pools are $\$ 1.00$ for a child (age 11 and under), $\$ 2$ for a junior (12-17), $\$ 3$ for an adult, and $\$ 1$ for a senior (age 62 and over), and non-residents pay $\$ 1$ more within each age category. (Children under 1 and residents 80 oroverare free.) Deep Eddy and Barton Springsalso have different feesfor residents and non-residents. With the inc reased features, a menities, a nd requirement foradditionaloperations costs at the larger Regional Aquatic Centers, these feescould be raised.

The current fee structure for Municipal Pools is appropriate for the Community Pools. Neighborhood Pools should rema in free, but with the new requirement for an attendant at the gate at all pools, the establishment of a fee is more feasible and would not increase staffing costs. The current Season Swim Pass rates are more comparable to other communities.

Improved facilities with more lanes would also likely lead to an increase of group rentals, birthday parties, competitive events, and club team rentals. PARD could also considercharging for usage of pools in winteror offering season pass promotional ratesto increase membership.

8.10.2 Concessions

The development of Bartholomew Pool without a concession area is a lost opportunity. With the increased features and family-friendly design, visitors will stay longer at pools, especially if food and drink is a vailable. All Regional Aquatic Centers (and potentially Community Pools) should have concession offerings with an appropriately sized shaded area foreating to avoid food and drink nearthe pools. These concessionscould be provided by a concessionaire or by the City. With the number of concession stands in the new system, PARD could operate concessions at a substantial profit.

8.10.3 Naming Rights and Sponsorships

The quality of the new facilities offers an attrac tive opportunity for naming rights a nd sponsorships. Events and programs could also be sponsored. To effectively take advantage of these opportunities, the PARD Staff must include a person dedicated to this effort.

8.10.4 Partnerships

Asdisc ussed in the Use Agreements a nd Partnershipssection of this chapter, there are opportunitiesto partner with health care providers, commercial entities, educational institutions, and others in the programming, rentals, and use of facilities.

8.10.5 Increased Programming

The upgraded facilities will offeran opportunity to expand program offeringsand, thereby, increase revenue and help retain high performing instructors/programs staff/coaches.

8.10.6 Revenues to PARD

Curently, all aquatic revenue goes to the City General Fund, and funds are allocated annually to the Parks and Recreation Department budget. PARD would have more incentive to be proactive about increasing revenues if revenue generated by aquatic facilities were retumed directly to PARD Aquatic Division.

8.11 Probable Cost Projections (Capital, Revenues, and Operations)

This section includes projections for the future of the potential aquatic system described earlier in this chapter. While capital requirements were described in Section 8.2, staffing, revenues, operations costs, and maintenance requirements are outlined below. This information is essential for the PARD Aquatic Division to
prepare and plan for the future of aquatic opportunities in Austin.

8.11.1 Capital Cost Projections

Subsection 8.2.4 of this chapter identified capital costs in the range of $\$ 152$ to $\$ 193$ million, depending on how many of the curent Neighborhood Pools are kept in operation.

8.11.2 Staffing Projections

An analysis of the pool staffing requirements for proposed system identified in section 8.2 indicates a need for a total of 980 staff (2016 staff included 768 total staff), including lifeguards, pool managers, attendants, etc., if fully implemented. This projection also assumes that some of the pools will be decommissioned. The newer pools at Westenfield and Bartholomew that recently opened, and the Shipe and Govalle Pools, which will be developed in the Fall of 2017 for the 2018 season opening, require more staff than the older rectangular pools, due to number of waterbodies, shape of pools, a nd features. The new indoor and outdoor facilities will also add to this total.

The recent Austin Public Health Department mandate to have attendants at the entrance to each pool also adds to the increased staff requirements. This dramatic increase further emphasizes the need to continue and boost the efforts toward increased recruitment, retention, and training as outlined in this plan. The indoor facilities will also provide an increased opportunity for training and recruitment through increased programming and partnerships, such as the SwimATX program.

8.11.3 Revenues

Increased income generation from the proposed system has great potential from the categories below.

- Concessions - At full build-out, income from concessionsat the Community and Regional pools would be expected to generate net revenue of a proximately $\$ 350,000$ to $\$ 400,000$ peryear.
- Admission Fees - PARD has experienced income from attendance at the seven Municipal Pools (including Deep Eddy) in the range of $\$ 550,000$ to $\$ 700,000$ per year in recent years (not including Barton Springs). The proposed system includes five Regional Aquatic Centers (including Deep Eddy) and 11 Community Pools. If all of these charge fees, it would be expected to increase revenue from admission fees alone to a range of $\$ 1.5$ to $\$ 2$ million peryear.
- Indoor Facilities- The indoor pools would generate revenuesfrom inc reased programs, pool and lane rentals, swim meets, concessions, and other sources. In addition, similar indoor facilities throughout the country have benefited from both capital and operating funds from hotel taxes, tourism funds, sponsorships, naming rights, and partnerships. A feasibility study will better refine capital cost projections and likely operating expenditures/revenues.
- Programming - The outdoor pools may be more attractive for lessons and other aquatic programs, but a significant increase in the numbers of people utilizing the programs would not be anticipated, exceptasa result of continued growth of the population of Austin, resulting in a largerpool of potential program participants. Overall, increasesfrom this source of revenue will be more related to increases in marketing budgets and population increases than other factors; however, continued program qua lity improvements associated with retention of high performing staff may also play a role.

8.11.4 Operations Costs

Once the recommendationsare fully implemented, PARD should experience lowercostsforoperation perpool due to the newer condition of facilities, more energy efficient mechanical systems, reduced maintenance repairs, and the benefits of a LEED Certified and more environmentally sustainable system. Staffing costs will be higher due to the increased number of staff (primarily Lifeguards) required to operate the system as mentioned earlier in this chapter.

PARD is in the process of expanding the detail of its reporting of operation costs to gain a more exact cost of operations per pool, especially at its newer facilities, which will become the baseline to estimate future operations costs as facilities are upgraded. This improved record keeping was also recommended in the Susta ina bility disc ussion in Chapter 6.

8.11.5 Maintenance Repairs

Continuousma intenance repairs, both scheduled (known) and unscheduled (unknown), will rema in constant until all of the pools are upgraded. The process outlined in Chapter 6 should be followed to examine the Sustainability of a pool going forward. In addition, PARD should not spend more than $\$ 200,000$ on a pool to keep it in operation unless the repairs will keep the pool operating for a nother 3-5 years and/orthe repairs will be incoporated into the pool upgrade process.

A review of the repairs made between 2009 and 2016 a nd those scheduled for 2017 (see Table 6.3 in Chapter 6) identified 12 pools that expended over $\$ 100,000$ and only four that expended over $\$ 200,000$ in that nineyear period. In several cases the repairs have extended the life of the pools significantly. Therefore, the a mount of $\$ 200,000$ over a ten-year period appears to be a reasonable threshold for limiting repairs that will keep a pool open but not necessarily contribute to the long-term recommendation for the pool.

8.12 Potential Funding Scenarios and Fiscal Expenditures Priorities

If the City were to implement all of the capital facility improvements recommended in this plan, it would need at least $\$ 8$ to $\$ 10$ million per year over the next 20 years, plus the cost of inflation for improvement in future years. These capital improvements must be weighed against the other capital improvement needs of the City. A goal of this plan is to provide the City with the tools necessary to develop a more sustainable and equitable system of aquatic facilities and programs. PARD and the City should use this plan to develop a capital improvement plan that works with the other fiscal expenditure priorities of the City.

PARD should prionitize the following:

- Addressthe critic al poolsthat a re in dangerof failing using the susta ina bility process a nd in conjunction with the Site Suitability Ranking
- Be proac tive to make improvements that are geographic ally loc ated so a sto mainta in qua lity facilities in each area of the City, in case otherpools in the area fail (Forexample, upgrade Montopolis in order to make sure that the area has an operational pool considering that Civitan is in critical condition and a good candidate fordecommissioning due to its low Site Suitability Ranking and close proximity to Montopolis.)
- Place a prionity on the development of at least one of the indoor facilities to assist in the Lifeguard recruitment and training process aswell as meeting a growing need foryear-round programming and lap swimming
- Conduct a feasibility study to further determine and evaluate indoor aquatic needs of Austin
residents, to better project the requisite capital and operating costs, and to estimate potential revenue from various sources
- Develop new pools based on population growth and to serve underserved areasasindicated in this plan, with Colony Park Pool developed first as other park facilities are developed in this park

Table 8.1 indicates the timeframe recommended foreach capital improvement.

8.13 Potential Lifeguard Recruitment and Retention Methods

The Aquatic Operations section of Chapter 2, Planning Context, outlined a variety of conditions providing challenges to the City for Lifeguard recruitment, training, and retention. The ensuing section summarizes potential recommendationsto addressthese challengesframed within a seriesof subtopics. The PARD Aquatic Division has made strong strides toward improving the hiring process and continues to make improvements within the limitations of the City hiring practices.

8.13.1 Working Conditions

- Improve staff areas when facilities are selected for improvement or replacement
- Provide Support Staffatall facilitiesto meet Health Department requirementsand serve asan incentive for Lifeguard rec ruitment at sma ller, less popula r loc ations

8.13.2 Pay Scale vs. Duties

- Provide Support Staff to assist Lifegua rds in these additional ta sks (ja nitorial, customer service)
- Consider tuition reimbursement or scholarship aid for Lifeguards who successfully earn certification and work for a defined period of time (already offer free recertification and a max fee for $\$ 40$ for course)
- Reduce janitorial obligations for the Lifeguards to improve the image of a professional Lifeguard for improved recruitment and retention efforts

8.13.3 Transportation

- Consider financial assistance, such as travel vouchers or providing daily transportation, due to the size of the City and long commutes (currently receive free buspasses)
- Focus recruitment efforts, affordable or subsidized training, and employment incentives in neighborhoods where Lifeguard a p plic ants ha ve been limited

8.13.4 Scheduling

- Incorporate online scheduling and payroll programs for greater efficiency and accuracy

8.13.5 Training

- Consider an indoor facility to inc rease In-Service and Pre-Season Tra ining opportunities
- Create online videos and tutorials based on the Aquatic Staff Manual for increased training opportunities
- Consider incorporating shallow water training to allow site specific training and increasing the number of lifeguards

8.13.6 Hiring Process

- Automate the time and attendance process as well as the application process for greater efficiencies and accuracy

8.13.7 Staffing
 Opportunities

- Head Lifeguards have consistently led to higher sc ores on a udits.
- The possible reduction in the number of aquatic facilities may make recruitment, retention, and
training more successful.
- Affordable and accessible technology may provide assistance with scheduling and payroll. Thistype of software application would make staff time more efficient, freeing up their time for more vital tasks and serve as an incentive foremployees (will require staff to dedicate time forimplementation, which should have a phased approach).
- Communicating information with a large and seasonal staff is nearly impossible but imperative. Communication does occur at In-Service Trainings, but a more efficient method would be the use of technology or social networking platforms to disseminated information.
- The greatest opportunity for improvement is the obvious support of the Aquatic program by the residents of Austin and the City's aquatic legacy. Tuming this support into advocacy forchange and funding is the true opportunity.
- The result of SWIM512 coupled with the supportof the community isthe greatestop portunity to rec harge aquatic opportunities in Austin. The Aquatic Management Staff must be given the opportunity to continue to be involved and their input respected throughout the implementation process.
- Each new or renovated facility should be equipped with Wi-Fi/internet (fiber) capability in order to take advantage of online attendance programs and water chemistry control systems available now and new technology in the future.

Recommendations

- Utilize the example set by SwimATX for future collaborative ventures and partnerships to assist the Aquatic Division meet their staffing goals
- Hire more Full-Time Head Lifegua rdsfora higherlevel of professionalism, ongoing coaching/training of temporary staff, better program supervision, and assistance with basic maintenance duties
- Utilize more attractive and "staff friendly" facilities as an incentive for recruitment
- Employ programs that can be accessed from home computers and cell phones to communicate with staff and document receipt of information
- Carefully evaluate potential software to select an application that meets the needs of Austin's large and complexaquatic system
- Tum public support into an advocacy for change and funding
- Incorporate Wi-Fi/internet (fiber) at each facility and utilize technology as it becomes available to take advantage of online attendance programs, water chemistry control systems, and more

APPENDIX A - SIIE SUITABIUTY RATINGS BY POOL

Table A.1: Balcones

Balcones	Condition	Neighborhood Potential			Community/Regional Potential		
		Rating	Importance Factor	$\begin{aligned} & \text { Eement } \\ & \text { Score } \end{aligned}$	Rating	Importance Factor	Element Score
Demographics							
20-Minute Walk							
Children	853	1	10\%	1.0	1	3\%	0.3
Seniors	464	2	5\%	1.0	2	2\%	0.4
Total Population	5,045	3	15\%	4.5	3	5\%	1.5
Median Household Income	\$79,577	3	5\%	1.5	3	3\%	0.9
Population Growth (5-Year)	279	3	5\%	1.5	3	3\%	0.9
Social Needs and Conditions Index	55	2	15\%	3.0	2	10\%	2.0
10-Minute Drive							
Children	28,988	9	3\%	2.7	9	10\%	9.0
Seniors	13,230	10	2\%	2.0	10	6\%	6.0
Total Population	148,656	9	6\%	5.4	9	15\%	13.5
Median Household Income	\$55,629	5	3\%	1.5	5	5\%	2.5
Population Growth (5-Year)	11,786	7	3\%	2.1	7	8\%	5.6
Capacity (based on surface area)	324	8	8\%	6.4	8	10\%	8.0
Attendance (5-YearAvg.)	17,248	3	10\%	3.0	3	10\%	3.0
Attendance/Capacity Ratio	53.2	4	10\%	4.0	4	10\%	4.0
Demographics Total (Out of 100)			100\%	40		100\%	58
Site Conditions							
Entrance/Drive	Yes	10	10\%	10.0	10	5\%	5.0
Parking Spaces (Count)	72	10	10\%	10.0	4	14\%	5.6
Site Area (Acres)	5.1	10	40\%	40.0	10	50\%	50.0
Grade Constraints	Low-Moderate		0\%	0.0	8	14\%	11.2
Health, Safety, Welfare Issues	50\%	5	20\%	10.0	5	5\%	2.5
Designated Historical Features (Count)	0	10	10\%	10.0	10	6\%	6.0
Historical Structure (Pool House or Pool)	No	10	10\%	10.0	10	6\%	6.0
Site Total (Out of 100)			100\%	90		100\%	86
Location							
Heavily Trafficked Roadways (Traffic Counts)	10,010	7	5\%	3.5	7	5\%	3.5
Distance from Road	543	10	5\%	5.0	10	5\%	5.0
Railroads	No	10	5\%	5.0	10	5\%	5.0
Flight Zones (Noise Level - Decibels)	No	10	5\%	5.0	10	5\%	5.0
Competing Elements (Count)							
Other PARD Aquatic Facilities (20 Min. Walk)	0	10	20\%	20.0	10	8\%	8.0
Service Area Overlap (20 Min. Walk)	0	10	20\%	20.0	10	8\%	8.0
Private Aquatic Facilities (20 Min. Walk)	0	10	7\%	7.0	10	3\%	3.0
Programs By HOA/Private Orgs. (20 Min. Walk)	0	10	3\%	3.0	10	2\%	2.0
Symbiotic Elements (Count)							
Schools/Daycare Providers (5 Minute Walk)	0	0	10\%	0.0	0	19\%	0.0
Recreation Centers (5 Minute Walk)	0	0	10\%	0.0	0	20\%	0.0
Other Park Amenities (5 Minute Walk)	6	4	10\%	4.0	4	20\%	8.0
Location Total (Out of 100)			100\%	73		100\%	48
Accessibility							
Adjacent Roadway Class	Collector	10	5\%	5.0	5	5\%	2.5
Transit Access	At Pool	10	15\%	15.0	10	15\%	15.0
Pedestrian Connectivity							
Walkways/Trails	Some	5	15\%	7.5	5	15\%	7.5
Crosswalks	Yes	5	5\%	2.5	5	5\%	2.5
Traffic Controls	None	0	5\%	0.0	0	5\%	0.0

Balcones	Condition	Neighborhood Potential			Community/ Regional Potential		
		Rating	Importance Factor	Element Score	Rating	Importance Factor	Element Score
Overall	Fair	5	15\%	7.5	5	15\%	7.5
Bic ycle Connectivity							
Lanes	Some	5	10\%	5.0	5	10\%	5.0
Trails (Count)	None	0	15\%	0.0	0	15\%	0.0
Overall	Fair	3	15\%	4.5	3	15\%	4.5
Accessibility Total (Out of 100)			100\%	47		100\%	45
Infrastructure							
Electric Service Provider	Austin Energy	10	10\%	10.0	10	10\%	10.0
Electric Service (Phases)	3	10	5\%	5.0	10	10\%	10.0
Water (Dist. to 4" Line in ft.)	355	5	10\%	5.0	5	20\%	10.0
Reclaimed Water (Dist. in ft.)	No	0	10\%	0.0	0	15\%	0.0
Wastewater (Dist. to 8" Sewer Line in ft.)	30	10	5\%	5.0	10	15\%	15.0
Pool Condition	Fair	5	25\%	12.5	5	10\%	5.0
Bathhouse Condition	Fair	5	20\%	10.0	5	10\%	5.0
Storage Conditions	Fair	5	10\%	5.0	5	5\%	2.5
COATN Service Area (Wi-Fi)	No	0	5\%	0.0	0	5\%	0.0
Infrastructure Total (Out of 100)			100\%	53		100\%	58
Environmental							
Trees (Number)							
2 " to 19 " in Diameter	14	8	3\%	2.4	8	5\%	4.0
19" to 24" in Diameter	2	9	3\%	2.7	9	5\%	4.5
Over 24" in Diameter (Including Heritage)	3	8	11\%	8.8	8	15\%	12.0
Grow Zones	No	10	13\%	13.0	10	10\%	10.0
Aquifer Recharge	Within	0	13\%	0.0	0	13\%	0.0
Pollinator Habitat	No	10	6\%	6.0	10	5\%	5.4
Wetlands	No	10	13\%	13.0	10	10\%	10.0
Rock Outcrop	No	10	13\%	13.0	10	13\%	13.0
Springs	No	10	13\%	13.0	10	13\%	13.0
Environmental Sensitivity	Low	10	6\%	6.0	10	5\%	5.4
Soil Suita bility	Very Limited	0	6\%	0.0	0	5\%	0.0
Environmental Total (Out of 100)			100\%	78		100\%	77
Regulatory							
Flood Zones							
25-Year Floodplain	No	10	20\%	20.0	10	20\%	20.0
100-Year Floodplain	No	10	10\%	10.0	10	10\%	10.0
500-Year Floodplain	No	10	5\%	5.0	10	5\%	5.0
Zoning Designation	P	10	5\%	5.0	10	5\%	5.0
Sub-C hapter E (Distance from Road in ft.)	360	5	5\%	2.5	5	5\%	2.5
Erosion Hazard Review Buffer	No	10	9\%	9.0	10	10\%	10.0
Resource Buffers	No	10	20\%	20.0	10	20\%	20.0
Watershed Regulation Areas	Suburban	10	10\%	10.0	10	10\%	10.0
Water Quality Zones	No	10	3\%	3.0	10	5\%	5.0
Endangered Species	Within	0	3\%	0.0	0	5\%	0.0
Bathhouse	Yes	10	5\%	5.0	10	2\%	2.5
Restrooms (Distance from Pool in ft.)	At Pool	10	5\%	5.0	10	2\%	2.5
Regulatory Total (Out of 100)			100\%	95		100\%	92
Operations							
Maintenance Staff/Equipment Ease of Access	Poor	2	20\%	4.0	2	10\%	2.0
Simplic ity of Equipment	Good	7	20\%	14.0	7	10\%	7.0
Equipment Condition/Replacement Cost	Fair	5	30\%	15.0	5	15\%	7.5
Lawn/Landscaped Area	Good	7	20\%	14.0	7	10\%	7.0
Employee Safety Measures	Fair	5	10\%	5.0	5	10\%	5.0
Operations Total (Out of 100)			100\%	52		55\%	29

Table A.2: Bartholomew

Bartholomew	Condition	Neighborhood Potential			Community/Regional Potential		
		Rating	Importance Factor	$\begin{gathered} \hline \text { Element } \\ \text { Score } \\ \hline \end{gathered}$	Rating	Importance Factor	Element Score
Demographics							
20-Minute Walk							
Children	1,526	4	10\%	4.0	4	3\%	1.2
Seniors	755	6	5\%	3.0	6	2\%	1.2
Total Population	7,406	5	15\%	7.5	5	5\%	2.5
Median Household Income	\$60,986	6	5\%	3.0	6	3\%	1.8
Population Growth (5-Year)	1,156	10	5\%	5.0	10	3\%	3.0
Social Needs and Conditions Index	97	5	15\%	7.5	5	10\%	5.0
10-Minute Drive							
Children	25,289	8	3\%	2.4	8	10\%	8.0
Seniors	9,863	8	2\%	1.6	8	6\%	4.8
Total Population	126,444	8	6\%	4.8	8	15\%	12.0
Median Household Income	\$38,098	8	3\%	2.4	8	5\%	4.0
Population Growth (5-Year)	11,447	6	3\%	1.8	6	8\%	4.8
Capacity (based on surface area)	475	6	8\%	4.8	6	10\%	6.0
Attendance (5-YearAvg.)	71,105	10	10\%	10.0	10	10\%	10.0
Attendance/Capacity Ratio	149.7	10	10\%	10.0	10	10\%	10.0
Demographics Total (Out of 100)			100\%	68		100\%	74
Site Conditions							
Entrance/Drive	Yes	10	10\%	10.0	10	5\%	5.0
Parking Spaces (Count))	160	10	10\%	10.0	10	14\%	14.0
Site Area (Acres)	8.0	10	40\%	40.0	10	50\%	50.0
Grade Constraints	Moderate		0\%	0.0	5	14\%	7.0
Health, Safety, Welfare Issues	80\%	8	20\%	16.0	8	5\%	4.0
Designated Historical Features (Count)	0	10	10\%	10.0	10	6\%	6.0
Historic al Structure (Pool House or Pool)	No	10	10\%	10.0	10	6\%	6.0
Site Total (Out of 100)			100\%	96		100\%	92
Location							
Heavily Trafficked Roadways (Traffic Counts)	15,020	6	5\%	3.0	6	5\%	3.0
Distance from Road	132	3	5\%	1.5	3	5\%	1.5
Railroads	None	10	5\%	5.0	10	5\%	5.0
Flight Zones (Noise Level - Decibels)	None	10	5\%	5.0	10	5\%	5.0
Competing Elements (Count)							
Other PARD Aquatic Facilities (20 Min . Walk)	0	10	20\%	20.0	10	8\%	8.0
Service Area Overlap (20 Min. Walk)	33\%	7	20\%	14.0	7	8\%	5.6
Private Aquatic Facilities (20 Min. Walk)	0	10	7\%	7.0	10	3\%	3.0
Programs By HOA/Private Orgs. (20 Min. Walk)	0	10	3\%	3.0	10	2\%	2.0
Symbiotic Elements (Count)							
Schools/Daycare Providers (5 Minute Walk)	0	0	10\%	0.0	0	19\%	0.0
Recreation Centers (5 Minute Walk)	0	0	10\%	0.0	0	20\%	0.0
Other Park Amenities (5 Minute Walk)	57	10	10\%	10.0	10	20\%	20.0
Location Total (Out of 100)			100\%	69		100\%	53
Accessibility							
Adjacent Roadway Class	Collector	10	5\%	5.0	5	5\%	2.5
Transit Access	At pool	10	15\%	15.0	10	15\%	15.0
Pedestrian Connectivity							
Walkway/Trails	Some	5	15\%	7.5	5	15\%	7.5
Crosswalks	Yes	10	5\%	5.0	10	5\%	5.0
Traffic Controls	None	0	5\%	0.0	0	5\%	0.0
Overall	Fair	3	15\%	4.5	3	15\%	4.5
Bicycle Connectivity							
Lanes	Some	5	10\%	5.0	5	10\%	5.0

Bartholomew	Condition	Neighborhood Potential			Community/ Regional Potential		
		Rating	Importance Factor	Element Score	Rating	Importance Factor	Element Score
Trails (Count)	None	0	15\%	0.0	0	15\%	0.0
Overall	Fair	3	15\%	4.5	3	15\%	4.5
Accessibility Total (Out of 100)			100\%	47		100\%	44
Infrastructure							
Electric Service Provider	Austin Energy	10	10\%	10.0	10	10\%	10.0
Electric Service (Phases)	3	10	5\%	5.0	10	10\%	10.0
Water (Dist. to 4" Line in ft.)	0	10	10\%	10.0	10	20\%	20.0
Reclaimed Water (Dist. in ft.)	0^{\prime}	10	10\%	10.0	10	15\%	15.0
Wastewater (Dist. to 8" Sewer Line in ft.)	0	10	5\%	5.0	10	15\%	15.0
Pool Condition	Excellent	10	25\%	25.0	10	10\%	10.0
Bathhouse Condition	Excellent	10	20\%	20.0	10	10\%	10.0
Storage Conditions	Excellent	10	10\%	10.0	10	5\%	5.0
COATN Service Area (Wi-Fi)	Yes	10	5\%	5.0	10	5\%	5.0
Infrastructure Total (Out of 100)			100\%	100		100\%	100
Environmental							
Trees (Number)							
2" to 19" in Diameter	38	7	3\%	2.1	7	5\%	3.5
19" to 24" in Diameter	10	5	3\%	1.5	5	5\%	2.5
Over 24" in Diameter (Including Heritage)	5	7	11\%	7.7	7	15\%	10.5
Grow Zones	250	10	13\%	13.0	0	10\%	0.0
Aquifer Recharge	No	10	13\%	13.0	10	13\%	13.0
Pollinator Habitat	No	10	6\%	6.0	10	5\%	5.4
Wetlands	No	10	13\%	13.0	10	10\%	10.0
Rock Outcrop	No	10	13\%	13.0	10	13\%	13.0
Springs	No	10	13\%	13.0	10	13\%	13.0
Environmental Sensitivity	Low Sensitivity	10	6\%	6.0	10	5\%	5.4
Soil Suita bility	Somewhat Limited	5	6\%	3.0	5	5\%	2.7
Environmental Total (Out of 100)			100\%	91		100\%	79
Regulatory							
Flood Zones							
25-Year Floodpla in	Within 250	10	20\%	20.0	0	20\%	0.0
100-Year Floodplain	Within 250	10	10\%	10.0	0	10\%	0.0
500-Year Floodplain	Within 250	10	5\%	5.0	0	5\%	0.0
Zoning Designation	P-NP	8	5\%	4.0	8	5\%	4.0
Sub-Chapter E (Distance from Road in ft.)	132	8	5\%	4.0	8	5\%	4.0
Erosion Hazard Review Buffer	Yes	0	9\%	0.0	0	10\%	0.0
Resource Buffers	No	10	20\%	20.0	10	20\%	20.0
Watershed Regulation Areas	Urban	10	10\%	10.0	10	10\%	10.0
Water Quality Zones	250 Critical	10	3\%	3.0	0	5\%	0.0
Endangered Species	No	10	3\%	3.0	10	5\%	5.0
Bathhouse	Yes	10	5\%	5.0	10	2\%	2.5
Restrooms (Distance from Pool in ft.)	At pool	10	5\%	5.0	10	2\%	2.5
Regulatory Total (Out of 100)			100\%	89		100\%	48
Operations							
Maintenance Staff/Equipment Ease of Access	Good	7	20\%	14.0	7	10\%	7.0
Simplic ity of Equipment	Excellent	10	20\%	20.0	10	10\%	10.0
Equipment Condition/Replacement Cost	Excellent	10	30\%	30.0	10	15\%	15.0
Lawn/Landscaped Area	Fair	5	20\%	10.0	5	10\%	5.0
Employee Safety Measures	Fair	5	10\%	5.0	5	10\%	5.0
Operations Total (Out of 100)			100\%	79		55\%	42

Table A.3: Big Stacy

Big Stacy	Condition	Neighborhood Potential			Community/ Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Demographics							
20-Minute Walk							
Children	1,507	4	10\%	4.0	4	3\%	1.2
Seniors	987	9	5\%	4.5	9	2\%	1.8
Total Population	8,814	7	15\%	10.5	7	5\%	3.5
Median Household Income	\$59,376	6	5\%	3.0	6	3\%	1.8
Population Growth (5-Year)	425	7	5\%	3.5	7	3\%	2.1
Social Needs and Conditions Index	111	6	15\%	9.0	6	10\%	6.0
10-Minute Drive							
Children	21,330	6	3\%	1.8	6	10\%	6.0
Seniors	8,644	5	2\%	1.0	5	6\%	3.0
Total Population	112,262	7	6\%	4.2	7	15\%	10.5
Median Household Income	\$41,615	7	3\%	2.1	7	5\%	3.5
Population Growth (5-Year)	12,554	8	3\%	2.4	8	8\%	6.4
Capacity (based on surface area)	217	2	8\%	1.6	2	10\%	2.0
Attendance (5-Year Avg.)	70,432	10	10\%	10.0	10	10\%	10.0
Attendance/Capacity Ratio	324.9	10	10\%	10.0	10	10\%	10.0
Demographics Total (Out of 100)			100\%	68		100\%	68
Site Conditions							
Entrance/Drive	Yes	10	10\%	10.0	10	5\%	5.0
Parking Spaces (Count)	19	9	10\%	9.0	0	14\%	0.0
Site Area (Acres)	1.0	10	40\%	40.0	0	50\%	0.0
Grade Constraints	Moderate-Severe		0\%	0.0	2	14\%	2.8
Health, Safety, Welfare Issues	60\%	6	20\%	12.0	6	5\%	3.0
Designated Historical Features (Count)	4	0	10\%	0.0	0	6\%	0.0
Historic al Structure (Pool House or Pool)	1936	1	10\%	1.0	1	6\%	0.6
Site Total (Out of 100)			100\%	72		100\%	11
Location							
Heavily Trafficked Roadways (Traffic Counts)	3,690	9	5\%	4.5	9	5\%	4.5
Distance from Road	183	3	5\%	1.5	3	5\%	1.5
Railroads	None	10	5\%	5.0	10	5\%	5.0
Flight Zones (Noise Level - Decibels)	None	10	5\%	5.0	10	5\%	5.0
Competing Elements (Count)							
Other PARD Aquatic Facilities (20 Min . Walk)	1	5	20\%	10.0	5	8\%	4.0
Service Area Overlap (20 Min. Walk)	83\%	2	20\%	4.0	2	8\%	1.6
Private Aquatic Facilities (20 Min. Walk)	0	10	7\%	7.0	10	3\%	3.0
Programs By HOA/Private Orgs. (20 Min. Walk)	0	10	3\%	3.0	10	2\%	2.0
Symbiotic Elements (Count)							
Schools/Daycare Providers (5 Minute Walk)	1	2	10\%	2.0	2	19\%	3.8
Recreation Centers (5 Minute Walk)	0	0	10\%	0.0	0	20\%	0.0
Other Park Amenities (5 Minute Walk)	11	5	10\%	5.0	5	20\%	10.0
Location Total (Out of 100)			100\%	47		100\%	40
Accessibility							
Adjacent Roadway Class	Minor Arterial	10	5\%	5.0	8	5\%	4.0
Transit Access	Yes	10	15\%	15.0	10	15\%	15.0
Pedestrian Connectivity							
Walkways/Trails	Some	5	15\%	7.5	5	15\%	7.5
Crosswalks	None	0	5\%	0.0	0	5\%	0.0
Traffic Controls	None	0	5\%	0.0	0	5\%	0.0
Overall	Fair	3	15\%	4.5	3	15\%	4.5
Bicycle Connectivity							
Lanes	Some	5	10\%	5.0	5	10\%	5.0

Big Stacy	Condition	Neighborhood Potential			Community/Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Trails (Count)	None	0	15\%	0.0	0	15\%	0.0
Overall	Fair	3	15\%	4.5	3	15\%	4.5
Accessibility Total (Out of 100)			100\%	42		100\%	41
Infrastructure							
Electric Service Provider	Austin Energy	10	10\%	10.0	10	10\%	10.0
Electric Service (Phases)	2	5	5\%	2.5	5	10\%	5.0
Water (Dist. to 4" Line in ft.)	0	10	10\%	10.0	10	20\%	20.0
Reclaimed Water (Dist. in ft.)	None	0	10\%	0.0	0	15\%	0.0
Wastewater (Dist. to 8" Sewer Line in ft.)	50	8	5\%	4.0	8	15\%	12.0
Pool Condition	Fair	5	25\%	12.5	5	10\%	5.0
Bathhouse Condition	Fair	5	20\%	10.0	5	10\%	5.0
Storage Conditions	Good	7	10\%	7.0	7	5\%	3.5
COATN Service Area (Wi-Fi)	No	0	5\%	0.0	0	5\%	0.0
Infrastructure Total (Out of 100)			100\%	56		100\%	61
Environmental							
Trees (Number)							
2" to 19" in Diameter	89	1	3\%	0.3	1	5\%	0.5
19" to 24" in Diameter	12	4	3\%	1.2	4	5\%	2.0
Over 24" in Diameter (Including Heritage)	11	4	11\%	4.4	4	15\%	6.0
Grow Zones	Within 250	10	13\%	13.0	0	10\%	0.0
Aquifer Recharge	No	10	13\%	13.0	10	13\%	13.0
Pollinator Habitat	No	10	6\%	6.0	10	5\%	5.4
Wetlands	No	10	13\%	13.0	10	10\%	10.0
Rock Outcrop	No	10	13\%	13.0	10	13\%	13.0
Springs	Within 250	10	13\%	13.0	0	13\%	0.0
Environmental Sensitivity	Medium Sensitivity	5	6\%	3.0	5	5\%	2.7
Soil Suita bility	Somewhat Limited	5	6\%	3.0	5	5\%	2.7
Environmental Total (Out of 100)			100\%	83		100\%	55
Regulatory							
Flood Zones							
25-Year Floodpla in	Within 250	10	20\%	20.0	0	20\%	0.0
100-Year Floodpla in	Within 250	10	10\%	10.0	0	10\%	0.0
500-Year Floodplain	No	10	5\%	5.0	10	5\%	5.0
Zoning Designation	P-NP	8	5\%	4.0	8	5\%	4.0
Sub-Chapter E (Distance from Road in ft.)	183	7	5\%	3.5	7	5\%	3.5
Erosion Hazard Review Buffer	Within 250	10	9\%	9.0	0	10\%	0.0
Resource Buffers	No	10	20\%	20.0	10	20\%	20.0
Watershed Regulation Areas	Urban	10	10\%	10.0	10	10\%	10.0
Water Quality Zones	250 Critical	10	3\%	3.0	0	5\%	0.0
Endangered Species	No	10	3\%	3.0	10	5\%	5.0
Bathhouse	Yes	10	5\%	5.0	10	2\%	2.5
Restrooms (Distance from Pool in ft.)	At pool	10	5\%	5.0	10	2\%	2.5
Regulatory Total (Out of 100)			100\%	98		100\%	52
Operations							
Maintenance Staff/Equipment Ease of Access	Good	7	20\%	14.0	7	10\%	7.0
Simplic ity of Equipment	Fair	5	20\%	10.0	5	10\%	5.0
Equipment Condition/Replacement Cost	Poor	2	30\%	6.0	2	15\%	3.0
Lawn/Landscaped Area	Poor	2	20\%	4.0	2	10\%	2.0
Employee Safety Measures	Good	7	10\%	7.0	7	10\%	7.0
Operations Total (Out of 100)			100\%	41		55\%	24

Table A.4: Brentwood

Brentwood	Condition	Neighborhood Potential			Community/Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Demographics							
20-Minute Walk							
Children	1,236	3	10\%	3.0	3	3\%	0.9
Seniors	1,006	10	5\%	5.0	10	2\%	2.0
Total Population	8,526	7	15\%	10.5	7	5\%	3.5
Median Household Income	\$58,184	6	5\%	3.0	6	3\%	1.8
Population Growth (5-Year)	809	8	5\%	4.0	8	3\%	2.4
Social Needs and Conditions Index	92	4	15\%	6.0	4	10\%	4.0
10-Minute Drive							
Children	24,687	8	3\%	2.4	8	10\%	8.0
Seniors	10,513	9	2\%	1.8	9	6\%	5.4
Total Population	118,118	8	6\%	4.8	8	15\%	12.0
Median Household Income	\$42,412	7	3\%	2.1	7	5\%	3.5
Population Growth (5-Year)	8,731	4	3\%	1.2	4	8\%	3.2
Capacity (based on surface area)	182	1	8\%	0.8	1	10\%	1.0
Attendance (5-YearAvg.)	13,178	3	10\%	3.0	3	10\%	3.0
Attendance/Capacity Ratio	72.4	7	10\%	7.0	7	10\%	7.0
Demographics Total (Out of 100)			100\%	55		100\%	58
Site Conditions							
Entrance/Drive	No	0	10\%	0.0	0	5\%	0.0
Parking Spaces (Count)	1	1	10\%	1.0	0	14\%	0.0
Site Area (Acres)	1.4	10	40\%	40.0	0	50\%	0.0
Grade Constraints	Low		0\%	0.0	10	14\%	14.0
Health, Safety, Welfare Issues	68\%	7	20\%	14.0	7	5\%	3.5
Designated Historic al Features (Count)	0	10	10\%	10.0	10	6\%	6.0
Historical Struc ture (Pool House or Pool)	1954	4	10\%	4.0	4	6\%	2.4
Site Total (Out of 100)			100\%	69		100\%	26
Location							
Heavily Trafficked Roadways (Traffic Counts)	2,150	10	5\%	5.0	10	5\%	5.0
Distance from Road	48	0	5\%	0.0	0	5\%	0.0
Railroads	None	10	5\%	5.0	10	5\%	5.0
Flight Zones (Noise Level - Decibels)	None	10	5\%	5.0	10	5\%	5.0
Competing Elements (Count)							
Other PARD Aquatic Facilities (20 Min . Walk)	0	10	20\%	20.0	10	8\%	8.0
Service Area Overlap (20 Min. Walk)	30\%	7	20\%	14.0	7	8\%	5.6
Private Aquatic Facilities (20 Min . Walk)	0	10	7\%	7.0	10	3\%	3.0
Programs By HOA/Private Orgs. (20 Min. Walk)	0	10	3\%	3.0	10	2\%	2.0
Symbiotic Elements (Count)							
Schools/Daycare Providers (5 Minute Walk)	1	2	10\%	2.0	2	19\%	3.8
Recreation Centers (5 Minute Walk)	0	0	10\%	0.0	0	20\%	0.0
Other Park Amenities (5 Minute Walk)	13	6	10\%	6.0	6	20\%	12.0
Location Total (Out of 100)			100\%	67		100\%	49
Accessibility							
Adjacent Roadway Class	Collector	10	5\%	5.0	10	5\%	5.0
Transit Access	10 minute	3	15\%	4.5	3	15\%	4.5
Pedestrian Connectivity							
Walkways/Trails	Many	10	15\%	15.0	10	15\%	15.0
Crosswalks	Some	5	5\%	2.5	5	5\%	2.5
Traffic Controls	None	0	5\%	0.0	0	5\%	0.0
Overall	Good	7	15\%	10.5	7	15\%	10.5
Bicycle Connectivity							

Brentwood	Condition	Neighborhood Potential			Community/Regional Potential		
		Ranking	Importance Rating	$\begin{gathered} \hline \text { Element } \\ \text { Score } \\ \hline \end{gathered}$	Ranking	Importance Rating	Element Score
Lanes	Many	8	10\%	8.0	8	10\%	8.0
Trails (Count)	None	0	15\%	0.0	0	15\%	0.0
Overall	Good	7	15\%	10.5	7	15\%	10.5
Accessibility Total (Out of 100)			100\%	56		100\%	56
Infrastructure							
Electric Service Provider	Austin Energy	10	10\%	10.0	10	10\%	10.0
Electric Service (Phases)	2	5	5\%	2.5	5	10\%	5.0
Water (Dist. to 4" Line in ft.)	0	10	10\%	10.0	10	20\%	20.0
Reclaimed Water (Dist. in ft.)	None	0	10\%	0.0	0	15\%	0.0
Wastewater (Dist. to 8" Sewer Line in ft.)	501	8	5\%	4.0	8	15\%	12.0
Pool Condition	Fair	5	25\%	12.5	5	10\%	5.0
Bathhouse Condition	Poor	2	20\%	4.0	2	10\%	2.0
Storage Conditions	Fair	5	10\%	5.0	5	5\%	2.5
COATN Service Area (Wi-Fi)	No	0	5\%	0.0	0	5\%	0.0
Infrastructure Total (Out of 100)			100\%	48		100\%	57
Environmental							
Trees (Number)							
2" to 19" in Diameter	42	6	3\%	1.8	6	5\%	3.0
19" to 24" in Diameter	5	7	3\%	2.1	7	5\%	3.5
Over 24" in Dia meter (Including Henitage)	7	6	11\%	6.6	6	15\%	9.0
Grow Zones	No	10	13\%	13.0	10	10\%	10.0
Aquifer Recharge	No	10	13\%	13.0	10	13\%	13.0
Pollinator Habitat	No	10	6\%	6.0	10	5\%	5.4
Wetlands	No	10	13\%	13.0	10	10\%	10.0
Rock Outcrop	No	10	13\%	13.0	10	13\%	13.0
Springs	No	10	13\%	13.0	10	13\%	13.0
Environmental Sensitivity	Low Sensitivity	10	6\%	6.0	10	5\%	5.4
Soil Suita bility	Somewhat Limited	5	6\%	3.0	5	5\%	2.7
Environmental Total (Out of 100)			100\%	91		100\%	88
Regulatory							
Flood Zones							
25-Year Floodpla in	Within 250	10	20\%	20.0	0	20\%	0.0
100-Year Floodplain	Within 250	10	10\%	10.0	0	10\%	0.0
500-Year Floodpla in	No	10	5\%	5.0	10	5\%	5.0
Zoning Designation	P-NP	8	5\%	4.0	8	5\%	4.0
Sub-Chapter E (Distance from Road in ft.)	48	10	5\%	5.0	10	5\%	5.0
Erosion Hazard Review Buffer	Yes	0	9\%	0.0	0	10\%	0.0
Resource Buffers	No	10	20\%	20.0	10	20\%	20.0
Watershed Regulation Areas	Urban	10	10\%	10.0	10	10\%	10.0
WaterQuality Zones	250 Critic al	10	3\%	3.0	0	5\%	0.0
Endangered Species	No	10	3\%	3.0	10	5\%	5.0
Bathhouse	Restroom	5	5\%	2.5	5	2\%	1.2
Restrooms (Distance from Pool in ft.)	At pool	10	5\%	5.0	10	2\%	2.5
Regulatory Total (Out of 100)			100\%	88		100\%	53
Operations							
Maintenance Staff/Equipment Ease of Access	Fair	5	20\%	10.0	5	10\%	5.0
Simplic ity of Equipment	Good	7	20\%	14.0	7	10\%	7.0
Equipment Condition/Replacement Cost	Fair	5	30\%	15.0	5	15\%	7.5
Lawn/Landscaped Area	Good	7	20\%	14.0	7	10\%	7.0
Employee Safety Measures	Fair	5	10\%	5.0	5	10\%	5.0
Operations Total (Out of 100)			100\%	58		55\%	32

Table A.5: Canyon Vista

Canyon Vista	Condition	Neighborhood Potential			Community/Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Demographics							
20-Minute Walk							
Children	1,170	3	10\%	3.0	3	3\%	0.9
Seniors	689	5	5\%	2.5	5	2\%	1.0
Total Population	4,624	3	15\%	4.5	3	5\%	1.5
Median Household Income	\$109,267	0	5\%	0.0	0	3\%	0.0
Population Growth (5-Year)	280	3	5\%	1.5	3	3\%	0.9
Social Needs and Conditions Index	59	2	15\%	3.0	2	10\%	2.0
10-Minute Drive							
Children	14,213	4	3\%	1.2	4	10\%	4.0
Seniors	7,246	5	2\%	1.0	5	6\%	3.0
Total Population	69,673	5	6\%	3.0	5	15\%	7.5
Median Household Income	\$71,830	0	3\%	0.0	0	5\%	0.0
Population Growth (5-Year)	5,536	1	3\%	0.3	1	8\%	0.8
Capacity (based on surface area)	101	0	8\%	0.0	0	10\%	0.0
Attendance (5-YearAvg.)	10,172	2	10\%	2.0	2	10\%	2.0
Attendance/Capacity Ratio	100.5	10	10\%	10.0	10	10\%	10.0
Demographics Total (Out of 100)			100\%	32		100\%	34
Site Conditions							
Entrance/Drive	Yes	10	10\%	10.0	10	5\%	5.0
Parking Spaces (Count)	130	10	10\%	10.0	8	14\%	11.2
Site Area (Acres)	0.2	0	40\%	0.0	0	50\%	0.0
Grade Constraints	Severe		0\%	0.0	0	14\%	0.0
Health, Safety, Welfare Issues	60\%	6	20\%	12.0	6	5\%	3.0
Designated Historical Features (Count)	0	10	10\%	10.0	10	6\%	6.0
Historical Structure (Pool House or Pool)	No	10	10\%	10.0	10	6\%	6.0
Site Total (Out of 100)			100\%	52		100\%	31
Location							
Heavily Trafficked Roadways (Traffic Counts)	2,190	9	5\%	4.5	9	5\%	4.5
Distance from Road	370	7	5\%	3.5	7	5\%	3.5
Railroads	None	10	5\%	5.0	10	5\%	5.0
Flight Zones (Noise Level - Decibels)	None	10	5\%	5.0	10	5\%	5.0
Competing Elements (Count)							
Other PARD Aquatic Facilities (20 Min. Walk)	0	10	20\%	20.0	10	8\%	8.0
Service Area Overlap (20 Min. Walk)	0\%	10	20\%	20.0	10	8\%	8.0
Private Aquatic Facilities (20 Min. Walk)	0	10	7\%	7.0	10	3\%	3.0
Programs By HOA/Private Orgs. (20 Min. Walk)	0	10	3\%	3.0	10	2\%	2.0
Symbiotic Elements (Count)							
Schools/Daycare Providers (5 Minute Walk)	1	2	10\%	2.0	2	19\%	3.8
Recreation Centers (5 Minute Walk)	0	0	10\%	0.0	0	20\%	0.0
Other Park Amenities (5 Minute Walk)	0	0	10\%	0.0	0	20\%	0.0
Location Total (Out of 100)			100\%	70		100\%	43
Accessibility							
Adjacent Roadway Class	Collector	10	5\%	5.0	5	5\%	2.5
Transit Access	10 minute	3	15\%	4.5	3	15\%	4.5
Pedestrian Connectivity							
Walkways/Trails	Many	10	15\%	15.0	10	15\%	15.0
Crosswalks	Some	5	5\%	2.5	5	5\%	2.5
Traffic Controls	None	0	5\%	0.0	0	5\%	0.0
Overall	Good	7	15\%	10.5	7	15\%	10.5
Bicycle Connectivity							

Canyon Vista	Condition	Neighborhood Potential			Community/ Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Lanes	Many	10	10\%	10.0	10	10\%	10.0
Trails (Count)	None	0	15\%	0.0	0	15\%	0.0
Overall	Good	7	15\%	10.5	7	15\%	10.5
Accessibility Total (Out of 100)			100\%	58		100\%	56
Infrastructure							
Electric Service Provider	Other	0	10\%	0.0	0	10\%	0.0
Electric Service (Phases)		5	5\%	2.5	5	10\%	5.0
Water (Dist. to 4" Line in ft.)	0	10	10\%	10.0	10	20\%	20.0
Reclaimed Water (Dist. in ft.)	None	0	10\%	0.0	0	15\%	0.0
Wastewater (Dist. to 8" Sewer Line in ft.)	671	10	5\%	5.0	10	15\%	15.0
Pool Condition	Fair	5	25\%	12.5	5	10\%	5.0
Bathhouse Condition	Nonexistent	0	20\%	0.0	0	10\%	0.0
Storage Conditions	Good	7	10\%	7.0	7	5\%	3.5
COATN Service Area (Wi-Fi)	No	0	5\%	0.0	0	5\%	0.0
Infrastructure Total (Out of 100)			100\%	37		100\%	49
Environmental							
Trees (Number)							
2" to 19" in Diameter	0	10	3\%	3.0	10	5\%	5.0
19" to 24" in Diameter	0	10	3\%	3.0	10	5\%	5.0
Over 24" in Diameter (Including Heritage)	0	10	11\%	11.0	10	15\%	15.0
Grow Zones	No	10	13\%	13.0	10	10\%	10.0
Aquifer Recharge	Yes	0	13\%	0.0	0	13\%	0.0
Pollinator Habitat	No	10	6\%	6.0	10	5\%	5.4
Wetlands	No	10	13\%	13.0	10	10\%	10.0
Rock Outcrop	No	10	13\%	13.0	10	13\%	13.0
Springs	No	10	13\%	13.0	10	13\%	13.0
Environmental Sensitivity	Low Sensitivity	10	6\%	6.0	10	5\%	5.4
Soil Suitability	Very Limited	0	6\%	0.0	0	5\%	0.0
Environmental Total (Out of 100)			100\%	81		100\%	82
Regulatory							
Flood Zones							
25-Year Floodpla in	No	10	20\%	20.0	10	20\%	20.0
100-Year Floodplain	No	10	10\%	10.0	10	10\%	10.0
500-Year Floodpla in	No	10	5\%	5.0	10	5\%	5.0
Zoning Designation	SF-2-CO	0	5\%	0.0	0	5\%	0.0
Sub-Chapter E (Distance from Road in ft.)	370	4	5\%	2.0	4	5\%	2.0
Erosion Hazard Review Buffer	No	10	9\%	9.0	10	10\%	10.0
Resource Buffers	No	10	20\%	20.0	10	20\%	20.0
Watershed Regulation Areas	Vater Supply Suburba	5	10\%	5.0	5	10\%	5.0
Water Quality Zones	250 Transition	10	3\%	3.0	5	5\%	2.5
Endangered Species	Yes	0	3\%	0.0	0	5\%	0.0
Bathhouse	No	0	5\%	0.0	0	2\%	0.0
Restrooms (Distance from Pool in ft.)	180	0	5\%	0.0	0	2\%	0.0
Regulatory Total (Out of 100)			100\%	74		100\%	75
Operations							
Maintenance Staff/Equipment Ease of Access	Poor	2	20\%	4.0	2	10\%	2.0
Simplicity of Equipment	Poor	2	20\%	4.0	2	10\%	2.0
Equipment Condition/Replacement Cost	Poor	2	30\%	6.0	2	15\%	3.0
Lawn/Landscaped Area	Excellent	10	20\%	20.0	10	10\%	10.0
Employee Safety Measures	Poor	2	10\%	2.0	2	10\%	2.0
Operations Total (Out of 100)			100\%	36		55\%	19

Table A.6: Civitan

Civitan	Condition	Neighborhood Potential			Community/Regional Potential		
		Ranking	Rating	Element	Ranking	$\begin{array}{\|c} \hline \text { Importance } \\ \text { Rating } \\ \hline \end{array}$	Element Score
Demographics							
20-Minute Walk							
Children	1,687	5	10\%	5.0	5	3\%	1.5
Seniors	384	1	5\%	0.5	1	2\%	0.2
Total Population	5,407	3	15\%	4.5	3	5\%	1.5
Median Household Income	\$28,303	10	5\%	5.0	10	3\%	3.0
Population Growth (5-Year)	600	6	5\%	3.0	6	3\%	1.8
Social Needs and Conditions Index	185	10	15\%	15.0	10	10\%	10.0
10-Minute Drive							
Children	24,090	8	3\%	2.4	8	10\%	8.0
Seniors	7,247	5	2\%	1.0	5	6\%	3.0
Total Population	102,077	7	6\%	4.2	7	15\%	10.5
Median Household Income	\$33,325	9	3\%	2.7	9	5\%	4.5
Population Growth (5-Year)	11,745	7	3\%	2.1	7	8\%	5.6
Capacity (based on surface area)	160	1	8\%	0.8	1	10\%	1.0
Attendance (5-YearAvg.)	3,911	1	10\%	1.0	1	10\%	1.0
Attendance/Capacity Ratio	24.4	2	10\%	2.0	2	10\%	2.0
Demographics Total (Out of 100)			100\%	49		100\%	54
Stite Conditions							
Entrance/Drive	No	0	10\%	0.0	0	5\%	0.0
Parking Spaces (Count)	0	0	10\%	0.0	0	14\%	0.0
Site Area (Acres)	0.5	5	40\%	20.0	0	50\%	0.0
Grade Constraints	Low-Moderate		0\%	0.0	8	14\%	11.2
Health, Safety, Welfare Issues	60\%	6	20\%	12.0	6	5\%	3.0
Designated Historical Features (Count)	0	10	10\%	10.0	10	6\%	6.0
Historical Structure (Pool House or Pool)	1964	6	10\%	6.0	6	6\%	3.6
Site Total (Out of 100)			100\%	48		100\%	24
Location							
Heavily Trafficked Roadways (Traffic Counts)	3,170	0	5\%	0.0	0	5\%	0.0
Distance from Road	50	1	5\%	0.5	1	5\%	0.5
Railroads	None	10	5\%	5.0	10	5\%	5.0
Flight Zones (Noise Level - Decibels)	None	10	5\%	5.0	10	5\%	5.0
Competing Elements (Count)							
Other PARD Aquatic Facilities (20 Min . Walk)	1	5	20\%	10.0	5	8\%	4.0
Service Area Overlap (20 Min. Walk)	88\%	1	20\%	2.0	1	8\%	0.8
Private Aquatic Facilities (20 Min . Walk)	0	10	7\%	7.0	10	3\%	3.0
Programs By HOA/Private Orgs. (20 Min. Walk)	0	10	3\%	3.0	10	2\%	2.0
Symbiotic Elements (Count)							
Schools/Daycare Providers (5 Minute Walk)	1	2	10\%	2.0	2	19\%	3.8
Recreation Centers (5 Minute Walk)	0	0	10\%	0.0	0	20\%	0.0
Other Park Amenities (5 Minute Walk)	5	3	10\%	3.0	3	20\%	6.0
Location Total (Out of 100)			100\%	38		100\%	30
Accessibility							
Adjacent Roadway Class	Collector	10	5\%	5.0	5	5\%	2.5
Transit Access	Yes	10	15\%	15.0	10	15\%	15.0
Pedestrian Connectivity							
Walkways/Trails	Many	10	15\%	15.0	10	15\%	15.0
Crosswalks	Yes	10	5\%	5.0	10	5\%	5.0
Traffic Controls	None	0	5\%	0.0	0	5\%	0.0
Overall	Good	7	15\%	10.5	7	15\%	10.5
Bicycle Connectivity							

Civitan	Condition	Neighborhood Potential			Community/ Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Lanes	None	0	10\%	0.0	0	10\%	0.0
Trails (Count)	None	0	15\%	0.0	0	15\%	0.0
Overall	Good	7	15\%	10.5	7	15\%	10.5
Accessibility Total (Out of 100)			100\%	61		100\%	59
Infrastructure							
Electric Service Provider	Austin Energy	10	10\%	10.0	10	10\%	10.0
Electric Service (Phases)	2	5	5\%	2.5	5	10\%	5.0
Water (Dist. to 4" Line in ft.)	0	10	10\%	10.0	10	20\%	20.0
Reclaimed Water (Dist. in ft.)	None	0	10\%	0.0	0	15\%	0.0
Wastewater (Dist. to 8" Sewer Line in ft.)	71	8	5\%	4.0	8	15\%	12.0
Pool Condition	Poor	2	25\%	5.0	2	10\%	2.0
Bathhouse Condition	Poor	2	20\%	4.0	2	10\%	2.0
Storage Conditions	Good	7	10\%	7.0	7	5\%	3.5
COATN Service Area (Wi-Fi)	No	0	5\%	0.0	0	5\%	0.0
Infrastruc ture Total (Out of 100)			100\%	43		100\%	55
Environmental							
Trees (Number)							
2" to 19" in Diameter	1	10	3\%	3.0	10	5\%	5.0
19" to 24" in Diameter	0	10	3\%	3.0	10	5\%	5.0
Over 24" in Dia meter (Including Heritage)	3	8	11\%	8.8	8	15\%	12.0
Grow Zones	No	10	13\%	13.0	10	10\%	10.0
Aquifer Recharge	No	10	13\%	13.0	10	13\%	13.0
Pollinator Habitat	No	10	6\%	6.0	10	5\%	5.4
Wetlands	No	10	13\%	13.0	10	10\%	10.0
Rock Outcrop	No	10	13\%	13.0	10	13\%	13.0
Springs	No	10	13\%	13.0	10	13\%	13.0
Environmental Sensitivity	Low Sensitivity	10	6\%	6.0	10	5\%	5.4
Soil Suitability	Not Limited	10	6\%	6.0	10	5\%	5.4
Environmental Total (Out of 100)			100\%	98		100\%	97
Regulatory							
Flood Zones							
25-Year Floodpla in	No	10	20\%	20.0	10	20\%	20.0
100-Year Floodplain	No	10	10\%	10.0	10	10\%	10.0
500-Year Floodplain	No	10	5\%	5.0	10	5\%	5.0
Zoning Designation	SF-3-NP	0	5\%	0.0	0	5\%	0.0
Sub-Chapter E (Distance from Road in ft.)	50	10	5\%	5.0	10	5\%	5.0
Erosion Hazard Review Buffer	No	10	9\%	9.0	10	10\%	10.0
Resource Buffers	No	10	20\%	20.0	10	20\%	20.0
Watershed Regulation Areas	Suburban	8	10\%	8.0	8	10\%	8.0
Water Quality Zones	No	10	3\%	3.0	10	5\%	5.0
Endangered Species	No	10	3\%	3.0	10	5\%	5.0
Bathhouse	No	10	5\%	5.0	10	2\%	2.5
Restrooms (Distance from Pool in ft.)	70	5	5\%	2.5	5	2\%	1.2
Regulatory Total (Out of 100)			100\%	91		100\%	92
Operations							
Maintenance Staff/Equipment Ease of Access	Poor	2	20\%	4.0	2	10\%	2.0
Simplic ity of Equipment	Good	7	20\%	14.0	7	10\%	7.0
Equipment Condition/Replacement Cost	Poor	2	30\%	6.0	2	15\%	3.0
Lawn/Landscaped Area	Fair	5	20\%	10.0	5	10\%	5.0
Employee Safety Measures	Good	7	10\%	7.0	7	10\%	7.0
Operations Total (Out of 100)			100\%	41		55\%	24

Table A.7: Colony Park

Colony Park	Condition	Neighborhood Potential			Community/ Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Demographics							
20-Minute Walk							
Children	2,030	6	10\%	6.0	6	3\%	1.8
Seniors	304	1	5\%	0.5	1	2\%	0.2
Total Population	5,735	4	15\%	6.0	4	5\%	2.0
Median Household Income	\$33,337	9	5\%	4.5	9	3\%	2.7
Population Growth (5-Year)	683	7	5\%	3.5	7	3\%	2.1
Social Needs and Conditions Index	180	10	15\%	15.0	10	10\%	10.0
10-Minute Drive							
Children	12,921	3	3\%	0.9	3	10\%	3.0
Seniors	3,501	2	2\%	0.4	2	6\%	1.2
Total Population	41,680	3	6\%	1.8	3	15\%	4.5
Median Household Income	\$37,229	8	3\%	2.4	8	5\%	4.0
Population Growth (5-Year)	4,715	0	3\%	0.0	0	8\%	0.0
Capacity (based on surface area)	N/A						
Attendance (5-Year Avg.)	N/A						
Attendance/Capacity Ratio	N/A						
Demographics Total (Out of 100)			72\%	57		70\%	45
Site Conditions							
Entrance/Drive	Yes	10	10\%	10.0	10	5\%	5.0
Parking Spaces (Count)	0	0	10\%	0.0	0	14\%	0.0
Site Area (Acres)	6.0	10	40\%	40.0	10	50\%	50.0
Grade Constraints	Low-Moderate		0\%	0.0	8	14\%	11.2
Health, Safety, Welfare Issues	NA						
Designated Historic al Features (Count)	0	10	10\%	10.0	10	6\%	6.0
Historical Struc ture (Pool House or Pool)	No	10	10\%	10.0	10	6\%	6.0
Site Total (Out of 100)			80\%	88		95\%	82
Location							
Heavily Trafficked Roadways (Traffic Counts)	3,530	9	5\%	4.5	9	5\%	4.5
Distance from Road	445	10	5\%	5.0	10	5\%	5.0
Railroads	None	10	5\%	5.0	10	5\%	5.0
Flight Zones (Noise Level - Decibels)	None	10	5\%	5.0	10	5\%	5.0
Competing Elements (Count)							
Other PARD Aquatic Facilities (20 Min. Walk)	0	10	20\%	20.0	10	8\%	8.0
Service Area Overlap (20 Min . Walk)	0\%	10	20\%	20.0	10	8\%	8.0
Private Aquatic Facilities (20 Min . Walk)	0	10	7\%	7.0	10	3\%	3.0
Programs By HOA/Private Orgs. (20 Min. Walk)	0	10	3\%	3.0	10	2\%	2.0
Symbiotic Elements (Count)							
Schools/Daycare Providers (5 Minute Walk)	1	2	10\%	2.0	2	19\%	3.8
Recreation Centers (5 Minute Walk)	1	5	10\%	5.0	5	20\%	10.0
Other Park Amenities (5 Minute Walk)	5	3	10\%	3.0	3	20\%	6.0
Location Total (Out of 100)			100\%	80		100\%	60
Accessibility							
Adjacent Roadway Class	Minor Arterial	10	5\%	5.0	8	5\%	4.0
Transit Access	Yes	10	15\%	15.0	10	15\%	15.0
Pedestrian Connectivity							
Walkways/Trails	Some	5	15\%	7.5	5	15\%	7.5
Crosswalks	None	0	5\%	0.0	0	5\%	0.0
Traffic Controls	None	0	5\%	0.0	0	5\%	0.0
Overall	Fair	3	15\%	4.5	3	15\%	4.5
Bicycle Connectivity							

Colony Park	Condition	Neighborhood Potential			Community/ Regional Potential		
		Ranking	$\begin{array}{c}\text { Importance } \\ \text { Rating }\end{array}$	Element Score	Ranking	Importance Rating	Element Score
Lanes	Some	5	10\%	5.0	5	10\%	5.0
Trails (Count)	None	0	15\%	0.0	0	15\%	0.0
Overall	Fair	5	15\%	7.5	5	15\%	7.5
Accessibility Total (Out of 100)			100\%	45		100\%	44
Infrastructure							
Electric Service Provider	Austin Energy	10	10\%	10.0	10	10\%	10.0
Electric Service (Phases)	3	10	5\%	5.0	10	10\%	10.0
Water (Dist. to 4" Line in ft.)	0	10	10\%	10.0	10	20\%	20.0
Reclaimed Water (Dist. in ft.)	None	0	10\%	0.0	0	15\%	0.0
Wastewater (Dist. to 8" Sewer Line in ft.)	686'	0	5\%	0.0	0	15\%	0.0
Pool Condition	N/A		25\%	0.0		10\%	0.0
Bathhouse Condition	N/A		20\%	0.0		10\%	0.0
Storage Conditions	N/A		10\%	0.0		5\%	0.0
COATN Service Area (Wi-Fi)	No	0	5\%	0.0	0	5\%	0.0
Infrastructure Total (Out of 100)			100\%	25		100\%	40
Environmental							
Trees (Number)							
2" to 19" in Diameter	Many	0	3\%	0.0	0	5\%	0.0
19" to 24" in Diameter	Unknown	5	3\%	1.5	5	5\%	2.5
Over 24" in Diameter (Including Heritage)	Unknown	5	11\%	5.5	5	15\%	7.5
Grow Zones	No	10	13\%	13.0	10	10\%	10.0
Aquifer Recharge	No	10	13\%	13.0	10	13\%	13.0
Pollinator Habitat	No	10	6\%	6.0	10	5\%	5.4
Wetlands	No	10	13\%	13.0	10	10\%	10.0
Rock Outcrop	No	10	13\%	13.0	10	13\%	13.0
Springs	No	10	13\%	13.0	10	13\%	13.0
Environmental Sensitivity	Medium Sensitivity	5	6\%	3.0	5	5\%	2.7
Soil Suita bility	Very Limited	0	6\%	0.0	0	5\%	0.0
Environmental Total (Out of 100)			100\%	81		100\%	77
Regulatory							
Flood Zones							
25-Year Floodplain	No	10	20\%	20.0	10	20\%	20.0
100-Year Floodpla in	No	10	10\%	10.0	10	10\%	10.0
500-Year Floodpla in	No	10	5\%	5.0	10	5\%	5.0
Zoning Designation	P	10	5\%	5.0	10	5\%	5.0
Sub-Chapter E (Distance from Road in ft.)	445	2	5\%	1.0	2	5\%	1.0
Erosion Hazard Review Buffer	No	10	9\%	9.0	10	10\%	10.0
Resource Buffers	CEF Buffer within 250	10	20\%	20.0	0	20\%	0.0
Watershed Regulation Areas	Suburban	8	10\%	8.0	8	10\%	8.0
Water Quality Zones	No	10	3\%	3.0	10	5\%	5.0
Endangered Species	No	10	3\%	3.0	10	5\%	5.0
Bathhouse	No	0	5\%	0.0	0	2\%	0.0
Restrooms (Distance from Pool in ft.)	No	0	5\%	0.0	0	2\%	0.0
Regulatory Total (Out of 100)			100\%	84		100\%	69
Operations							
Maintenance Staff/Equipment Ease of Access	N/A		20\%	0.0		10\%	0.0
Simplicity of Equipment	N/A		20\%	0.0		10\%	0.0
Equipment Condition/Replacement Cost	N/A		30\%	0.0		15\%	0.0
Lawn/Landscaped Area	N/A		20\%	0.0		10\%	0.0
Employee Safety Measures	N/A		10\%	0.0		10\%	0.0
Operations Total (Out of 100)			100\%	0		55\%	0

Table A.8: Deep Eddy

Deep Eddy	Condition	Neighborhood Potential			Community/ Regional Potential		
		Ranking	Importance Rating	Eement Score	Ranking	$\begin{array}{\|c} \hline \text { Importance } \\ \text { Rating } \end{array}$	Element Score
Demographics							
20-Minute Walk							
Children	346	0	10\%	0.0	0	3\%	0.0
Seniors	253	0	5\%	0.0	0	2\%	0.0
Total Population	2,814	1	15\%	1.5	1	5\%	0.5
Median Household Income	\$84,213	2	5\%	1.0	2	3\%	0.6
Population Growth (5-Year)	267	3	5\%	1.5	3	3\%	0.9
Social Needs and Conditions Index	41	1	15\%	1.5	1	10\%	1.0
10-Minute Drive							
Children	13,088	3	3\%	0.9	3	10\%	3.0
Seniors	9,255	7	2\%	1.4	7	6\%	4.2
Total Population	93,485	6	6\%	3.6	6	15\%	9.0
Median Household Income	\$64,725	1	3\%	0.3	1	5\%	0.5
Population Growth (5-Year)	8,938	4	3\%	1.2	4	8\%	3.2
Capacity (based on surface area)	1,222	10	8\%	8.0	10	10\%	10.0
Attendance (5-YearAvg.)	154,364	10	10\%	10.0	10	10\%	10.0
Attendance/Capacity Ratio	126.3	10	10\%	10.0	10	10\%	10.0
Demographics Total (Out of 100)			100\%	41		100\%	53
Site Conditions							
Entrance/Drive	Yes	10	10\%	10.0	10	5\%	5.0
Parking Spaces (Count)	73	10	10\%	10.0	4	14\%	5.6
Site Area (Acres)	3.2	10	40\%	40.0	5	50\%	25.0
Grade Constraints	Severe		0\%	0.0	0	14\%	0.0
Health, Safety, Welfare Issues	68\%	7	20\%	14.0	7	5\%	3.5
Designated Historical Features (Count)	10	0	10\%	0.0	0	6\%	0.0
Historic al Structure (Pool House or Pool)	Yes	0	10\%	0.0	0	6\%	0.0
Site Total (Out of 100)			100\%	74		100\%	39
Location							
Heavily Trafficked Roadways (Traffic Counts)	17,060	6	5\%	3.0	6	5\%	3.0
Distance from Road	509	0	5\%	0.0	0	5\%	0.0
Railroads	None	10	5\%	5.0	10	5\%	5.0
Flight Zones (Noise Level - Decibels)	None	10	5\%	5.0	10	5\%	5.0
Competing Elements (Count)							
Other PARD Aquatic Facilities (20 Min . Walk)	0	10	20\%	20.0	10	8\%	8.0
Service Area Overlap (20 Min. Walk)	75\%	2	20\%	4.0	2	8\%	1.6
Private Aquatic Facilities (20 Min . Walk)	0	10	7\%	7.0	10	3\%	3.0
Programs By HOA/Private Orgs. (20 Min. Walk)	0	10	3\%	3.0	10	2\%	2.0
Symbiotic Elements (Count)							
Schools/Daycare Providers (5 Minute Walk)	0	0	10\%	0.0	0	19\%	0.0
Recreation Centers (5 Minute Walk)	0	0	10\%	0.0	0	20\%	0.0
Other Park Amenities (5 Minute Walk)	19	9	10\%	9.0	9	20\%	18.0
Location Total (Out of 100)			100\%	56		100\%	46
Accessibility							
Adjacent Roadway Class	Minor Arterial	10	5\%	5.0	8	5\%	4.0
Transit Access	At pool	10	15\%	15.0	10	15\%	15.0
Pedestrian Connectivity							
Walkways/Trails	Some	5	15\%	7.5	5	15\%	7.5
Crosswalks	Some	5	5\%	2.5	5	5\%	2.5
Traffic Controls	None	0	5\%	0.0	0	5\%	0.0
Overall	Fair	3	15\%	4.5	3	15\%	4.5
Bic ycle Connectivity							

Deep Eddy	Condition	Neighborhood Potential			Community/ Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Lanes	Some	5	10\%	5.0	5	10\%	5.0
Trails (Count)	2	10	15\%	15.0	10	15\%	15.0
Overall	Excellent	10	15\%	15.0	10	15\%	15.0
Accessibility Total (Out of 100)			100\%	70		100\%	69
Infrastructure							
Electric Service Provider	Austin Energy	10	10\%	10.0	10	10\%	10.0
Electric Service (Phases)	2	5	5\%	2.5	5	10\%	5.0
Water (Dist. to 4" Line in ft.)	0	10	10\%	10.0	10	20\%	20.0
Reclaimed Water (Dist. in ft.)	None	0	10\%	0.0	0	15\%	0.0
Wastewater (Dist. to 8" Sewer Line in ft.)	$0{ }^{\prime}$	10	5\%	5.0	10	15\%	15.0
Pool Condition	Poor	2	25\%	5.0	2	10\%	2.0
Bathhouse Condition	Fair	5	20\%	10.0	5	10\%	5.0
Storage Conditions	Good	7	10\%	7.0	7	5\%	3.5
COATN Service Area (Wi-Fi)	Yes	10	5\%	5.0	10	5\%	5.0
Infrastructure Total (Out of 100)			100\%	55		100\%	66
Environmental							
Trees (Number)							
2" to 19" in Diameter	0	10	3\%	3.0	10	5\%	5.0
19" to 24" in Diameter	0	10	3\%	3.0	10	5\%	5.0
Over 24" in Diameter (Including Heritage)	2	9	11\%	9.9	9	15\%	13.5
Grow Zones	No	10	13\%	13.0	10	10\%	10.0
Aquifer Recharge	Yes	0	13\%	0.0	0	13\%	0.0
Pollinator Habitat	No	10	6\%	6.0	10	5\%	5.4
Wetlands	No	10	13\%	13.0	10	10\%	10.0
Rock Outcrop	No	10	13\%	13.0	10	13\%	13.0
Springs	No	10	13\%	13.0	10	13\%	13.0
Environmental Sensitivity	Medium Sensitivity	5	6\%	3.0	5	5\%	2.7
Soil Suita bility	Very Limited	0	6\%	0.0	0	5\%	0.0
Environmental Total (Out of 100)			100\%	77		100\%	78
Regulatory							
Flood Zones							
25-Year Floodplain	No	10	20\%	20.0	10	20\%	20.0
100-Year Floodplain	Yes	0	10\%	0.0	0	10\%	0.0
500-Year Floodplain	Yes	0	5\%	0.0	0	5\%	0.0
Zoning Designation	P-H-NP	6	5\%	3.0	6	5\%	3.0
Sub-ChapterE (Distance from Road in ft.)	260	6	5\%	3.0	6	5\%	3.0
Erosion Hazard Review Buffer	No	10	9\%	9.0	10	10\%	10.0
Resource Buffers	No	10	20\%	20.0	10	20\%	20.0
Watershed Regulation Areas	Nater Supply Suburba	5	10\%	5.0	5	10\%	5.0
Water Quality Zones	No	10	3\%	3.0	10	5\%	5.0
Endangered Species	No	10	3\%	3.0	10	5\%	5.0
Bathhouse	Yes	10	5\%	5.0	10	2\%	2.5
Restrooms (Distance from Pool in ft.)	At pool	10	5\%	5.0	10	2\%	2.5
Regulatory Total (Out of 100)			100\%	76		100\%	76
Operations							
Maintenance Staff/Equipment Ease of Access	Poor	2	20\%	4.0	2	10\%	2.0
Simplicity of Equipment	Poor	2	20\%	4.0	2	10\%	2.0
Equipment Condition/Replacement Cost	Poor	2	30\%	6.0	2	15\%	3.0
Lawn/Landscaped Area	Poor	2	20\%	4.0	2	10\%	2.0
Employee Safety Measures	Fair	5	10\%	5.0	5	10\%	5.0
Operations Total (Out of 100)			100\%	23		55\%	14

Table A.9: Dick Nichols

Dick Nichols	Condition	Neighborhood Potential			Community/ Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Demographics							
20-Minute Walk							
Children	1,392	3	10\%	3.0	3	3\%	0.9
Seniors	601	4	5\%	2.0	4	2\%	0.8
Total Population	5,568	4	15\%	6.0	4	5\%	2.0
Median Household Income	\$101,693	0	5\%	0.0	0	3\%	0.0
Population Growth (5-Year)	293	3	5\%	1.5	3	3\%	0.9
Social Needs and Conditions Index	88	4	15\%	6.0	4	10\%	4.0
10-Minute Drive							
Children	18,310	5	3\%	1.5	5	10\%	5.0
Seniors	7,095	6	2\%	1.2	6	6\%	3.6
Total Population	76,293	5	6\%	3.0	5	15\%	7.5
Median Household Income	\$82,038	0	3\%	0.0	0	5\%	0.0
Population Growth (5-Year)	6,663	2	3\%	0.6	2	8\%	1.6
Capacity (based on surface area)	621	7	8\%	5.6	7	10\%	7.0
Attendance (5-YearAvg.)	46,189	9	10\%	9.0	9	10\%	9.0
Attendance/Capacity Ratio	74.4	7	10\%	7.0	7	10\%	7.0
Demographics Total (Out of 100)			100\%	46		100\%	49
Site Conditions							
Entrance/Drive	Yes	10	10\%	10.0	10	5\%	5.0
Parking Spaces (Count)	57	10	10\%	10.0	3	14\%	4.2
Site Area (Acres)	9.8	10	40\%	40.0	10	50\%	50.0
Grade Constraints	Moderate		0\%	0.0	5	14\%	7.0
Health, Safety, Welfare Issues	65\%	7	20\%	14.0	7	5\%	3.5
Designated Historic al Features (Count)	0	10	10\%	10.0	10	6\%	6.0
Historic al Struc ture (Pool House or Pool)	No	10	10\%	10.0	10	6\%	6.0
Site Total (Out of 100)			100\%	94		100\%	82
Location							
Heavily Trafficked Roadways (Traffic Counts)	5,090	9	5\%	4.5	9	5\%	4.5
Distance from Road	442	9	5\%	4.5	9	5\%	4.5
Railroads	None	10	5\%	5.0	10	5\%	5.0
Flight Zones (Noise Level - Decibels)	None	10	5\%	5.0	10	5\%	5.0
Competing Elements (Count)							
Other PARD Aquatic Facilities (20 Min. Walk)	0	10	20\%	20.0	10	8\%	8.0
Service Area Overlap (20 Min. Walk)	0\%	10	20\%	20.0	10	8\%	8.0
Private Aquatic Facilities (20 Min . Walk)	1	5	7\%	3.5	5	3\%	1.5
Programs By HOA/Private Orgs. (20 Min. Walk)	1	5	3\%	1.5	5	2\%	1.0
Symbiotic Elements (Count)							
Schools/Daycare Providers (5 Minute Walk)	0	0	10\%	0.0	0	19\%	0.0
Recreation Centers (5 Minute Walk)	0	0	10\%	0.0	0	20\%	0.0
Other Park Amenities (5 Minute Walk)	15	8	10\%	8.0	8	20\%	16.0
Location Total (Out of 100)			100\%	72		100\%	54
Accessibility							
Adjacent Roadway Class	Minor Arterial	10	5\%	5.0	8	5\%	4.0
Transit Access	At pool	10	15\%	15.0	10	15\%	15.0
Pedestrian Connectivity							
Walkways/Trails	Many	10	15\%	15.0	10	15\%	15.0
Crosswalks	Yes	10	5\%	5.0	10	5\%	5.0
Traffic Controls	None	0	5\%	0.0	0	5\%	0.0
Overall	Good	7	15\%	10.5	7	15\%	10.5
Bicycle Connectivity							

Dick Nichols	Condition	Neighborhood Potential			Community/ Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Lanes	Some	5	10\%	5.0	5	10\%	5.0
Trails (Count)	None	0	15\%	0.0	0	15\%	0.0
Overall	Good	7	15\%	10.5	7	15\%	10.5
Accessibility Total (Out of 100)			100\%	66		100\%	65
Infrastructure							
Electric Service Provider	Austin Energy	10	10\%	10.0	10	10\%	10.0
Electric Service (Phases)	3	10	5\%	5.0	10	10\%	10.0
Water (Dist. to 4" Line in ft.)	0	10	10\%	10.0	10	20\%	20.0
Reclaimed Water (Dist. in ft.)	None	0	10\%	0.0	0	15\%	0.0
Wastewater (Dist. to 8" Sewer Line in ft.)	3501	3	5\%	1.5	3	15\%	4.5
Pool Condition	Good	7	25\%	17.5	7	10\%	7.0
Bathhouse Condition	Fair	5	20\%	10.0	5	10\%	5.0
Storage Conditions	Good	7	10\%	7.0	7	5\%	3.5
COATN Service Area (Wi-Fi)	No	0	5\%	0.0	0	5\%	0.0
Infrastructure Total (Out of 100)			100\%	61		100\%	60
Environmental							
Trees (Number)							
2" to 19" in Diameter	3	9	3\%	2.7	9	5\%	4.5
19" to 24" in Dia meter	0	10	3\%	3.0	10	5\%	5.0
Over 24" in Diameter (Including Hentage)	0	10	11\%	11.0	10	15\%	15.0
Grow Zones	No	10	13\%	13.0	10	10\%	10.0
Aquifer Recharge	Yes	0	13\%	0.0	0	13\%	0.0
Pollinator Habitat	No	10	6\%	6.0	10	5\%	5.4
Wetlands	No	10	13\%	13.0	10	10\%	10.0
Rock Outcrop	No	10	13\%	13.0	10	13\%	13.0
Springs	No	10	13\%	13.0	10	13\%	13.0
Environmental Sensitivity	Medium Sensitivity	5	6\%	3.0	5	5\%	2.7
Soil Suitability	Very Limited	0	6\%	0.0	0	5\%	0.0
Environmental Total (Out of 100)			100\%	78		100\%	79
Regulatory							
Flood Zones							
25-Year Floodpla in	No	10	20\%	20.0	10	20\%	20.0
100-Year Floodpla in	No	10	10\%	10.0	10	10\%	10.0
500-Year Floodpla in	Within 250	10	5\%	5.0	0	5\%	0.0
Zoning Designation	P	10	5\%	5.0	10	5\%	5.0
Sub-Chapter E (Distance from Road in ft.)	442	2	5\%	1.0	2	5\%	1.0
Erosion Hazard Review Buffer	No	10	9\%	9.0	10	10\%	10.0
Resource Buffers	No	10	20\%	20.0	10	20\%	20.0
Watershed Regulation Areas	Barton Springs Zone	0	10\%	0.0	0	10\%	0.0
Water Quality Zones	Transition	5	3\%	1.5	5	5\%	2.5
Endangered Species	No	10	3\%	3.0	10	5\%	5.0
Bathhouse	Yes	10	5\%	5.0	10	2\%	2.5
Restrooms (Distance from Pool in ft.)	At pool	10	5\%	5.0	10	2\%	2.5
Regulatory Total (Out of 100)			100\%	85		100\%	78
Operations							
Maintenance Staff/Equipment Ease of Access	Fair	5	20\%	10.0	5	10\%	5.0
Simplic ity of Equipment	Good	7	20\%	14.0	7	10\%	7.0
Equipment Condition/Replacement Cost	Good	7	30\%	21.0	7	15\%	10.5
Lawn/Landscaped Area	Fair	5	20\%	10.0	5	10\%	5.0
Employee Safety Measures	Good	7	10\%	7.0	7	10\%	7.0
Operations Total (Out of 100)			100\%	62		55\%	35

Table A.10: Dittmar

Ditimar	Condition	Neighborhood Potential			Community/Regional Potential		
		Ranking	Importance Rating	$\begin{gathered} \hline \text { Element } \\ \text { Score } \\ \hline \end{gathered}$	Ranking	Importance Rating	Element Score
Demographics							
20-Minute Walk							
Children	1,090	2	10\%	2.0	2	3\%	0.6
Seniors	449	2	5\%	1.0	2	2\%	0.4
Total Population	4,932	3	15\%	4.5	3	5\%	1.5
Median Household Income	\$54,016	7	5\%	3.5	7	3\%	2.1
Population Growth (5-Year)	255	3	5\%	1.5	3	3\%	0.9
Social Needs and Conditions Index	131	7	15\%	10.5	7	10\%	7.0
10-Minute Drive							
Children	24,211	8	3\%	2.4	8	10\%	8.0
Seniors	9,904	8	2\%	1.6	8	6\%	4.8
Total Population	110,049	7	6\%	4.2	7	15\%	10.5
Median Household Income	\$55,260	4	3\%	1.2	4	5\%	2.0
Population Growth (5-Year)	11,426	6	3\%	1.8	6	8\%	4.8
Capacity (based on surface area)	345	3	8\%	2.4	3	10\%	3.0
Attendance (5-YearAvg.)	29,800	6	10\%	6.0	6	10\%	6.0
Attendance/Capacity Ratio	86.3	9	10\%	9.0	9	10\%	9.0
Demographics Total (Out of 100)			100\%	52		100\%	61
Site Conditions							
Entrance/Drive	Yes	10	10\%	10.0	10	5\%	5.0
Parking Spaces (Count)	110	10	10\%	10.0	6	14\%	8.4
Site Area (Acres)	1.1	10	40\%	40.0	0	50\%	0.0
Grade Constraints	Severe		0\%	0.0	0	14\%	0.0
Health, Safety, Welfare Issues	60\%	6	20\%	12.0	6	5\%	3.0
Designated Historic al Features (Count)	0	10	10\%	10.0	10	6\%	6.0
Historic al Struc ture (Pool House or Pool)	No	10	10\%	10.0	10	6\%	6.0
Site Total (Out of 100)			100\%	92		100\%	28
Location							
Heavily Trafficked Roadways (Traffic Counts)	8,170	8	5\%	4.0	8	5\%	4.0
Distance from Road	225	5	5\%	2.5	5	5\%	2.5
Railroads	None	10	5\%	5.0	10	5\%	5.0
Flight Zones (Noise Level - Decibels)	None	10	5\%	5.0	10	5\%	5.0
Competing Elements (Count)							
Other PARD Aquatic Facilities (20 Min . Walk)	0	10	20\%	20.0	10	8\%	8.0
Service Area Overlap (20 Min. Walk)	0\%	10	20\%	20.0	10	8\%	8.0
Private Aquatic Facilities (20 Min . Walk)	0	10	7\%	7.0	10	3\%	3.0
Programs By HOA/Private Orgs. (20 Min. Walk)	0	10	3\%	3.0	10	2\%	2.0
Symbiotic Elements (Count)							
Schools/Daycare Providers (5 Minute Walk)	0	0	10\%	0.0	0	19\%	0.0
Recreation Centers (5 Minute Walk)	1	5	10\%	5.0	5	20\%	10.0
Other Park Amenities (5 Minute Walk)	6	3	10\%	3.0	3	20\%	6.0
Location Total (Out of 100)			100\%	75		100\%	54
Accessibility							
Adjacent Roadway Class	Major Arterial	10	5\%	5.0	10	5\%	5.0
Transit Access	No	0	15\%	0.0	0	15\%	0.0
Pedestrian Connectivity							
Walkways/Trails	Some	5	15\%	7.5	5	15\%	7.5
Crosswalks	Some	5	5\%	2.5	5	5\%	2.5
Traffic Controls	None	0	5\%	0.0	0	5\%	0.0
Overall	Good	7	15\%	10.5	7	15\%	10.5
Bicycle Connectivity							

Ditmar	Condition	Neighborhood Potential			Community/Regional Potential		
		Ranking	Importance Rating	Eement Score	Ranking	$\begin{gathered} \text { Importance } \\ \text { Rating } \\ \hline \end{gathered}$	Element Score
Lanes	Some	5	10\%	5.0	5	10\%	5.0
Trails (Count)	None	0	15\%	0.0	0	15\%	0.0
Overall	Fair	3	15\%	4.5	3	15\%	4.5
Accessibility Total (Out of 100)			100\%	35		100\%	35
Infrastructure							
Electric Service Provider	Austin Energy	10	10\%	10.0	10	10\%	10.0
Electric Service (Phases)	3	10	5\%	5.0	10	10\%	10.0
Water (Dist. to 4" Line in ft.)	0	10	10\%	10.0	10	20\%	20.0
Reclaimed Water (Dist. in ft.)	None	0	10\%	0.0	0	15\%	0.0
Wastewater (Dist. to 8" Sewer Line in ft.)	300'	5	5\%	2.5	5	15\%	7.5
Pool Condition	Fair	5	25\%	12.5	5	10\%	5.0
Bathhouse Condition	Good	7	20\%	14.0	7	10\%	7.0
Storage Conditions	Good	7	10\%	7.0	7	5\%	3.5
COATN Service Area (Wi-Fi)	Potential	8	5\%	4.0	8	5\%	4.0
Infrastructure Total (Out of 100)			100\%	65		100\%	67
Environmental							
Trees (Number)							
2" to 19" in Diameter	30	7	3\%	2.1	7	5\%	3.5
19" to 24" in Diameter	3	3	3\%	0.9	3	5\%	1.5
Over 24" in Diameter (Including Heritage)	5	7	11\%	7.7	7	15\%	10.5
Grow Zones	No	10	13\%	13.0	10	10\%	10.0
Aquifer Recharge	No	10	13\%	13.0	10	13\%	13.0
Pollinator Habitat	No	10	6\%	6.0	10	5\%	5.4
Wetlands	No	10	13\%	13.0	10	10\%	10.0
Rock Outcrop	No	10	13\%	13.0	10	13\%	13.0
Springs	No	10	13\%	13.0	10	13\%	13.0
Environmental Sensitivity	Medium Sensitivity	5	6\%	3.0	5	5\%	2.7
Soil Suita bility	Very Limited	0	6\%	0.0	0	5\%	0.0
Environmental Total (Out of 100)			100\%	85		100\%	83
Regulatory							
Flood Zones							
25-Year Floodpla in	No	10	20\%	20.0	10	20\%	20.0
100-Year Floodpla in	No	10	10\%	10.0	10	10\%	10.0
500-Year Floodpla in	No	10	5\%	5.0	10	5\%	5.0
Zoning Designation	P	10	5\%	5.0	10	5\%	5.0
Sub-Chapter E (Distance from Road in ft.)	225	6	5\%	3.0	6	5\%	3.0
Erosion Hazard Review Buffer	No	10	9\%	9.0	10	10\%	10.0
Resource Buffers	No	10	20\%	20.0	10	20\%	20.0
Watershed Regulation Areas	Suburban	8	10\%	8.0	8	10\%	8.0
Water Quality Zones	250 Critical	10	3\%	3.0	0	5\%	0.0
Endangered Species	No	10	3\%	3.0	10	5\%	5.0
Bathhouse	Yes	10	5\%	5.0	10	2\%	2.5
Restrooms (Distance from Pool in ft.)	At pool	10	5\%	5.0	10	2\%	2.5
Regulatory Total (Out of 100)			100\%	96		100\%	91
Operations							
Maintenance Staff/Equipment Ease of Access	Poor	2	20\%	4.0	2	10\%	2.0
Simplicity of Equipment	Good	7	20\%	14.0	7	10\%	7.0
Equipment Condition/Replacement Cost	Good	7	30\%	21.0	7	15\%	10.5
Lawn/Landscaped Area	Poor	2	20\%	4.0	2	10\%	2.0
Employee Safety Measures	Good	7	10\%	7.0	7	10\%	7.0
Operations Total (Out of 100)			100\%	50		55\%	29

Table A.11: Dottie J ordan

Dotie Jordan	Condition	Neighborhood Potential			Community/Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	$\begin{gathered} \text { Element } \\ \text { Score } \\ \hline \end{gathered}$
Demographics							
20-Minute Walk							
Children	1,824	5	10\%	5.0	5	3\%	1.5
Seniors	867	8	5\%	4.0	8	2\%	1.6
Total Population	7,475	5	15\%	7.5	5	5\%	2.5
Median Household Income	\$46,534	8	5\%	4.0	8	3\%	2.4
Population Growth (5-Year)	814	8	5\%	4.0	8	3\%	2.4
Social Needs and Conditions Index	143	8	15\%	12.0	8	10\%	8.0
10-Minute Drive							
Children	24,478	8	3\%	2.4	8	10\%	8.0
Seniors	7,715	6	2\%	1.2	6	6\%	3.6
Total Population	95,246	6	6\%	3.6	6	15\%	9.0
Median Household Income	\$37,785	8	3\%	2.4	8	5\%	4.0
Population Growth (5-Year)	8,597	4	3\%	1.2	4	8\%	3.2
Capacity (based on surface area)	279	2	8\%	1.6	2	10\%	2.0
Attendance (5-YearAvg.)	17,689	4	10\%	4.0	4	10\%	4.0
Attendance/Capacity Ratio	63.4	6	10\%	6.0	6	10\%	6.0
Demographics Total (Out of 100)			100\%	59		100\%	58
Site Conditions							
Entrance/Drive	Yes	10	10\%	10.0	10	5\%	5.0
Parking Spaces (Count)	27	10	10\%	10.0	1	14\%	1.4
Site Area (Acres)	0.9	9	40\%	36.0	0	50\%	0.0
Grade Constraints	Low		0\%	0.0	10	14\%	14.0
Health, Safety, Welfare Issues	43\%	4	20\%	8.0	4	5\%	2.0
Designated Historical Features (Count)	0	10	10\%	10.0	10	6\%	6.0
Historic al Struc ture (Pool House or Pool)	No	10	10\%	10.0	10	6\%	6.0
Site Total (Out of 100)			100\%	84		100\%	34
Location							
Heavily Trafficked Roadways (Traffic Counts)	2,890	9	5\%	4.5	9	5\%	4.5
Distance from Road	170	3	5\%	1.5	3	5\%	1.5
Railroads	None	10	5\%	5.0	10	5\%	5.0
Flight Zones (Noise Level - Decibels)	None	10	5\%	5.0	10	5\%	5.0
Competing Elements (Count)							
Other PARD Aquatic Facilities (20 Min . Walk)	0	10	20\%	20.0	10	8\%	8.0
Service Area Overlap (20 Min. Walk)	0\%	10	20\%	20.0	10	8\%	8.0
Private Aquatic Facilities (20 Min . Walk)	0	10	7\%	7.0	10	3\%	3.0
Programs By HOA/Private Orgs. (20 Min. Walk)	0	10	3\%	3.0	10	2\%	2.0
Symbiotic Elements (Count)							
Schools/ Daycare Providers (5 Minute Walk)	0	0	10\%	0.0	0	19\%	0.0
Recreation Centers (5 Minute Walk)	1	5	10\%	5.0	5	20\%	10.0
Other Park Amenities (5 Minute Walk)	6	3	10\%	3.0	3	20\%	6.0
Location Total (Out of 100)			100\%	74		100\%	53
Accessibility							
Adjacent Roadway Class	Collector	10	5\%	5.0	5	5\%	2.5
Transit Access	At pool	10	15\%	15.0	10	15\%	15.0
Pedestrian Connectivity							
Walkways/Trails	None	0	15\%	0.0	0	15\%	0.0
Crosswalks	None	0	5\%	0.0	0	5\%	0.0
Traffic Controls	None	0	5\%	0.0	0	5\%	0.0
Overall	Poor	0	15\%	0.0	0	15\%	0.0
Bicycle Connectivity							

Dotie Jordan	Condition	Neighborhood Potential			Community/Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Lanes	None	0	10\%	0.0	0	10\%	0.0
Trails (Count)	None	0	15\%	0.0	0	15\%	0.0
Overall	Good	7	15\%	10.5	7	15\%	10.5
Accessibility Total (Out of 100)			100\%	31		100\%	28
Infrastructure							
Electric Service Provider	Austin Energy	10	10\%	10.0	10	10\%	10.0
Electric Service (Phases)	2	5	5\%	2.5	5	10\%	5.0
Water (Dist. to 4" Line in ft.)	0	10	10\%	10.0	10	20\%	20.0
Reclaimed Water (Dist. in ft.)	None	0	10\%	0.0	0	15\%	0.0
Wastewater (Dist. to 8" Sewer Line in ft.)	$0{ }^{\prime}$	10	5\%	5.0	10	15\%	15.0
Pool Condition	Good	7	25\%	17.5	7	10\%	7.0
Bathhouse Condition	Poor	2	20\%	4.0	2	10\%	2.0
Storage Conditions	Fair	5	10\%	5.0	5	5\%	2.5
COATN Service Area (Wi-Fi)	Potential	8	5\%	4.0	8	5\%	4.0
Infrastructure Total (Out of 100)			100\%	58		100\%	66
Environmental							
Trees (Number)							
2" to 19" in Diameter	106	0	3\%	0.0	0	5\%	0.0
19" to 24" in Diameter	10	5	3\%	1.5	5	5\%	2.5
Over 24" in Diameter (Including Heritage)	11	4	11\%	4.4	4	15\%	6.0
Grow Zones	Within 250	10	13\%	13.0	0	10\%	0.0
Aquifer Recharge	No	10	13\%	13.0	10	13\%	13.0
Pollinator Habitat	No	10	6\%	6.0	10	5\%	5.4
Wetlands	No	10	13\%	13.0	10	10\%	10.0
Rock Outcrop	No	10	13\%	13.0	10	13\%	13.0
Springs	No	10	13\%	13.0	10	13\%	13.0
Environmental Sensitivity	Low Sensitivity	5	6\%	3.0	5	5\%	2.7
Soil Suitability	Very Limited	0	6\%	0.0	0	5\%	0.0
Environmental Total (Out of 100)			100\%	80		100\%	66
Regulatory							
Flood Zones							
25-Year Floodpla in	Yes	0	20\%	0.0	0	20\%	0.0
100-Year Floodpla in	Yes	0	10\%	0.0	0	10\%	0.0
500-Year Floodpla in	Yes	0	5\%	0.0	0	5\%	0.0
Zoning Designation	P-NP	8	5\%	4.0	8	5\%	4.0
Sub-C hapter E (Distance from Road in ft.)	170	8	5\%	4.0	8	5\%	4.0
Erosion Hazard Review Buffer	Within 250	10	9\%	9.0	0	10\%	0.0
Resource Buffers	No	10	20\%	20.0	10	20\%	20.0
Watershed Regulation Areas	Urban	10	10\%	10.0	10	10\%	10.0
Water Quality Zones	Critical	0	3\%	0.0	0	5\%	0.0
Endangered Species	No	10	3\%	3.0	10	5\%	5.0
Bathhouse	Yes	10	5\%	5.0	10	2\%	2.5
Restrooms (Distance from Pool in ft.)	At pool	10	5\%	5.0	10	2\%	2.5
Regulatory Total (Out of 100)			100\%	60		100\%	48
Operations							
Maintenance Staff/Equipment Ease of Access	Fair	5	20\%	10.0	5	10\%	5.0
Simplic ity of Equipment	Good	7	20\%	14.0	7	10\%	7.0
Equipment Condition/Replacement Cost	Fair	5	30\%	15.0	5	15\%	7.5
Lawn/Landscaped Area	Poor	2	20\%	4.0	2	10\%	2.0
Employee Safety Measures	Fair	5	10\%	5.0	5	10\%	5.0
Operations Total (Out of 100)			100\%	48		55\%	27

Table A.12: Dove Springs

Dove Springs	Condition	Neighborhood Potential			Community/ Regional Potential		
		Ranking	Importance Rating	$\begin{gathered} \hline \text { Element } \\ \text { Score } \end{gathered}$	Ranking	Importance Rating	Element Score
Demographics							
20-Minute Walk							
Children	3,247	10	10\%	10.0	10	3\%	3.0
Seniors	523	3	5\%	1.5	3	2\%	0.6
Total Population	9,870	8	15\%	12.0	8	5\%	4.0
Median Household Income	\$41,038	8	5\%	4.0	8	3\%	2.4
Population Growth (5-Year)	826	8	5\%	4.0	8	3\%	2.4
Social Needs and Conditions Index	172	9	15\%	13.5	9	10\%	9.0
10-Minute Drive							
Children	19,636	6	3\%	1.8	6	10\%	6.0
Seniors	3,317	1	2\%	0.2	1	6\%	0.6
Total Population	66,337	4	6\%	2.4	4	15\%	6.0
Median Household Income	\$38,658	8	3\%	2.4	8	5\%	4.0
Population Growth (5-Year)	6,610	2	3\%	0.6	2	8\%	1.6
Capacity (based on surface area)	691	8	8\%	6.4	8	10\%	8.0
Attendance (5-YearAvg.)	30,914	6	10\%	6.0	6	10\%	6.0
Attendance/Capacity Ratio	44.7	4	10\%	4.0	4	10\%	4.0
Demographics Total (Out of 100)			100\%	69		100\%	58
Site Conditions							
Entrance/Drive	Yes	10	10\%	10.0	10	5\%	5.0
Parking Spaces (Count)	62	10	10\%	10.0	3	14\%	4.2
Site Area (Acres)	3.3	10	40\%	40.0	5	50\%	25.0
Grade Constraints	Low		0\%	0.0	10	14\%	14.0
Health, Safety, Welfare Issues	60\%	6	20\%	12.0	6	5\%	3.0
Designated Historic al Features (Count)	0	10	10\%	10.0	10	6\%	6.0
Historic al Struc ture (Pool House or Pool)	No	10	10\%	10.0	10	6\%	6.0
Site Total (Out of 100)			100\%	92		100\%	63
Location							
Heavily Trafficked Roadways (Traffic Counts)	8,150	8	5\%	4.0	8	5\%	4.0
Distance from Road	1,310	0	5\%	0.0	0	5\%	0.0
Railroads	None	10	5\%	5.0	10	5\%	5.0
Flight Zones (Noise Level - Decibels)	None	10	5\%	5.0	10	5\%	5.0
Competing Elements (Count)							
Other PARD Aquatic Facilities (20 Min . Walk)	0	10	20\%	20.0	10	8\%	8.0
Service Area Overlap (20 Min. Walk)	0\%	10	20\%	20.0	10	8\%	8.0
Private Aquatic Facilities (20 Min . Walk)	1	5	7\%	3.5	5	3\%	1.5
Programs By HOA/Private Orgs. (20 Min. Walk)	0	10	3\%	3.0	10	2\%	2.0
Symbiotic Elements (Count)							
Schools/Daycare Providers (5 Minute Walk)	2	1	10\%	1.0	1	19\%	1.9
Recreation Centers (5 Minute Walk)	1	5	10\%	5.0	5	20\%	10.0
Other Park Amenities (5 Minute Walk)	15	7	10\%	7.0	7	20\%	14.0
Location Total (Out of 100)			100\%	74		100\%	59
Accessibility							
Adjacent Roadway Class	Minor Arterial	10	5\%	5.0	8	5\%	4.0
Transit Access	10 minute	3	15\%	4.5	3	15\%	4.5
Pedestrian Connectivity							
Walkways/Trails	Some	5	15\%	7.5	5	15\%	7.5
Crosswalks	None	0	5\%	0.0	0	5\%	0.0
Traffic Controls	None	0	5\%	0.0	0	5\%	0.0
Overall	Good	7	15\%	10.5	7	15\%	10.5
Bicycle Connectivity							

Dove Springs	Condition	Neighborhood Potential			Community/Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Lanes	None	0	10\%	0.0	0	10\%	0.0
Trails (Count)	None	0	15\%	0.0	0	15\%	0.0
Overall	Good	7	15\%	10.5	7	15\%	10.5
Accessibility Total (Out of 100)			100\%	38		100\%	37
Infrastructure							
Electric Service Provider	Austin Energy	10	10\%	10.0	10	10\%	10.0
Electric Service (Phases)	3	10	5\%	5.0	10	10\%	10.0
Water (Dist. to 4" Line in ft.)	0	10	10\%	10.0	10	20\%	20.0
Reclaimed Water (Dist. in ft.)	1200'	0	10\%	0.0	0	15\%	0.0
Wastewater (Dist. to 8" Sewer Line in ft.)	0	10	5\%	5.0	10	15\%	15.0
Pool Condition	Fair	5	25\%	12.5	5	10\%	5.0
Bathhouse Condition	Fair	5	20\%	10.0	5	10\%	5.0
Storage Conditions	Fair	5	10\%	5.0	5	5\%	2.5
COATN Service Area (Wi-Fi)	Potential	8	5\%	4.0	8	5\%	4.0
Infrastructure Total (Out of 100)			100\%	62		100\%	72
Environmental							
Trees (Number)							
2" to 19" in Diameter	5	9	3\%	2.7	9	5\%	4.5
19" to 24" in Diameter	0	10	3\%	3.0	10	5\%	5.0
Over 24" in Diameter (Including Heritage)	0	10	11\%	11.0	10	15\%	15.0
Grow Zones	No	10	13\%	13.0	10	10\%	10.0
Aquifer Recharge	No	10	13\%	13.0	10	13\%	13.0
Pollinator Habitat	No	10	6\%	6.0	10	5\%	5.4
Wetlands	No	10	13\%	13.0	10	10\%	10.0
Rock Outcrop	No	10	13\%	13.0	10	13\%	13.0
Springs	No	10	13\%	13.0	10	13\%	13.0
Environmental Sensitivity	Medium Sensitivity	5	6\%	3.0	5	5\%	2.7
Soil Suitability	Very Limited	0	6\%	0.0	0	5\%	0.0
Environmental Total (Out of 100)			100\%	91		100\%	92
Regulatory							
Flood Zones							
25-Year Floodpla in	No	10	20\%	20.0	10	20\%	20.0
100-Year Floodpla in	Within 250	10	10\%	10.0	0	10\%	0.0
500-Year Floodplain	Yes	0	5\%	0.0	0	5\%	0.0
Zoning Designation	P-NP	8	5\%	4.0	8	5\%	4.0
Sub-Chapter E (Distance from Road in ft.)	1,310	0	5\%	0.0	0	5\%	0.0
Erosion Hazard Review Buffer	No	10	9\%	9.0	10	10\%	10.0
Resource Buffers	No	10	20\%	20.0	10	20\%	20.0
Watershed Regulation Areas	Suburban	8	10\%	8.0	8	10\%	8.0
Water Quality Zones	No	10	3\%	3.0	10	5\%	5.0
Endangered Species	No	10	3\%	3.0	10	5\%	5.0
Bathhouse	Yes	10	5\%	5.0	10	2\%	2.5
Restrooms (Distance from Pool in ft.)	At pool	10	5\%	5.0	10	2\%	2.5
Regulatory Total (Out of 100)			100\%	87		100\%	77
Operations							
Maintenance Staff/Equipment Ease of Access	Good	7	20\%	14.0	7	10\%	7.0
Simplic ity of Equipment	Good	7	20\%	14.0	7	10\%	7.0
Equipment Condition/Replacement Cost	Fair	5	30\%	15.0	5	15\%	7.5
Lawn/Landscaped Area	Poor	2	20\%	4.0	2	10\%	2.0
Employee Safety Measures	Good	7	10\%	7.0	7	10\%	7.0
Operations Total (Out of 100)			100\%	54		55\%	31

Table A.13: Ganison

Gamison	Condition	Neighborhood Potential			Community/ Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Demographics							
20-Minute Walk							
Children	1,366	3	10\%	3.0	3	3\%	0.9
Seniors	1,127	10	5\%	5.0	10	2\%	2.0
Total Population	7,227	5	15\%	7.5	5	5\%	2.5
Median Household Income	\$51,454	7	5\%	3.5	7	3\%	2.1
Population Growth (5-Year)	609	6	5\%	3.0	6	3\%	1.8
Social Needs and Conditions Index	117	6	15\%	9.0	6	10\%	6.0
10-Minute Drive							
Children	27,055	9	3\%	2.7	9	10\%	9.0
Seniors	11,952	10	2\%	2.0	10	6\%	6.0
Total Population	131,337	9	6\%	5.4	9	15\%	13.5
Median Household Income	\$51,271	5	3\%	1.5	5	5\%	2.5
Population Growth (5-Year)	12,539	8	3\%	2.4	8	8\%	6.4
Capacity (based on surface area)	859	10	8\%	8.0	10	10\%	10.0
Attendance (5-YearAvg.)	26,256	5	10\%	5.0	5	10\%	5.0
Attendance/Capacity Ratio	30.6	3	10\%	3.0	3	10\%	3.0
Demographics Total (Out of 100)			100\%	61		100\%	71
Site Conditions							
Entrance/Drive	Yes	10	10\%	10.0	10	5\%	5.0
Parking Spaces (Count)	39	10	10\%	10.0	2	14\%	2.8
Site Area (Acres)	4.0	10	40\%	40.0	8	50\%	40.0
Grade Constraints	Moderate		0\%	0.0	5	14\%	7.0
Health, Safety, Welfare Issues	35\%	4	20\%	8.0	4	5\%	2.0
Designated Historic al Features (Count)	0	10	10\%	10.0	10	6\%	6.0
Historical Struc ture (Pool House or Pool)	1966	6	10\%	6.0	6	6\%	3.6
Site Total (Out of 100)			100\%	84		100\%	66
Location							
Heavily Trafficked Roadways (Traffic Counts)	27,560	3	5\%	1.5	3	5\%	1.5
Distance from Road	584	10	5\%	5.0	10	5\%	5.0
Railroads	None	10	5\%	5.0	10	5\%	5.0
Flight Zones (Noise Level - Decibels)	None	10	5\%	5.0	10	5\%	5.0
Competing Elements (Count)							
Other PARD Aquatic Facilities (20 Min . Walk)	0	10	20\%	20.0	10	8\%	8.0
Service Area Overlap (20 Min. Walk)	0\%	10	20\%	20.0	10	8\%	8.0
Private Aquatic Facilities (20 Min. Walk)	0	10	7\%	7.0	10	3\%	3.0
Programs By HOA/Private Orgs. (20 Min. Walk)	0	10	3\%	3.0	10	2\%	2.0
Symbiotic Elements (Count)							
Schools/Daycare Providers (5 Minute Walk)	4	10	10\%	10.0	10	19\%	19.0
Recreation Centers (5 Minute Walk)	0	0	10\%	0.0	0	20\%	0.0
Other Park Amenities (5 Minute Walk)	11	5	10\%	5.0	5	20\%	10.0
Location Total (Out of 100)			100\%	82		100\%	67
Accessibility							
Adjacent Roadway Class	Major Arterial	10	5\%	5.0	10	5\%	5.0
Transit Access	At pool	10	15\%	15.0	10	15\%	15.0
Pedestrian Connectivity							
Walkways/Trails	Some	5	15\%	7.5	5	15\%	7.5
Crosswalks	Yes	10	5\%	5.0	10	5\%	5.0
Traffic Controls	Yes	10	5\%	5.0	10	5\%	5.0
Overall	Fair	3	15\%	4.5	3	15\%	4.5
Bicycle Connectivity							

Garison	Condition	Neighborhood Potential			Community/ Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Lanes	None	0	10\%	0.0	0	10\%	0.0
Trails (Count)	None	0	15\%	0.0	0	15\%	0.0
Overall	Poor	0	15\%	0.0	0	15\%	0.0
Accessibility Total (Out of 100)			100\%	42		100\%	42
Infrastructure							
Electric Service Provider	Austin Energy	10	10\%	10.0	10	10\%	10.0
Electric Service (Phases)	3	10	5\%	5.0	10	10\%	10.0
Water (Dist. to 4" Line in ft.)	0	10	10\%	10.0	10	20\%	20.0
Reclaimed Water (Dist. in ft.)	None	0	10\%	0.0	0	15\%	0.0
Wastewater (Dist. to 8" Sewer Line in ft.)	0	10	5\%	5.0	10	15\%	15.0
Pool Condition	Fair	5	25\%	12.5	5	10\%	5.0
Bathhouse Condition	Fair	5	20\%	10.0	5	10\%	5.0
Storage Conditions	Fair	5	10\%	5.0	5	5\%	2.5
COATN Service Area (Wi-Fi)	Potential	8	5\%	4.0	8	5\%	4.0
Infrastructure Total (Out of 100)			100\%	62		100\%	72
Environmental							
Trees (Number)							
2" to 19" in Diameter	76	2	3\%	0.6	2	5\%	1.0
19" to 24" in Diameter	8	6	3\%	1.8	6	5\%	3.0
Over 24" in Dia meter (Including Heritage)	1	9	11\%	9.9	9	15\%	13.5
Grow Zones	No	10	13\%	13.0	10	10\%	10.0
Aquifer Recharge	No	10	13\%	13.0	10	13\%	13.0
Pollinator Habitat	No	10	6\%	6.0	10	5\%	5.4
Wetlands	No	10	13\%	13.0	10	10\%	10.0
Rock Outcrop	No	10	13\%	13.0	10	13\%	13.0
Springs	No	10	13\%	13.0	10	13\%	13.0
Environmental Sensitivity	Low Sensitivity	10	6\%	6.0	10	5\%	5.4
Soil Suita bility	ery-Somewhat Limite	2	6\%	1.2	2	5\%	1.1
Environmental Total (Out of 100)			100\%	91		100\%	88
Regulatory							
Flood Zones							
25-YearFloodpla in	No	10	20\%	20.0	10	20\%	20.0
100-Year Floodpla in	No	10	10\%	10.0	10	10\%	10.0
500-Year Floodpla in	No	10	5\%	5.0	10	5\%	5.0
Zoning Designation	P-NP	8	5\%	4.0	8	5\%	4.0
Sub-Chapter E (Distance from Road in ft.)	584	0	5\%	0.0	0	5\%	0.0
Erosion Hazard Review Buffer	No	10	9\%	9.0	10	10\%	10.0
Resource Buffers	No	10	20\%	20.0	10	20\%	20.0
Watershed Regulation Areas	Suburban	8	10\%	8.0	8	10\%	8.0
Water Quality Zones	No	10	3\%	3.0	10	5\%	5.0
Endangered Species	No	10	3\%	3.0	10	5\%	5.0
Bathhouse	Yes	10	5\%	5.0	10	2\%	2.5
Restrooms (Distance from Pool in ft.)	At pool	10	5\%	5.0	10	2\%	2.5
Regulatory Total (Out of 100)			100\%	92		100\%	92
Operations							
Maintenance Staff/Equipment Ease of Access	Fair	5	20\%	10.0	5	10\%	5.0
Simplicity of Equipment	Poor	2	20\%	4.0	2	10\%	2.0
Equipment Condition/Replacement Cost	Poor	2	30\%	6.0	2	15\%	3.0
Lawn/Landscaped Area	Fair	5	20\%	10.0	5	10\%	5.0
Employee Safety Measures	Fair	5	10\%	5.0	5	10\%	5.0
Operations Total (Out of 100)			100\%	35		55\%	20

Table A.14: Gillis

Gillis	Condition	Neighborhood Potential			Community/Regional Potential		
		Ranking	Importance Rating	$\begin{aligned} & \hline \text { Element } \\ & \text { Score } \\ & \hline \end{aligned}$	Ranking	Importance Rating	Element Score
Demographics							
20-Minute Walk							
Children	2,217	7	10\%	7.0	7	3\%	2.1
Seniors	1,019	10	5\%	5.0	10	2\%	2.0
Total Population	11,195	9	15\%	13.5	9	5\%	4.5
Median Household Income	\$52,113	7	5\%	3.5	7	3\%	2.1
Population Growth (5-Year)	1,226	10	5\%	5.0	10	3\%	3.0
Social Needs and Conditions Index	142	8	15\%	12.0	8	10\%	8.0
10-Minute Drive							
Children	16,738	5	3\%	1.5	5	10\%	5.0
Seniors	7,334	5	2\%	1.0	5	6\%	3.0
Total Population	94,032	6	6\%	3.6	6	15\%	9.0
Median Household Income	\$46,300	6	3\%	1.8	6	5\%	3.0
Population Growth (5-Year)	10,492	5	3\%	1.5	5	8\%	4.0
Capacity (based on surface area)	143	1	8\%	0.8	1	10\%	1.0
Attendance (5-YearAvg.)	5,237	1	10\%	1.0	1	10\%	1.0
Attendance/Capacity Ratio	36.7	4	10\%	4.0	4	10\%	4.0
Demographics Total (Out of 100)			100\%	61		100\%	52
Site Conditions							
Entrance/Drive	No	0	10\%	0.0	0	5\%	0.0
Parking Spaces (Count)	0	0	10\%	0.0	0	14\%	0.0
Site Area (Acres)	0.5	5	40\%	20.0	0	50\%	0.0
Grade Constraints	Low-Moderate		0\%	0.0	8	14\%	11.2
Health, Safety, Welfare Issues	45\%	5	20\%	10.0	5	5\%	2.5
Designated Historic al Features (Count)	0	10	10\%	10.0	10	6\%	6.0
Historical Structure (Pool House or Pool)	1954	4	10\%	4.0	4	6\%	2.4
Site Total (Out of 100)			100\%	44		100\%	22
Location							
Heavily Trafficked Roadways (Traffic Counts)	25,490	4	5\%	2.0	4	5\%	2.0
Distance from Road	118	2	5\%	1.0	2	5\%	1.0
Railroads	None	10	5\%	5.0	10	5\%	5.0
Flight Zones (Noise Level - Decibels)	None	10	5\%	5.0	10	5\%	5.0
Competing Elements (Count)							
Other PARD Aquatic Facilities (20 Min . Walk)	1	5	20\%	10.0	5	8\%	4.0
Service Area Overlap (20 Min. Walk)	37\%	6	20\%	12.0	6	8\%	4.8
Private Aquatic Facilities (20 Min . Walk)	0	10	7\%	7.0	10	3\%	3.0
Programs By HOA/Private Orgs. (20 Min. Walk)	0	10	3\%	3.0	10	2\%	2.0
Symbiotic Elements (Count)							
Schools/Daycare Providers (5 Minute Walk)	3	8	10\%	8.0	8	19\%	15.2
Recreation Centers (5 Minute Walk)	0	0	10\%	0.0	0	20\%	0.0
Other Park Amenities (5 Minute Walk)	5	2	10\%	2.0	2	20\%	4.0
Location Total (Out of 100)			100\%	55		100\%	46
Accessibility							
Adjacent Roadway Class	Minor Arterial	10	5\%	5.0	8	5\%	4.0
Transit Access	At pool	10	15\%	15.0	10	15\%	15.0
Pedestrian Connectivity							
Walkways/Trails	Some	5	15\%	7.5	5	15\%	7.5
Crosswalks	None	0	5\%	0.0	0	5\%	0.0
Traffic Controls	None	0	5\%	0.0	0	5\%	0.0
Overall	Fair	3	15\%	4.5	3	15\%	4.5
Bicycle Connectivity							

Gilis	Condition	Neighborhood Potential			Community/ Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Lanes	None	0	10\%	0.0	0	10\%	0.0
Trails (Count)	None	0	15\%	0.0	0	15\%	0.0
Overall	Fair	3	15\%	4.5	3	15\%	4.5
Accessibility Total (Out of 100)			100\%	37		100\%	36
Infrastructure							
Electric Service Provider	Austin Energy	10	10\%	10.0	10	10\%	10.0
Electric Service (Phases)	2	5	5\%	2.5	5	10\%	5.0
Water (Dist. to 4" Line in ft.)	0	10	10\%	10.0	10	20\%	20.0
Reclaimed Water (Dist. in ft.)	None	0	10\%	0.0	0	15\%	0.0
Wastewater (Dist. to 8" Sewer Line in ft.)	110'	5	5\%	2.5	5	15\%	7.5
Pool Condition	Poor	2	25\%	5.0	2	10\%	2.0
Bathhouse Condition	Nonexistent	0	20\%	0.0	0	10\%	0.0
Storage Conditions	Poor	2	10\%	2.0	2	5\%	1.0
COATN Service Area (Wi-Fi)	No	0	5\%	0.0	0	5\%	0.0
Infrastructure Total (Out of 100)			100\%	32		100\%	46
Environmental							
Trees (Number)							
2" to 19" in Diameter	29	7	3\%	2.1	7	5\%	3.5
19" to 24" in Diameter	10	5	3\%	1.5	5	5\%	2.5
Over 24" in Diameter (Including Heritage)	22	0	11\%	0.0	0	15\%	0.0
Grow Zones	Within 250	10	13\%	13.0	0	10\%	0.0
Aquifer Recharge	No	10	13\%	13.0	10	13\%	13.0
Pollinator Habitat	No	10	6\%	6.0	10	5\%	5.4
Wetlands	No	10	13\%	13.0	10	10\%	10.0
Rock Outcrop	No	10	13\%	13.0	10	13\%	13.0
Springs	No	10	13\%	13.0	10	13\%	13.0
Environmental Sensitivity	Medium Sensitivity	5	6\%	3.0	5	5\%	2.7
Soil Suita bility	Very Limited	0	6\%	0.0	0	5\%	0.0
Environmental Total (Out of 100)			100\%	78		100\%	63
Regulatory							
Flood Zones							
25-YearFloodpla in	Within 250	10	20\%	20.0	0	20\%	0.0
100-Year Floodpla in	Within 250	10	10\%	10.0	0	10\%	0.0
500-Year Floodpla in	Yes	0	5\%	0.0	0	5\%	0.0
Zoning Designation	P-NP	8	5\%	4.0	8	5\%	4.0
Sub-Chapter E (Distance from Road in ft.)	118	9	5\%	4.5	9	5\%	4.5
Erosion Hazard Review Buffer	Yes	0	9\%	0.0	0	10\%	0.0
Resource Buffers	No	10	20\%	20.0	10	20\%	20.0
Watershed Regulation Areas	Urban	10	10\%	10.0	10	10\%	10.0
Water Quality Zones	250 Critic al	10	3\%	3.0	0	5\%	0.0
Endangered Species	No	10	3\%	3.0	10	5\%	5.0
Bathhouse	No	10	5\%	5.0	10	2\%	2.5
Restrooms (Distance from Pool in ft.)	110	2	5\%	1.0	2	2\%	0.5
Regulatory Total (Out of 100)			100\%	81		100\%	46
Operations							
Maintenance Staff/Equipment Ease of Access	Poor	2	20\%	4.0	2	10\%	2.0
Simplic ity of Equipment	Poor	2	20\%	4.0	2	10\%	2.0
Equipment Condition/Replacement Cost	Poor	2	30\%	6.0	2	15\%	3.0
Lawn/Landscaped Area	Good	7	20\%	14.0	7	10\%	7.0
Employee Safety Measures	Poor	2	10\%	2.0	2	10\%	2.0
Operations Total (Out of 100)			100\%	30		55\%	16

Table A.15: Givens

Givens	Condition	Neighborhood Potential			Community/ Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	$\begin{array}{\|c} \hline \text { Importance } \\ \text { Rating } \\ \hline \end{array}$	$\begin{gathered} \hline \text { Element } \\ \text { Score } \\ \hline \end{gathered}$
Demographics							
20-Minute Walk							
Children	1,713	5	10\%	5.0	5	3\%	1.5
Seniors	957	9	5\%	4.5	9	2\%	1.8
Total Population	7,199	5	15\%	7.5	5	5\%	2.5
Median Household Income	\$37,253	9	5\%	4.5	9	3\%	2.7
Population Growth (5-Year)	830	8	5\%	4.0	8	3\%	2.4
Social Needs and Conditions Index	148	8	15\%	12.0	8	10\%	8.0
10-Minute Drive							
Children	22,194	7	3\%	2.1	7	10\%	7.0
Seniors	9,165	7	2\%	1.4	7	6\%	4.2
Total Population	110,419	7	6\%	4.2	7	15\%	10.5
Median Household Income	\$28,253	10	3\%	3.0	10	5\%	5.0
Population Growth (5-Year)	10,969	6	3\%	1.8	6	8\%	4.8
Capacity (based on surface area)	690	8	8\%	6.4	8	10\%	8.0
Attendance (5-Year Avg.)	17,034	3	10\%	3.0	3	10\%	3.0
Attendance/Capacity Ratio	24.7	2	10\%	2.0	2	10\%	2.0
Demographics Total (Out of 100)			100\%	61		100\%	63
Site Conditions							
Entrance/Drive	Yes	10	10\%	10.0	10	5\%	5.0
Parking Spaces (Count)	140	10	10\%	10.0	9	14\%	12.6
Site Area (Acres)	4.7	10	40\%	40.0	8	50\%	40.0
Grade Constraints	Moderate-Severe		0\%	0.0	2	14\%	2.8
Health, Safety, Welfare Issues	33\%	3	20\%	6.0	3	5\%	1.5
Designated Historic al Features (Count)	0	10	10\%	10.0	10	6\%	6.0
Historical Struc ture (Pool House or Pool)	1958	4	10\%	4.0	4	6\%	2.4
Site Total (Out of 100)			100\%	80		100\%	70
Location							
Heavily Trafficked Roadways (Traffic Counts)	5,570	9	5\%	4.5	9	5\%	4.5
Distance from Road	154	3	5\%	1.5	3	5\%	1.5
Railroads	None	10	5\%	5.0	10	5\%	5.0
Flight Zones (Noise Level - Decibels)	None	10	5\%	5.0	10	5\%	5.0
Competing Elements (Count)							
Other PARD Aquatic Facilities (20 Min . Walk)	0	10	20\%	20.0	10	8\%	8.0
Service Area Overlap (20 Min . Walk)	16\%	8	20\%	16.0	8	8\%	6.4
Private Aquatic Facilities (20 Min . Walk)	0	10	7\%	7.0	10	3\%	3.0
Programs By HOA/Private Orgs. (20 Min. Walk)	0	10	3\%	3.0	10	2\%	2.0
Symbiotic Elements (Count)							
Schools/Daycare Providers (5 Minute Walk)	0	0	10\%	0.0	0	19\%	0.0
Recreation Centers (5 Minute Walk)	1	5	10\%	5.0	5	20\%	10.0
Other Park Amenities (5 Minute Walk)	13	6	10\%	6.0	6	20\%	12.0
Location Total (Out of 100)			100\%	73		100\%	57
Accessibility							
Adjacent Roadway Class	Minor Arterial	10	5\%	5.0	8	5\%	4.0
Transit Access	At pool	10	15\%	15.0	10	15\%	15.0
Pedestrian Connectivity							
Walkways/Trails	None	0	15\%	0.0	0	15\%	0.0
Crosswalks	None	0	5\%	0.0	0	5\%	0.0
Traffic Controls	None	0	5\%	0.0	0	5\%	0.0
Overall	Poor	0	15\%	0.0	0	15\%	0.0
Bicycle Connectivity							

Givens	Condition	Neighborhood Potential			Community/ Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Lanes	All	10	10\%	10.0	10	10\%	10.0
Trails (Count)	None	0	15\%	0.0	0	15\%	0.0
Overall	Excellent	10	15\%	15.0	10	15\%	15.0
Accessibility Total (Out of 100)			100\%	45		100\%	44
Infrastructure							
Electric Service Provider	Austin Energy	10	10\%	10.0	10	10\%	10.0
Electric Service (Phases)	3	10	5\%	5.0	10	10\%	10.0
Water (Dist. to 4" Line in ft.)	0	10	10\%	10.0	10	20\%	20.0
Reclaimed Water (Dist. in ft.)	None	0	10\%	0.0	0	15\%	0.0
Wastewater (Dist. to 8" Sewer Line in ft.)	150'	5	5\%	2.5	5	15\%	7.5
Pool Condition	Fair	2	25\%	5.0	2	10\%	2.0
Bathhouse Condition	Good	5	20\%	10.0	5	10\%	5.0
Storage Conditions	Fair	2	10\%	2.0	2	5\%	1.0
COATN Service Area (Wi-Fi)	Potential	8	5\%	4.0	8	5\%	4.0
Infrastructure Total (Out of 100)			100\%	49		100\%	60
Environmental							
Trees (Number)							
2" to 19" in Diameter	30	7	3\%	2.1	7	5\%	3.5
19" to 24" in Diameter	4	8	3\%	2.4	8	5\%	4.0
Over 24" in Dia meter (Including Hentage)	4	8	11\%	8.8	8	15\%	12.0
Grow Zones	No	10	13\%	13.0	10	10\%	10.0
Aquifer Recharge	No	10	13\%	13.0	10	13\%	13.0
Pollinator Habitat	No	10	6\%	6.0	10	5\%	5.4
Wetlands	No	10	13\%	13.0	10	10\%	10.0
Rock Outcrop	No	10	13\%	13.0	10	13\%	13.0
Springs	No	10	13\%	13.0	10	13\%	13.0
Environmental Sensitivity	Low Sensitivity	10	6\%	6.0	10	5\%	5.4
Soil Suita bility	Somewhat Limited	5	6\%	3.0	5	5\%	2.7
Environmental Total (Out of 100)			100\%	93		100\%	92
Regulatory							
Flood Zones							
25-Year Floodpla in	Within 250	10	20\%	20.0	0	20\%	0.0
100-Year Floodpla in	Within 250	10	10\%	10.0	0	10\%	0.0
500-Year Floodpla in	Within 250	10	5\%	5.0	0	5\%	0.0
Zoning Designation	P-NP	8	5\%	4.0	8	5\%	4.0
Sub-Chapter E (Distance from Road in ft.)	154	8	5\%	4.0	8	5\%	4.0
Erosion Hazard Review Buffer	Within 250	10	9\%	9.0	0	10\%	0.0
Resource Buffers	No	10	20\%	20.0	10	20\%	20.0
Watershed Regulation Areas	Urban	10	10\%	10.0	10	10\%	10.0
Water Quality Zones	250 Critic al	10	3\%	3.0	0	5\%	0.0
Endangered Species	No	10	3\%	3.0	10	5\%	5.0
Bathhouse	Yes	10	5\%	5.0	10	2\%	2.5
Restrooms (Distance from Pool in ft.)	At pool	10	5\%	5.0	10	2\%	2.5
Regulatory Total (Out of 100)			100\%	98		100\%	48
Operations							
Maintenance Staff/Equipment Ease of Access	Fair	2	20\%	4.0	2	10\%	2.0
Simplic ity of Equipment	Fair	2	20\%	4.0	2	10\%	2.0
Equipment Condition/Replacement Cost	Fair	2	30\%	6.0	2	15\%	3.0
Lawn/Landscaped Area	Good	5	20\%	10.0	5	10\%	5.0
Employee Safety Measures	Fair	2	10\%	2.0	2	10\%	2.0
Operations Total (Out of 100)			100\%	26		55\%	14

Table A.16: Govalle

Govalle	Condition	Neighborhood Potential			Community/Regional Potential		
		Ranking	$\begin{array}{c}\text { Importance } \\ \text { Rating }\end{array}$	Element Score	Ranking	Importance Rating	Element Score
Demographics							
20-Minute Walk							
Children	1,552	4	10\%	4.0	4	3\%	1.2
Seniors	629	5	5\%	2.5	5	2\%	1.0
Total Population	5,426	3	15\%	4.5	3	5\%	1.5
Median Household Income	\$36,615	9	5\%	4.5	9	3\%	2.7
Population Growth (5-Year)	682	7	5\%	3.5	7	3\%	2.1
Social Needs and Conditions Index	157	9	15\%	13.5	9	10\%	9.0
10-Minute Drive							
Children	22,021	7	3\%	2.1	7	10\%	7.0
Seniors	7,761	6	2\%	1.2	6	6\%	3.6
Total Population	97,008	6	6\%	3.6	6	15\%	9.0
Median Household Income	\$25,053	10	3\%	3.0	10	5\%	5.0
Population Growth (5-Year)	11,393	6	3\%	1.8	6	8\%	4.8
Capacity (based on surface area)	160	1	8\%	0.8	1	10\%	1.0
Attendance (5-YearAvg.)	6,646	1	10\%	1.0	1	10\%	1.0
Attendance/Capacity Ratio	41.5	4	10\%	4.0	4	10\%	4.0
Demographics Total (Out of 100)			100\%	50		100\%	53
Site Conditions							
Entrance/Drive	No	0	10\%	0.0	0	5\%	0.0
Parking Spaces (Count)	2	1	10\%	1.0	0	14\%	0.0
Site Area (Acres)	1.5	10	40\%	40.0	0	50\%	0.0
Grade Constraints	Low-Moderate		0\%	0.0	8	14\%	11.2
Health, Safety, Welfare Issues	58\%	6	20\%	12.0	6	5\%	3.0
Designated Historic al Features (Count)	0	10	10\%	10.0	10	6\%	6.0
Historic al Struc ture (Pool House or Pool)	1954	4	10\%	4.0	4	6\%	2.4
Site Total (Out of 100)			100\%	67		100\%	23
Location							
Heavily Trafficked Roadways (Traffic Counts)	5,300	9	5\%	4.5	9	5\%	4.5
Distance from Road	324	6	5\%	3.0	6	5\%	3.0
Railroads	None	10	5\%	5.0	10	5\%	5.0
Flight Zones (Noise Level - Decibels)	None	10	5\%	5.0	10	5\%	5.0
Competing Elements (Count)							
Other PARD Aquatic Facilities (20 Min . Walk)	0	10	20\%	20.0	10	8\%	8.0
Service Area Overlap (20 Min. Walk)	17\%	5	20\%	10.0	5	8\%	4.0
Private Aquatic Facilities (20 Min . Walk)	0	10	7\%	7.0	10	3\%	3.0
Programs By HOA/Private Orgs. (20 Min. Walk)	0	10	3\%	3.0	10	2\%	2.0
Symbiotic Elements (Count)							
Schools/Daycare Providers (5 Minute Walk)	0	0	10\%	0.0	0	19\%	0.0
Recreation Centers (5 Minute Walk)	0	0	10\%	0.0	0	20\%	0.0
Other Park Amenities (5 Minute Walk)	8	4	10\%	4.0	4	20\%	8.0
Location Total (Out of 100)			100\%	62		100\%	43
Accessibility							
Adjacent Roadway Class	Major Arterial	10	5\%	5.0	10	5\%	5.0
Transit Access	Yes	10	15\%	15.0	10	15\%	15.0
Pedestrian Connectivity							
Walkways/Trails	Some	5	15\%	7.5	5	15\%	7.5
Crosswalks	None	0	5\%	0.0	0	5\%	0.0
Traffic Controls	None	0	5\%	0.0	0	5\%	0.0
Overall	Fair	3	15\%	4.5	3	15\%	4.5
Bicycle Connectivity							

Govalle	Condition	Neighborhood Potential			Community/ Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Lanes	None	0	10\%	0.0	0	10\%	0.0
Trails (Count)	1	5	15\%	7.5	5	15\%	7.5
Overall	Good	7	15\%	10.5	7	15\%	10.5
Accessibility Total (Out of 100)			100\%	50		100\%	50
Infrastructure							
Electric Service Provider	Austin Energy	10	10\%	10.0	10	10\%	10.0
Electric Service (Phases)	2	5	5\%	2.5	5	10\%	5.0
Water (Dist. to 4" Line in ft.)	0	10	10\%	10.0	10	20\%	20.0
Reclaimed Water (Dist. in ft.)	285'	8	10\%	8.0	8	15\%	12.0
Wastewater (Dist. to 8" Sewer Line in ft.)	180' to 24"	5	5\%	2.5	5	15\%	7.5
Pool Condition	Nonexistent	0	25\%	0.0	0	10\%	0.0
Bathhouse Condition	Nonexistent	0	20\%	0.0	0	10\%	0.0
Storage Conditions	Poor	2	10\%	2.0	2	5\%	1.0
COATN Service Area (Wi-Fi)	Yes	10	5\%	5.0	10	5\%	5.0
Infrastructure Total (Out of 100)			100\%	40		100\%	61
Environmental							
Trees (Number)							
2" to 19" in Diameter	59	4	3\%	1.2	4	5\%	2.0
19" to 24" in Diameter	17	2	3\%	0.6	2	5\%	1.0
Over 24" in Diameter (Including Heritage)	24	0	11\%	0.0	0	15\%	0.0
Grow Zones	No	10	13\%	13.0	10	10\%	10.0
Aquifer Recharge	No	10	13\%	13.0	10	13\%	13.0
Pollinator Habitat	No	10	6\%	6.0	10	5\%	5.4
Wetlands	No	10	13\%	13.0	10	10\%	10.0
Rock Outcrop	No	10	13\%	13.0	10	13\%	13.0
Springs	No	10	13\%	13.0	10	13\%	13.0
Environmental Sensitivity	Low Sensitivity	10	6\%	6.0	10	5\%	5.4
Soil Suita bility	Very Limited	0	6\%	0.0	0	5\%	0.0
Environmental Total (Out of 100)			100\%	79		100\%	73
Regulatory							
Flood Zones							
25-YearFloodpla in	Within 250	10	20\%	20.0	0	20\%	0.0
100-Year Floodpla in	Within 250	10	10\%	10.0	0	10\%	0.0
500-Year Floodpla in	Within 250	10	5\%	5.0	0	5\%	0.0
Zoning Designation	P-NP	8	5\%	4.0	8	5\%	4.0
Sub-Chapter E (Distance from Road in ft.)	324	4	5\%	2.0	4	5\%	2.0
Erosion Hazard Review Buffer	Within 250	10	9\%	9.0	0	10\%	0.0
Resource Buffers	No	10	20\%	20.0	10	20\%	20.0
Watershed Regulation Areas	Urban	10	10\%	10.0	10	10\%	10.0
Water Quality Zones	250 Critic al	10	3\%	3.0	0	5\%	0.0
Endangered Species	No	10	3\%	3.0	10	5\%	5.0
Bathhouse	No	10	5\%	5.0	10	2\%	2.5
Restrooms (Distance from Pool in ft.)	130	8	5\%	4.0	8	2\%	2.0
Regulatory Total (Out of 100)			100\%	95		100\%	45
Operations							
Maintenance Staff/Equipment Ease of Access	Good	7	20\%	14.0	7	10\%	7.0
Simplic ity of Equipment	Good	7	20\%	14.0	7	10\%	7.0
Equipment Condition/Replacement Cost	Poor	2	30\%	6.0	2	15\%	3.0
Lawn/Landscaped Area	Fair	5	20\%	10.0	5	10\%	5.0
Employee Safety Measures	Good	7	10\%	7.0	7	10\%	7.0
Operations Total (Out of 100)			100\%	51		55\%	29

Table A.17: Kennemer

Kennemer	Condition	Neighborhood Potential			Community/Regional Potential		
		Ranking	$\begin{array}{c}\text { Importance } \\ \text { Rating }\end{array}$	Element Score	Ranking	Importance Rating	Element Score
Demographics							
20-Minute Walk							
Children	5,012	10	10\%	10.0	10	3\%	3.0
Seniors	873	8	5\%	4.0	8	2\%	1.6
Total Population	16,168	10	15\%	15.0	10	5\%	5.0
Median Household Income	\$31,233	9	5\%	4.5	9	3\%	2.7
Population Growth (5-Year)	454	5	5\%	2.5	5	3\%	1.5
Social Needs and Conditions Index	186	10	15\%	15.0	10	10\%	10.0
10-Minute Drive							
Children	36,024	10	3\%	3.0	10	10\%	10.0
Seniors	12,661	10	2\%	2.0	10	6\%	6.0
Total Population	150,730	10	6\%	6.0	10	15\%	15.0
Median Household Income	\$41,349	7	3\%	2.1	7	5\%	3.5
Population Growth (5-Year)	11,466	6	3\%	1.8	6	8\%	4.8
Capacity (based on surface area)	257	2	8\%	1.6	2	10\%	2.0
Attendance (5-Year Avg.)	6,948	1	10\%	1.0	1	10\%	1.0
Attendance/Capacity Ratio	27.1	3	10\%	3.0	3	10\%	3.0
Demographics Total (Out of 100)			100\%	72		100\%	69
Site Conditions							
Entrance/Drive	Yes	0	10\%	0.0	10	5\%	5.0
Parking Spaces (Count)	32	10	10\%	10.0	1	14\%	1.4
Site Area (Acres)	0.7	8	40\%	32.0	0	50\%	0.0
Grade Constraints	Low		0\%	0.0	10	14\%	14.0
Health, Safety, Welfare Issues	70\%	7	20\%	14.0	7	5\%	3.5
Designated Historical Features (Count)	0	10	10\%	10.0	10	6\%	6.0
Historic al Structure (Pool House or Pool)	No	10	10\%	10.0	10	6\%	6.0
Site Total (Out of 100)			100\%	76		100\%	36
Location							
Heavily Trafficked Roadways (Traffic Counts)	10,280	7	5\%	3.5	7	5\%	3.5
Distance from Road	52	1	5\%	0.5	1	5\%	0.5
Railroads	None	1	5\%	0.5	1	5\%	0.5
Flight Zones (Noise Level - Decibels)	None	10	5\%	5.0	10	5\%	5.0
Competing Elements (Count)							
Other PARD Aquatic Facilities (20 Min . Walk)	0	10	20\%	20.0	10	8\%	8.0
Service Area Overlap (20 Min. Walk)	0\%	10	20\%	20.0	10	8\%	8.0
Private Aquatic Facilities (20 Min. Walk)	0	10	7\%	7.0	10	3\%	3.0
Programs By HOA/Private Orgs. (20 Min. Walk)	0	10	3\%	3.0	10	2\%	2.0
Symbiotic Elements (Count)							
Schools/Daycare Providers (5 Minute Walk)	1	2	10\%	2.0	2	19\%	3.8
Recreation Centers (5 Minute Walk)	0	0	10\%	0.0	0	20\%	0.0
Other Park Amenities (5 Minute Walk)	0	0	10\%	0.0	0	20\%	0.0
Location Total (Out of 100)			100\%	62		100\%	34
Accessibility							
Adjacent Roadway Class	Minor Arterial	10	5\%	5.0	8	5\%	4.0
Transit Access	10 minute	3	15\%	4.5	3	15\%	4.5
Pedestrian Connectivity							
Walkways/Trails	Some	5	15\%	7.5	5	15\%	7.5
Crosswalks	Some	5	5\%	2.5	5	5\%	2.5
Traffic Controls	None	0	5\%	0.0	0	5\%	0.0
Overall	Fair	3	15\%	4.5	3	15\%	4.5
Bicycle Connectivity							

Kennemer	Condition	Neighborhood Potential			Community/ Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Lanes	Some	5	10\%	5.0	5	10\%	5.0
Trails (Count)	None	0	15\%	0.0	0	15\%	0.0
Overall	Good	7	15\%	10.5	7	15\%	10.5
Accessibility Total (Out of 100)			100\%	40		100\%	39
Infrastructure							
Electric Service Provider	Austin Energy	10	10\%	10.0	10	10\%	10.0
Electric Service (Phases)	3	10	5\%	5.0	10	10\%	10.0
Water (Dist. to 4" Line in ft.)	0	10	10\%	10.0	10	20\%	20.0
Reclaimed Water (Dist. in ft.)	None	0	10\%	0.0	0	15\%	0.0
Wastewater (Dist. to 8" Sewer Line in ft.)	550'	2	5\%	1.0	2	15\%	3.0
Pool Condition	Fair	5	25\%	12.5	5	10\%	5.0
Bathhouse Condition	Fair	5	20\%	10.0	5	10\%	5.0
Storage Conditions	Good	7	10\%	7.0	7	5\%	3.5
COATN Service Area (Wi-Fi)	No	0	5\%	0.0	0	5\%	0.0
Infrastructure Total (Out of 100)			100\%	56		100\%	57
Environmental							
Trees (Number)							
2" to 19" in Diameter	25	7	3\%	2.1	7	5\%	3.5
19" to 24" in Diameter	3	8	3\%	2.4	8	5\%	4.0
Over 24" in Diameter (Including Heritage)	0	10	11\%	11.0	10	15\%	15.0
Grow Zones	No	10	13\%	13.0	10	10\%	10.0
Aquifer Recharge	No	10	13\%	13.0	10	13\%	13.0
Pollinator Habitat	No	10	6\%	6.0	10	5\%	5.4
Wetlands	No	10	13\%	13.0	10	10\%	10.0
Rock Outcrop	No	10	13\%	13.0	10	13\%	13.0
Springs	No	10	13\%	13.0	10	13\%	13.0
Environmental Sensitivity	Medium Sensitivity	5	6\%	3.0	5	5\%	2.7
Soil Suitability	Somewhat Limited	5	6\%	3.0	5	5\%	2.7
Environmental Total (Out of 100)			100\%	93		100\%	92
Regulatory							
Flood Zones							
25-Year Floodpla in	No	10	20\%	20.0	10	20\%	20.0
100-Year Floodpla in	No	10	10\%	10.0	10	10\%	10.0
500-Year Floodplain	No	10	5\%	5.0	10	5\%	5.0
Zoning Designation	SF-3-NP	0	5\%	0.0	0	5\%	0.0
Sub-ChapterE (Distance from Road in ft.)	52	9	5\%	4.5	9	5\%	4.5
Erosion Hazard Review Buffer	No	10	9\%	9.0	10	10\%	10.0
Resource Buffers	No	10	20\%	20.0	10	20\%	20.0
Watershed Regulation Areas	Urban	10	10\%	10.0	10	10\%	10.0
Water Quality Zones	No	10	3\%	3.0	10	5\%	5.0
Endangered Species	No	10	3\%	3.0	10	5\%	5.0
Bathhouse	Yes	10	5\%	5.0	10	2\%	2.5
Restrooms (Distance from Pool in ft.)	At pool	10	5\%	5.0	10	2\%	2.5
Regulatory Total (Out of 100)			100\%	95		100\%	94
Operations							
Maintenance Staff/Equipment Ease of Access	Good	7	20\%	14.0	7	10\%	7.0
Simplicity of Equipment	Good	7	20\%	14.0	7	10\%	7.0
Equipment Condition/Replacement Cost	Fair	5	30\%	15.0	5	15\%	7.5
Lawn/Landscaped Area	Fair	5	20\%	10.0	5	10\%	5.0
Employee Safety Measures	Good	7	10\%	7.0	7	10\%	7.0
Operations Total (Out of 100)			100\%	60		55\%	34

Table A.18: Little Stacy

Intie Stacy	Condition	Neighborhood Potential			Community/Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Demographics							
20-Minute Walk							
Children	1,172	3	10\%	3.0	3	3\%	0.9
Seniors	661	5	5\%	2.5	5	2\%	1.0
Total Population	7,512	6	15\%	9.0	6	5\%	3.0
Median Household Income	\$63,812	5	5\%	2.5	5	3\%	1.5
Population Growth (5-Year)	528	5	5\%	2.5	5	3\%	1.5
Social Needs and Conditions Index	89	4	15\%	6.0	4	10\%	4.0
10-Minute Drive							
Children	13,195	3	3\%	0.9	3	10\%	3.0
Seniors	4,687	3	2\%	0.6	3	6\%	1.8
Total Population	72,106	5	6\%	3.0	5	15\%	7.5
Median Household Income	\$40,858	3	3\%	0.9	3	5\%	1.5
Population Growth (5-Year)	8,553	4	3\%	1.2	4	8\%	3.2
Capacity (based on surface area)	100	0	8\%	0.0	0	10\%	0.0
Attendance (5-Year Avg.)	6,420	1	10\%	1.0	1	10\%	1.0
Attendance/Capacity Ratio	64.2	6	10\%	6.0	6	10\%	6.0
Demographics Total (Out of 100)			100\%	39		100\%	36
Stite Conditions							
Entrance/Drive	No	0	10\%	0.0	0	5\%	0.0
Parking Spaces (Count)	0	0	10\%	0.0	0	14\%	0.0
Site Area (Acres)	0.2	0	40\%	0.0	0	50\%	0.0
Grade Constraints	Low		0\%	0.0	10	14\%	14.0
Health, Safety, Welfare Issues	45\%	5	20\%	10.0	5	5\%	2.5
Designated Historical Features (Count)	0	10	10\%	10.0	10	6\%	6.0
Historic al Struc ture (Pool House or Pool)	1936	1	10\%	1.0	1	6\%	0.6
Site Total (Out of 100)			100\%	21		100\%	23
Location							
Heavily Trafficked Roadways (Traffic Counts)	190	10	5\%	5.0	10	5\%	5.0
Distance from Road	240	5	5\%	2.5	5	5\%	2.5
Railroads	None	10	5\%	5.0	10	5\%	5.0
Flight Zones (Noise Level - Decibels)	None	10	5\%	5.0	10	5\%	5.0
Competing Elements (Count)							
Other PARD Aquatic Facilities (20 Min . Walk)	1	5	20\%	10.0	5	8\%	4.0
Service Area Overlap (20 Min. Walk)	83\%	2	20\%	4.0	2	8\%	1.6
Private Aquatic Facilities (20 Min . Walk)	0	10	7\%	7.0	10	3\%	3.0
Programs By HOA/Private Orgs. (20 Min. Walk)	0	10	3\%	3.0	10	2\%	2.0
Symbiotic Elements (Count)							
Schools/Daycare Providers (5 Minute Walk)	0	0	10\%	0.0	0	19\%	0.0
Recreation Centers (5 Minute Walk)	0	0	10\%	0.0	0	20\%	0.0
Other Park Amenities (5 Minute Walk)	16	8	10\%	8.0	8	20\%	16.0
Location Total (Out of 100)			100\%	50		100\%	44
Accessibility							
Adjacent Roadway Class	Park Road	2	5\%	1.0	0	5\%	0.0
Transit Access	10 minute	3	15\%	4.5	3	15\%	4.5
Pedestrian Connectivity							
Walkways/Trails	Some	5	15\%	7.5	5	15\%	7.5
Crosswalks	None	0	5\%	0.0	0	5\%	0.0
Traffic Controls	None	0	5\%	0.0	0	5\%	0.0
Overall	Fair	3	15\%	4.5	3	15\%	4.5
Bicycle Connectivity							

Itile Stacy	Condition	Neighborhood Potential			Community/ Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Lanes	None	0	10\%	0.0	0	10\%	0.0
Trails (Count)	None	0	15\%	0.0	0	15\%	0.0
Overall	Good	7	15\%	10.5	7	15\%	10.5
Accessibility Total (Out of 100)			100\%	28		100\%	27
Infrastructure							
Electric Service Provider	Austin Energy	10	10\%	10.0	10	10\%	10.0
Electric Service (Phases)	1	0	5\%	0.0	0	10\%	0.0
Water (Dist. to 4" Line in ft.)	0	10	10\%	10.0	10	20\%	20.0
Reclaimed Water (Dist. in ft.)	None	0	10\%	0.0	0	15\%	0.0
Wastewater (Dist. to 8" Sewer Line in ft.)	30'	8	5\%	4.0	8	15\%	12.0
Pool Condition	Good	7	25\%	17.5	7	10\%	7.0
Bathhouse Condition	Nonexistent	0	20\%	0.0	0	10\%	0.0
Storage Conditions	Poor	2	10\%	2.0	2	5\%	1.0
COATN Service Area (Wi-Fi)	No	0	5\%	0.0	0	5\%	0.0
Infrastructure Total (Out of 100)			100\%	44		100\%	50
Environmental							
Trees (Number)							
2" to 19" in Diameter	99	1	3\%	0.3	1	5\%	0.5
19" to 24" in Diameter	25	0	3\%	0.0	0	5\%	0.0
Over 24" in Diameter (Including Heritage)	23	0	11\%	0.0	0	15\%	0.0
Grow Zones	Within 250	10	13\%	13.0	0	10\%	0.0
Aquifer Recharge	No	10	13\%	13.0	10	13\%	13.0
Pollinator Habitat	No	10	6\%	6.0	10	5\%	5.4
Wetlands	No	10	13\%	13.0	10	10\%	10.0
Rock Outcrop	No	10	13\%	13.0	10	13\%	13.0
Springs	No	10	13\%	13.0	10	13\%	13.0
Environmental Sensitivity	Medium Sensitivity	5	6\%	3.0	5	5\%	2.7
Soil Suita bility	ery-Somewhat Limite	2	6\%	1.2	2	5\%	1.1
Environmental Total (Out of 100)			100\%	76		100\%	59
Regulatory							
Flood Zones							
25-Year Floodpla in	Within 250	10	20\%	20.0	0	20\%	0.0
100-Year Floodpla in	Within 250	10	10\%	10.0	0	10\%	0.0
500-Year Floodpla in	Within 250	10	5\%	5.0	0	5\%	0.0
Zoning Designation	P-NP	8	5\%	4.0	8	5\%	4.0
Sub-Chapter E (Distance from Road in ft.)	240	6	5\%	3.0	6	5\%	3.0
Erosion Hazard Review Buffer	Within 250	10	9\%	9.0	0	10\%	0.0
Resource Buffers	No	10	20\%	20.0	10	20\%	20.0
Watershed Regulation Areas	Urban	10	10\%	10.0	10	10\%	10.0
Water Quality Zones	250 Critical	10	3\%	3.0	0	5\%	0.0
Endangered Species	No	10	3\%	3.0	10	5\%	5.0
Bathhouse	No	10	5\%	5.0	10	2\%	2.5
Restrooms (Distance from Pool in ft.)	180	0	5\%	0.0	0	2\%	0.0
Regulatory Total (Out of 100)			100\%	92		100\%	44
Operations							
Maintenance Staff/Equipment Ease of Access	Fair	5	20\%	10.0	5	10\%	5.0
Simplic ity of Equipment	Good	7	20\%	14.0	7	10\%	7.0
Equipment Condition/Replacement Cost	Fair	5	30\%	15.0	5	15\%	7.5
Lawn/Landscaped Area	Poor	2	20\%	4.0	2	10\%	2.0
Employee Safety Measures	Good	7	10\%	7.0	7	10\%	7.0
Operations Total (Out of 100)			100\%	50		55\%	29

Table A.19: Mabel Davis

Mabel Davis	Condition	Neighborhood Potential			Community/ Regional Potential		
		Ranking	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Importance } \\ \text { Rating } \end{array} \\ \hline \end{array}$	Element Score	Ranking	Importance Rating	Element Score
Demographics							
20-Minute Walk							
Children	1,038	2	10\%	2.0	2	3\%	0.6
Seniors	257	0	5\%	0.0	0	2\%	0.0
Total Population	4,944	3	15\%	4.5	3	5\%	1.5
Median Household Income	\$33,137	9	5\%	4.5	9	3\%	2.7
Population Growth (5-Year)	584	6	5\%	3.0	6	3\%	1.8
Social Needs and Conditions Index	182	10	15\%	15.0	10	10\%	10.0
10-Minute Drive							
Children	36,330	10	3\%	3.0	10	10\%	10.0
Seniors	11,404	9	2\%	1.8	9	6\%	5.4
Total Population	162,915	10	6\%	6.0	10	15\%	15.0
Median Household Income	\$39,955	8	3\%	2.4	8	5\%	4.0
Population Growth (5-Year)	16,725	10	3\%	3.0	10	8\%	8.0
Capacity (based on surface area)	604	7	8\%	5.6	7	10\%	7.0
Attendance (5-YearAvg.)	13,521	3	10\%	3.0	3	10\%	3.0
Attendance/Capacity Ratio	22.4	2	10\%	2.0	2	10\%	2.0
Demographics Total (Out of 100)			100\%	56		100\%	71
Site Conditions							
Entrance/Drive	Yes	10	10\%	10.0	10	5\%	5.0
Parking Spaces (Count)	91	10	10\%	10.0	5	14\%	7.0
Site Area (Acres)	6.5	10	40\%	40.0	10	50\%	50.0
Grade Constraints	Moderate-Severe		0\%	0.0	2	14\%	2.8
Health, Safety, Welfare Issues	55\%	6	20\%	12.0	6	5\%	3.0
Designated Historical Features (Count)	1	8	10\%	8.0	8	6\%	4.8
Historical Structure (Pool House or Pool)	No	10	10\%	10.0	10	6\%	6.0
Site Total (Out of 100)			100\%	90		100\%	79
Location							
Heavily Trafficked Roadways (Traffic Counts)	7,230	8	5\%	4.0	8	5\%	4.0
Distance from Road	279	6	5\%	3.0	6	5\%	3.0
Railroads	None	10	5\%	5.0	10	5\%	5.0
Flight Zones (Noise Level - Decibels)	None	1	5\%	0.5	1	5\%	0.5
Competing Elements (Count)							
Other PARD Aquatic Facilities (20 Min . Walk)	0	10	20\%	20.0	10	8\%	8.0
Service Area Overlap (20 Min. Walk)	8\%	9	20\%	18.0	9	8\%	7.2
Private Aquatic Facilities (20 Min . Walk)	0	10	7\%	7.0	10	3\%	3.0
Programs By HOA/Private Orgs. (20 Min. Walk)	0	10	3\%	3.0	10	2\%	2.0
Symbiotic Elements (Count)							
Schools/ Daycare Providers (5 Minute Walk)	0	0	10\%	0.0	0	19\%	0.0
Recreation Centers (5 Minute Walk)	0	0	10\%	0.0	0	20\%	0.0
Other Park Amenities (5 Minute Walk)	6	3	10\%	3.0	3	20\%	6.0
Location Total (Out of 100)			100\%	64		100\%	39
Accessibility							
Adjacent Roadway Class	Collector	10	5\%	5.0	5	5\%	2.5
Transit Access	At pool	10	15\%	15.0	10	15\%	15.0
Pedestrian Connectivity							
Walkways/Trails	Some	5	15\%	7.5	5	15\%	7.5
Crosswalks	None	0	5\%	0.0	0	5\%	0.0
Traffic Controls	None	0	5\%	0.0	0	5\%	0.0
Overall	Fair	3	15\%	4.5	3	15\%	4.5
Bicycle Connectivity							

Mabel Davis	Condition	Neighborhood Potential			Community/Regional Potential		
		Ranking	$\begin{array}{\|c} \hline \begin{array}{c} \text { Importance } \\ \text { Rating } \end{array} \\ \hline \end{array}$	Element Score	Ranking	Importance Rating	Element Score
Lanes	Some	5	10\%	5.0	5	10\%	5.0
Trails (Count)	None	0	15\%	0.0	0	15\%	0.0
Overall	Good	7	15\%	10.5	7	15\%	10.5
Accessibility Total (Out of 100)			100\%	48		100\%	45
Infrastructure							
Electric Service Provider	Austin Energy	10	10\%	10.0	10	10\%	10.0
Electric Service (Phases)	3	10	5\%	5.0	10	10\%	10.0
Water (Dist. to 4" Line in ft.)	0	10	10\%	10.0	10	20\%	20.0
Reclaimed Water (Dist. in ft.)	None	0	10\%	0.0	0	15\%	0.0
Wastewater (Dist. to 8" Sewer Line in ft.)	280'	5	5\%	2.5	5	15\%	7.5
Pool Condition	Poor	2	25\%	5.0	2	10\%	2.0
Bathhouse Condition	Fair	5	20\%	10.0	5	10\%	5.0
Storage Conditions	Fair	5	10\%	5.0	5	5\%	2.5
COATN Service Area (Wi-Fi)	No	0	5\%	0.0	0	5\%	0.0
Infrastructure Total (Out of 100)			100\%	48		100\%	57
Environmental							
Trees (Number)							
2" to 19" in Diameter	40	6	3\%	1.8	6	5\%	3.0
19" to 24" in Diameter	2	9	3\%	2.7	9	5\%	4.5
Over 24" in Diameter (Including Heritage)	1	9	11\%	9.9	9	15\%	13.5
Grow Zones	No	10	13\%	13.0	10	10\%	10.0
Aquifer Recharge	No	10	13\%	13.0	10	13\%	13.0
Pollinator Habitat	No	10	6\%	6.0	10	5\%	5.4
Wetlands	No	10	13\%	13.0	10	10\%	10.0
Rock Outcrop	No	10	13\%	13.0	10	13\%	13.0
Springs	No	10	13\%	13.0	10	13\%	13.0
Environmental Sensitivity	Medium Sensitivity	5	6\%	3.0	5	5\%	2.7
Soil Suitability	lery-Somewhat Limite	2	6\%	1.2	2	5\%	1.1
Environmental Total (Out of 100)			100\%	90		100\%	89
Regulatory							
Flood Zones							
25-Year Floodpla in	No	10	20\%	20.0	10	20\%	20.0
100-Year Floodplain	No	10	10\%	10.0	10	10\%	10.0
500-Year Floodpla in	No	10	5\%	5.0	10	5\%	5.0
Zoning Designation	P-NP	8	5\%	4.0	8	5\%	4.0
Sub-Chapter E (Distance from Road in ft.)	279	5	5\%	2.5	5	5\%	2.5
Erosion Hazard Review Buffer	No	10	9\%	9.0	10	10\%	10.0
Resource Buffers	No	10	20\%	20.0	10	20\%	20.0
Watershed Regulation Areas	Suburban	8	10\%	8.0	8	10\%	8.0
Water Quality Zones	No	10	3\%	3.0	10	5\%	5.0
Endangered Species	No	10	3\%	3.0	10	5\%	5.0
Bathhouse	Yes	10	5\%	5.0	10	2\%	2.5
Restrooms (Distance from Pool in ft.)	At pool	10	5\%	5.0	10	2\%	2.5
Regulatory Total (Out of 100)			100\%	95		100\%	94
Operations							
Maintenance Staff/Equipment Ease of Access	Poor	2	20\%	4.0	2	10\%	2.0
Simplicity of Equipment	poor	2	20\%	4.0	2	10\%	2.0
Equipment Condition/Replacement Cost	poor	2	30\%	6.0	2	15\%	3.0
Lawn/Landscaped Area	Fair	5	20\%	10.0	5	10\%	5.0
Employee Safety Measures	Poor	2	10\%	2.0	2	10\%	2.0
Operations Total (Out of 100)			100\%	26		55\%	14

Table A.20: Martin

Martin	Condition	Neighborhood Potential			Community/ Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Demographics							
20-Minute Walk							
Children	1,013	2	10\%	2.0	2	3\%	0.6
Seniors	838	8	5\%	4.0	8	2\%	1.6
Total Population	6,029	4	15\%	6.0	4	5\%	2.0
Median Household Income	\$42,584	8	5\%	4.0	8	3\%	2.4
Population Growth (5-Year)	568	6	5\%	3.0	6	3\%	1.8
Social Needs and Conditions Index	141	8	15\%	12.0	8	10\%	8.0
10-Minute Drive							
Children	15,716	4	3\%	1.2	4	10\%	4.0
Seniors	6,138	4	2\%	0.8	4	6\%	2.4
Total Population	92,993	6	6\%	3.6	6	15\%	9.0
Median Household Income	\$28,873	10	3\%	3.0	10	5\%	5.0
Population Growth (5-Year)	10,099	5	3\%	1.5	5	8\%	4.0
Capacity (based on surface area)	277	3	8\%	2.4	3	10\%	3.0
Attendance (5-Year Avg.)	13,491	3	10\%	3.0	3	10\%	3.0
Attendance/Capacity Ratio	48.6	5	10\%	5.0	5	10\%	5.0
Demographics Total (Out of 100)			100\%	52		100\%	52
Site Conditions							
Entrance/Drive	Yes	10	10\%	10.0	10	5\%	5.0
Parking Spaces (Count)	19	9	10\%	9.0	0	14\%	0.0
Site Area (Acres)	1.3	10	40\%	40.0	0	50\%	0.0
Grade Constraints	Low		0\%	0.0	10	14\%	14.0
Health, Safety, Welfare Issues	53\%	5	20\%	10.0	5	5\%	2.5
Designated Historic al Features (Count)	1	8	10\%	8.0	8	6\%	4.8
Historic al Struc ture (Pool House or Pool)	1977	8	10\%	8.0	8	6\%	4.8
Site Total (Out of 100)			100\%	85		100\%	31
Location							
Heavily Trafficked Roadways (Traffic Counts)	Unavailable	10	5\%	5.0	10	5\%	5.0
Distance from Road	108	2	5\%	1.0	2	5\%	1.0
Railroads	None	10	5\%	5.0	10	5\%	5.0
Flight Zones (Noise Level - Decibels)	None	10	5\%	5.0	10	5\%	5.0
Competing Elements (Count)							
Other PARD Aquatic Facilities (20 Min . Walk)	1	5	20\%	10.0	5	8\%	4.0
Service Area Overlap (20 Min. Walk)	74\%	7	20\%	14.0	7	8\%	5.6
Private Aquatic Facilities (20 Min . Walk)	0	10	7\%	7.0	10	3\%	3.0
Programs By HOA/Private Orgs. (20 Min. Walk)	0	10	3\%	3.0	10	2\%	2.0
Symbiotic Elements (Count)							
Schools/Daycare Providers (5 Minute Walk)	1	2	10\%	2.0	2	19\%	3.8
Recreation Centers (5 Minute Walk)	1	5	10\%	5.0	5	20\%	10.0
Other Park Amenities (5 Minute Walk)	46	10	10\%	10.0	10	20\%	20.0
Location Total (Out of 100)			100\%	67		100\%	64
Accessibility							
Adjacent Roadway Class	Park Road	2	5\%	1.0	2	5\%	1.0
Transit Access	10 minute	3	15\%	4.5	3	15\%	4.5
Pedestrian Connectivity							
Walkways/Trails	Some	5	15\%	7.5	5	15\%	7.5
Crosswalks	None	0	5\%	0.0	0	5\%	0.0
Traffic Controls	None	0	5\%	0.0	0	5\%	0.0
Overall	Good	7	15\%	10.5	7	15\%	10.5
Bicycle Connectivity							

Martin	Condition	Neighborhood Potential			Community/Regional Potential		
		Ranking	Importance Rating	Eement Score	Ranking	Importance Rating	Element Score
Lanes	Some	5	10\%	5.0	5	10\%	5.0
Trails (Count)	1	5	15\%	7.5	5	15\%	7.5
Overall	Excellent	10	15\%	15.0	10	15\%	15.0
Accessibility Total (Out of 100)			100\%	51		100\%	51
Infrastructure							
Electric Service Provider	Austin Energy	10	10\%	10.0	10	10\%	10.0
Electric Service (Phases)	3	10	5\%	5.0	10	10\%	10.0
Water (Dist. to 4" Line in ft.)	0	10	10\%	10.0	10	20\%	20.0
Reclaimed Water (Dist. in ft.)	None	0	10\%	0.0	0	15\%	0.0
Wastewater (Dist. to 8" Sewer Line in ft.)	0^{\prime}	10	5\%	5.0	10	15\%	15.0
Pool Condition	Fair	5	25\%	12.5	5	10\%	5.0
Bathhouse Condition	Fair	5	20\%	10.0	5	10\%	5.0
Storage Conditions	Good	7	10\%	7.0	7	5\%	3.5
COATN Service Area (Wi-Fi)	No	0	5\%	0.0	0	5\%	0.0
Infrastructure Total (Out of 100)			100\%	60		100\%	69
Environmental							
Trees (Number)							
2" to 19" in Diameter	49	5	3\%	1.5	5	5\%	2.5
19" to 24" in Diameter	12	4	3\%	1.2	4	5\%	2.0
Over 24" in Dia meter (Including Heritage)	4	8	11\%	8.8	8	15\%	12.0
Grow Zones	No	10	13\%	13.0	10	10\%	10.0
Aquifer Recharge	No	10	13\%	13.0	10	13\%	13.0
Pollinator Habitat	No	10	6\%	6.0	10	5\%	5.4
Wetlands	No	10	13\%	13.0	10	10\%	10.0
Rock Outcrop	No	10	13\%	13.0	10	13\%	13.0
Springs	No	10	13\%	13.0	10	13\%	13.0
Environmental Sensitivity	Low Sensitivity	10	6\%	6.0	10	5\%	5.4
Soil Suita bility	Very Limited	0	6\%	0.0	0	5\%	0.0
Environmental Total (Out of 100)			100\%	89		100\%	86
Regulatory							
Flood Zones							
25-Year Floodpla in	No	10	20\%	20.0	10	20\%	20.0
100-Year Floodplain	Within 250	10	10\%	10.0	0	10\%	0.0
500-Year Floodpla in	Yes	0	5\%	0.0	0	5\%	0.0
Zoning Designation	P-NP	8	5\%	4.0	8	5\%	4.0
Sub-Chapter E (Distance from Road in ft.)	108	9	5\%	4.5	9	5\%	4.5
Erosion Hazard Review Buffer	No	10	9\%	9.0	10	10\%	10.0
Resource Buffers	No	10	20\%	20.0	10	20\%	20.0
Watershed Regulation Areas	Urban	10	10\%	10.0	10	10\%	10.0
Water Quality Zones	No	10	3\%	3.0	10	5\%	5.0
Endangered Species	No	10	3\%	3.0	10	5\%	5.0
Bathhouse	Yes	10	5\%	5.0	10	2\%	2.5
Restrooms (Distance from Pool in ft.)	At pool	10	5\%	5.0	10	2\%	2.5
Regulatory Total (Out of 100)			100\%	94		100\%	83
Operations							
Ma intenance Staff/Equipment Ease of Access	Poor	2	20\%	4.0	2	10\%	2.0
Simplic ity of Equipment	Poor	2	20\%	4.0	2	10\%	2.0
Equipment Condition/Replacement Cost	Poor	2	30\%	6.0	2	15\%	3.0
Lawn/Landscaped Area	Good	7	20\%	14.0	7	10\%	7.0
Employee Safety Measures	Poor	2	10\%	2.0	2	10\%	2.0
Operations Total (Out of 100)			100\%	30		55\%	16

Table A.21: Metz

Metz	Condition	Neighborhood Potential			Community/ Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Demographics							
20-Minute Walk							
Children	1,673	4	10\%	4.0	4	3\%	1.2
Seniors	954	9	5\%	4.5	9	2\%	1.8
Total Population	7,816	6	15\%	9.0	6	5\%	3.0
Median Household Income	\$36,659	9	5\%	4.5	9	3\%	2.7
Population Growth (5-Year)	548	5	5\%	2.5	5	3\%	1.5
Social Needs and Conditions Index	157	9	15\%	13.5	9	10\%	9.0
10-Minute Drive							
Children	20,682	6	3\%	1.8	6	10\%	6.0
Seniors	6,797	5	2\%	1.0	5	6\%	3.0
Total Population	97,098	6	6\%	3.6	6	15\%	9.0
Median Household Income	\$36,195	8	3\%	2.4	8	5\%	4.0
Population Growth (5-Year)	11,235	6	3\%	1.8	6	8\%	4.8
Capacity (based on surface area)	218	2	8\%	1.6	2	10\%	2.0
Attendance (5-YearAvg.)	8,851	2	10\%	2.0	2	10\%	2.0
Attendance/Capacity Ratio	40.6	4	10\%	4.0	4	10\%	4.0
Demographics Total (Out of 100)			100\%	56		100\%	54
Site Conditions							
Entrance/Drive	Yes	10	10\%	10.0	10	5\%	5.0
Parking Spaces (Count)	22	10	10\%	10.0	1	14\%	1.4
Site Area (Acres)	1.5	10	40\%	40.0	0	50\%	0.0
Grade Constraints	Low		0\%	0.0	10	14\%	14.0
Health, Safety, Welfare Issues	60\%	5	20\%	10.0	5	5\%	2.5
Designated Historical Features (Count)	0	10	10\%	10.0	10	6\%	6.0
Historic al Struc ture (Pool House or Pool)	1934	1	10\%	1.0	1	6\%	0.6
Site Total (Out of 100)			100\%	81		100\%	30
Location							
Heavily Trafficked Roadways (Traffic Counts)	3,440	9	5\%	4.5	9	5\%	4.5
Distance from Road	25	0	5\%	0.0	0	5\%	0.0
Railroads	Inactive	10	5\%	5.0	10	5\%	5.0
Flight Zones (Noise Level - Decibels)	None	10	5\%	5.0	10	5\%	5.0
Competing Elements (Count)							
Other PARD Aquatic Facilities (20 Min . Walk)	1	5	20\%	10.0	5	8\%	4.0
Service Area Overlap (20 Min. Walk)	90\%	1	20\%	2.0	1	8\%	0.8
Private Aquatic Facilities (20 Min . Walk)	0	10	7\%	7.0	10	3\%	3.0
Programs By HOA/Private Orgs. (20 Min. Walk)	0	10	3\%	3.0	10	2\%	2.0
Symbiotic Elements (Count)							
Schools/Daycare Providers (5 Minute Walk)	1	2	10\%	2.0	2	19\%	3.8
Recreation Centers (5 Minute Walk)	1	5	10\%	5.0	5	20\%	10.0
Other Park Amenities (5 Minute Walk)	9	4	10\%	4.0	4	20\%	8.0
Location Total (Out of 100)			100\%	48		100\%	46
Accessibility							
Adjacent Roadway Class	Local	5	5\%	2.5	0	5\%	0.0
Transit Access	Yes	10	15\%	15.0	10	15\%	15.0
Pedestrian Connectivity							
Walkways/Trails	Some	5	15\%	7.5	5	15\%	7.5
Crosswalks	None	0	5\%	0.0	0	5\%	0.0
Traffic Controls	None	0	5\%	0.0	0	5\%	0.0
Overall	Good	7	15\%	10.5	7	15\%	10.5
Bicycle Connectivity							

Metz	Condition	Neighborhood Potential			Community/ Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Lanes	None	0	10\%	0.0	0	10\%	0.0
Trails (Count)	1	5	15\%	7.5	5	15\%	7.5
Overall	Good	7	15\%	10.5	7	15\%	10.5
Accessibility Total (Out of 100)			100\%	54		100\%	51
Infrastructure							
Electric Service Provider	Austin Energy	10	10\%	10.0	10	10\%	10.0
Electric Service (Phases)	2	5	5\%	2.5	5	10\%	5.0
Water (Dist. to 4" Line in ft.)	0	10	10\%	10.0	10	20\%	20.0
Reclaimed Water (Dist. in ft.)	None	0	10\%	0.0	0	15\%	0.0
Wastewater (Dist. to 8" Sewer Line in ft.)	$0{ }^{\prime}$	10	5\%	5.0	10	15\%	15.0
Pool Condition	Poor	2	25\%	5.0	2	10\%	2.0
Bathhouse Condition	Fair	5	20\%	10.0	5	10\%	5.0
Storage Conditions	Fair	5	10\%	5.0	5	5\%	2.5
COATN Service Area (Wi-Fi)	Potential	8	5\%	4.0	8	5\%	4.0
Infrastructure Total (Out of 100)			100\%	52		100\%	64
Environmental							
Trees (Number)							
2" to 19" in Diameter	37	6	3\%	1.8	6	5\%	3.0
19" to 24" in Diameter	5	7	3\%	2.1	7	5\%	3.5
Over 24" in Diameter (Including Heritage)	8	6	11\%	6.6	6	15\%	9.0
Grow Zones	No	10	13\%	13.0	10	10\%	10.0
Aquifer Recharge	No	10	13\%	13.0	10	13\%	13.0
Pollinator Habitat	No	10	6\%	6.0	10	5\%	5.4
Wetlands	No	10	13\%	13.0	10	10\%	10.0
Rock Outcrop	No	10	13\%	13.0	10	13\%	13.0
Springs	No	10	13\%	13.0	10	13\%	13.0
Environmental Sensitivity	Medium Sensitivity	5	6\%	3.0	5	5\%	2.7
Soil Suita bility	Very Limited	0	6\%	0.0	0	5\%	0.0
Environmental Total (Out of 100)			100\%	85		100\%	83
Regulatory							
Flood Zones							
25-YearFloodpla in	No	10	20\%	20.0	10	20\%	20.0
100-Year Floodpla in	No	10	10\%	10.0	10	10\%	10.0
500-Year Floodpla in	Within 250	10	5\%	5.0	0	5\%	0.0
Zoning Designation	P-NP	8	5\%	4.0	8	5\%	4.0
Sub-Chapter E (Distance from Road in ft.)	25	10	5\%	5.0	10	5\%	5.0
Erosion Hazard Review Buffer	No	10	9\%	9.0	10	10\%	10.0
Resource Buffers	No	10	20\%	20.0	10	20\%	20.0
Watershed Regulation Areas	Urban	10	10\%	10.0	10	10\%	10.0
Water Quality Zones	No	10	3\%	3.0	10	5\%	5.0
Endangered Species	No	10	3\%	3.0	10	5\%	5.0
Bathhouse	Yes	10	5\%	5.0	10	2\%	2.5
Restrooms (Distance from Pool in ft.)	At pool	10	5\%	5.0	10	2\%	2.5
Regulatory Total (Out of 100)			100\%	99		100\%	94
Operations							
Maintenance Staff/Equipment Ease of Access	Fair	5	20\%	10.0	5	10\%	5.0
Simplic ity of Equipment	Good	7	20\%	14.0	7	10\%	7.0
Equipment Condition/Replacement Cost	Good	7	30\%	21.0	7	15\%	10.5
Lawn/Landscaped Area	Poor	2	20\%	4.0	2	10\%	2.0
Employee Safety Measures	Good	7	10\%	7.0	7	10\%	7.0
Operations Total (Out of 100)			100\%	56		55\%	32

Table A.22: Montopolis

Montopolis	Condition	Neighborhood Potential			Community/Regional Potential		
		Ranking	Importance Rating	$\begin{gathered} \hline \text { Element } \\ \text { Score } \\ \hline \end{gathered}$	Ranking	Importance Rating	Element Score
Demographics							
20-Minute Walk							
Children	2,837	9	10\%	9.0	9	3\%	2.7
Seniors	638	5	5\%	2.5	5	2\%	1.0
Total Population	8,865	7	15\%	10.5	7	5\%	3.5
Median Household Income	\$28,346	10	5\%	5.0	10	3\%	3.0
Population Growth (5-Year)	1,011	10	5\%	5.0	10	3\%	3.0
Social Needs and Conditions Index	188	10	15\%	15.0	10	10\%	10.0
10-Minute Drive							
Children	26,128	8	3\%	2.4	8	10\%	8.0
Seniors	7,981	6	2\%	1.2	6	6\%	3.6
Total Population	109,324	7	6\%	4.2	7	15\%	10.5
Median Household Income	\$33,899	9	3\%	2.7	9	5\%	4.5
Population Growth (5-Year)	12,755	8	3\%	2.4	8	8\%	6.4
Capacity (based on surface area)	277	2	8\%	1.6	2	10\%	2.0
Attendance (5-YearAvg.)	9,842	2	10\%	2.0	2	10\%	2.0
Attendance/Capacity Ratio	35.5	4	10\%	4.0	4	10\%	4.0
Demographics Total (Out of 100)			100\%	68		100\%	64
Site Conditions							
Entrance/Drive	Yes	10	10\%	10.0	10	5\%	5.0
Parking Spaces (Count)	32	10	10\%	10.0	1	14\%	1.4
Site Area (Acres)	2.4	10	40\%	40.0	2	50\%	10.0
Grade Constraints	Low		0\%	0.0	10	14\%	14.0
Health, Safety, Welfare Issues	53\%	5	20\%	10.0	5	5\%	2.5
Designated Historic al Features (Count)	0	10	10\%	10.0	10	6\%	6.0
Historic al Struc ture (Pool House or Pool)	No	10	10\%	10.0	10	6\%	6.0
Site Total (Out of 100)			100\%	90		100\%	45
Location							
Heavily Trafficked Roadways (Traffic Counts)	18,060	5	5\%	2.5	5	5\%	2.5
Distance from Road	355	7	5\%	3.5	7	5\%	3.5
Railroads	None	10	5\%	5.0	10	5\%	5.0
Flight Zones (Noise Level - Decibels)	None	10	5\%	5.0	10	5\%	5.0
Competing Elements (Count)							
Other PARD Aquatic Facilities (20 Min . Walk)	1	5	20\%	10.0	5	8\%	4.0
Service Area Overlap (20 Min. Walk)	63\%	4	20\%	8.0	4	8\%	3.2
Private Aquatic Facilities (20 Min . Walk)	0	10	7\%	7.0	10	3\%	3.0
Programs By HOA/Private Orgs. (20 Min. Walk)	0	10	3\%	3.0	10	2\%	2.0
Symbiotic Elements (Count)							
Schools/Daycare Providers (5 Minute Walk)	0	0	10\%	0.0	0	19\%	0.0
Recreation Centers (5 Minute Walk)	1	5	10\%	5.0	5	20\%	10.0
Other Park Amenities (5 Minute Walk)	8	4	10\%	4.0	4	20\%	8.0
Location Total (Out of 100)			100\%	53		100\%	46
Accessibility							
Adjacent Roadway Class	Major Arterial	10	5\%	5.0	10	5\%	5.0
Transit Access	At pool	10	15\%	15.0	10	15\%	15.0
Pedestrian Connectivity							
Walkways/Trails	Some	5	15\%	7.5	5	15\%	7.5
Crosswalks	Yes	10	5\%	5.0	10	5\%	5.0
Traffic Controls	Yes	10	5\%	5.0	10	5\%	5.0
Overall	Good	7	15\%	10.5	7	15\%	10.5
Bicycle Connectivity							

Montopolis	Condition	Neighborhood Potential			Community/ Regional Potential		
		Ranking	Importance Rating	$\begin{gathered} \hline \text { Element } \\ \text { Score } \\ \hline \end{gathered}$	Ranking	Importance Rating	Element Score
Lanes	None	0	10\%	0.0	0	10\%	0.0
Trails (Count)	None	0	15\%	0.0	0	15\%	0.0
Overall	Fair	3	15\%	4.5	3	15\%	4.5
Accessibility Total (Out of 100)			100\%	53		100\%	53
Infrastructure							
Electric Service Provider	Austin Energy	10	10\%	10.0	10	10\%	10.0
Electric Service (Phases)	2	5	5\%	2.5	5	10\%	5.0
Water (Dist. to 4" Line in ft.)	0	10	10\%	10.0	10	20\%	20.0
Reclaimed Water (Dist. in ft.)	1000'	0	10\%	0.0	0	15\%	0.0
Wastewater (Dist. to 8" Sewer Line in ft.)	285	5	5\%	2.5	5	15\%	7.5
Pool Condition	Poor	2	25\%	5.0	2	10\%	2.0
Bathhouse Condition	Fair	5	20\%	10.0	5	10\%	5.0
Storage Conditions	Good	7	10\%	7.0	7	5\%	3.5
COATN Service Area (Wi-Fi)	Potential	8	5\%	4.0	8	5\%	4.0
Infrastructure Total (Out of 100)			100\%	51		100\%	57
Environmental							
Trees (Number)							
2" to 19" in Diameter	39	6	3\%	1.8	6	5\%	3.0
19" to 24" in Diameter	1	9	3\%	2.7	9	5\%	4.5
Over 24" in Dia meter (Including Heritage)	1	9	11\%	9.9	9	15\%	13.5
Grow Zones	No	10	13\%	13.0	10	10\%	10.0
Aquifer Recharge	No	10	13\%	13.0	10	13\%	13.0
Pollinator Habitat	No	10	6\%	6.0	10	5\%	5.4
Wetlands	No	10	13\%	13.0	10	10\%	10.0
Rock Outcrop	No	10	13\%	13.0	10	13\%	13.0
Springs	No	10	13\%	13.0	10	13\%	13.0
Environmental Sensitivity	Medium Sensitivity	5	6\%	3.0	5	5\%	2.7
Soil Suita bility	Very Limited	0	6\%	0.0	0	5\%	0.0
Environmental Total (Out of 100)			100\%	88		100\%	88
Regulatory							
Flood Zones							
25-YearFloodpla in	No	10	20\%	20.0	10	20\%	20.0
100-Year Floodpla in	No	10	10\%	10.0	10	10\%	10.0
500-Year Floodpla in	No	10	5\%	5.0	10	5\%	5.0
Zoning Designation	P-NP	8	5\%	4.0	8	5\%	4.0
Sub-Chapter E (Distance from Road in ft.)	355	4	5\%	2.0	4	5\%	2.0
Erosion Hazard Review Buffer	No	10	9\%	9.0	10	10\%	10.0
Resource Buffers	No	10	20\%	20.0	10	20\%	20.0
Watershed Regulation Areas	Suburban	8	10\%	8.0	8	10\%	8.0
WaterQuality Zones	No	10	3\%	3.0	10	5\%	5.0
Endangered Species	No	10	3\%	3.0	10	5\%	5.0
Bathhouse	Yes	10	5\%	5.0	10	2\%	2.5
Restrooms (Distance from Pool in ft.)	Atpool	10	5\%	5.0	10	2\%	2.5
Regulatory Total (Out of 100)			100\%	94		100\%	94
Operations							
Maintenance Staff/Equipment Ease of Access	Poor	2	20\%	4.0	2	10\%	2.0
Simplic ity of Equipment	Poor	2	20\%	4.0	2	10\%	2.0
Equipment Condition/Replacement Cost	Poor	2	30\%	6.0	2	15\%	3.0
Lawn/Landscaped Area	Fair	5	20\%	10.0	5	10\%	5.0
Employee Safety Measures	Poor	2	10\%	2.0	2	10\%	2.0
Operations Total (Out of 100)			100\%	26		55\%	14

Table A.23: Murchison

Murchison	Condition	Neighborhood Potential			Community/Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	$\begin{array}{\|c} \hline \begin{array}{c} \text { Importance } \\ \text { Rating } \end{array} \\ \hline \end{array}$	$\begin{aligned} & \hline \text { Element } \\ & \text { Score } \\ & \hline \end{aligned}$
Demographics							
20-Minute Walk							
Children	1,384	3	10\%	3.0	3	3\%	0.9
Seniors	1,139	10	5\%	5.0	10	2\%	2.0
Total Population	9,819	8	15\%	12.0	8	5\%	4.0
Median Household Income	\$52,777	7	5\%	3.5	7	3\%	2.1
Population Growth (5-Year)	763	8	5\%	4.0	8	3\%	2.4
Social Needs and Conditions Index	61	2	15\%	3.0	2	10\%	2.0
10-Minute Drive							
Children	17,133	5	3\%	1.5	5	10\%	5.0
Seniors	12,136	10	2\%	2.0	10	6\%	6.0
Total Population	89,236	6	6\%	3.6	6	15\%	9.0
Median Household Income	\$63,123	2	3\%	0.6	2	5\%	1.0
Population Growth (5-Year)	6,974	2	3\%	0.6	2	8\%	1.6
Capacity (based on surface area)	256	2	8\%	1.6	2	10\%	2.0
Attendance (5-Year Avg.)	9,585	2	10\%	2.0	2	10\%	2.0
Attendance/Capacity Ratio	37.4	4	10\%	4.0	4	10\%	4.0
Demographics Total (Out of 100)			100\%	46		100\%	44
Site Conditions							
Entrance/Drive	Yes	10	10\%	10.0	10	5\%	5.0
Parking Spaces (Count)	34	10	10\%	10.0	1	14\%	1.4
Site Area (Acres)	1.5	10	40\%	40.0	0	50\%	0.0
Grade Constraints	Low		0\%	0.0	10	14\%	14.0
Health, Safety, Welfare Issues	70\%	7	20\%	14.0	7	5\%	3.5
Designated Historic al Features (Count)	0	10	10\%	10.0	10	6\%	6.0
Historic al Struc ture (Pool House or Pool)	No	10	10\%	10.0	10	6\%	6.0
Site Total (Out of 100)			100\%	94		100\%	36
Location							
Heavily Trafficked Roadways (Traffic Counts)	5,320	9	5\%	4.5	9	5\%	4.5
Distance from Road	105	2	5\%	1.0	2	5\%	1.0
Railroads	None	10	5\%	5.0	10	5\%	5.0
Flight Zones (Noise Level - Decibels)	None	10	5\%	5.0	10	5\%	5.0
Competing Elements (Count)							
Other PARD Aquatic Facilities (20 Min . Walk)	0	10	20\%	20.0	10	8\%	8.0
Service Area Overlap (20 Min. Walk)	1\%	10	20\%	20.0	10	8\%	8.0
Private Aquatic Facilities (20 Min . Walk)	2	0	7\%	0.0	0	3\%	0.0
Programs By HOA/Private Orgs. (20 Min. Walk)	1	5	3\%	1.5	5	2\%	1.0
Symbiotic Elements (Count)							
Schools/ Daycare Providers (5 Minute Walk)	4	10	10\%	10.0	10	19\%	19.0
Recreation Centers (5 Minute Walk)	0	0	10\%	0.0	0	20\%	0.0
Other Park Amenities (5 Minute Walk)	0	0	10\%	0.0	0	20\%	0.0
Location Total (Out of 100)			100\%	67		100\%	52
Accessibility							
Adjacent Roadway Class	Collector	10	5\%	5.0	5	5\%	2.5
Transit Access	Yes	10	15\%	15.0	10	15\%	15.0
Pedestrian Connectivity							
Walkways/Trails	Some	5	15\%	7.5	5	15\%	7.5
Crosswalks	Yes	10	5\%	5.0	10	5\%	5.0
Traffic Controls	Yes	10	5\%	5.0	10	5\%	5.0
Overall	Good	7	15\%	10.5	7	15\%	10.5
Bicycle Connectivity							

Murchison	Condition	Neighborhood Potential			Community/Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Lanes	Some	5	10\%	5.0	5	10\%	5.0
Trails (Count)	None	0	15\%	0.0	0	15\%	0.0
Overall	Fair	3	15\%	4.5	3	15\%	4.5
Accessibility Total (Out of 100)			100\%	58		100\%	55
Infrastructure							
Electric Service Provider	Austin Energy	10	10\%	10.0	10	10\%	10.0
Electric Service (Phases)	2	5	5\%	2.5	5	10\%	5.0
Water (Dist. to 4" Line in ft.)	0	10	10\%	10.0	10	20\%	20.0
Reclaimed Water (Dist. in ft.)	None	0	10\%	0.0	0	15\%	0.0
Wastewater (Dist. to 8" Sewer Line in ft.)	721	8	5\%	4.0	8	15\%	12.0
Pool Condition	Fair	5	25\%	12.5	5	10\%	5.0
Bathhouse Condition	Fair	5	20\%	10.0	5	10\%	5.0
Storage Conditions	Good	7	10\%	7.0	7	5\%	3.5
COATN Service Area (Wi-Fi)	No	0	5\%	0.0	0	5\%	0.0
Infrastructure Total (Out of 100)			100\%	56		100\%	61
Environmental							
Trees (Number)							
2" to 19" in Diameter	25	7	3\%	2.1	7	5\%	3.5
19" to 24" in Dia meter	4	8	3\%	2.4	8	5\%	4.0
Over 24" in Diameter (Including Heritage)	7	6	11\%	6.6	6	15\%	9.0
Grow Zones	No	10	13\%	13.0	10	10\%	10.0
Aquifer Recharge	Yes	0	13\%	0.0	0	13\%	0.0
Pollinator Habitat	No	10	6\%	6.0	10	5\%	5.4
Wetlands	No	10	13\%	13.0	10	10\%	10.0
Rock Outcrop	No	10	13\%	13.0	10	13\%	13.0
Springs	No	10	13\%	13.0	10	13\%	13.0
Environmental Sensitivity	Medium Sensitivity	5	6\%	3.0	5	5\%	2.7
Soil Suita bility	Very Limited	0	6\%	0.0	0	5\%	0.0
Environmental Total (Out of 100)			100\%	72		100\%	71
Regulatory							
Flood Zones							
25-Year Floodpla in	No	10	20\%	20.0	10	20\%	20.0
100-Year Floodpla in	No	10	10\%	10.0	10	10\%	10.0
500-Year Floodpla in	No	10	5\%	5.0	10	5\%	5.0
Zoning Designation	SF-3	0	5\%	0.0	0	5\%	0.0
Sub-Chapter E (Distance from Road in ft.)	95	9	5\%	4.5	9	5\%	4.5
Erosion Hazard Review Buffer	No	10	9\%	9.0	10	10\%	10.0
Resource Buffers	No	10	20\%	20.0	10	20\%	20.0
Watershed Regulation Areas	Urban	10	10\%	10.0	10	10\%	10.0
Water Quality Zones	No	10	3\%	3.0	10	5\%	5.0
Endangered Species	No	10	3\%	3.0	10	5\%	5.0
Bathhouse	Yes	10	5\%	5.0	10	2\%	2.5
Restrooms (Distance from Pool in ft.)	At pool	10	5\%	5.0	10	2\%	2.5
Regulatory Total (Out of 100)			100\%	95		100\%	94
Operations							
Maintenance Staff/Equipment Ease of Access	Good	7	20\%	14.0	7	10\%	7.0
Simplic ity of Equipment	Good	7	20\%	14.0	7	10\%	7.0
Equipment Condition/Replacement Cost	Good	7	30\%	21.0	7	15\%	10.5
Lawn/Landscaped Area	Fair	5	20\%	10.0	5	10\%	5.0
Employee Safety Measures	Good	7	10\%	7.0	7	10\%	7.0
Operations Total (Out of 100)			100\%	66		55\%	37

Table A.24: Northwest

Northwest	Condition	Neighborhood Potential			Community/Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	$\begin{array}{\|c} \hline \begin{array}{c} \text { Importance } \\ \text { Rating } \end{array} \\ \hline \end{array}$	Element Score
Demographics							
20-Minute Walk							
Children	1,078	2	10\%	2.0	2	3\%	0.6
Seniors	942	9	5\%	4.5	9	2\%	1.8
Total Population	5,888	4	15\%	6.0	4	5\%	2.0
Median Household Income	\$69,205	4	5\%	2.0	4	3\%	1.2
Population Growth (5-Year)	480	5	5\%	2.5	5	3\%	1.5
Social Needs and Conditions Index	94	5	15\%	7.5	5	10\%	5.0
10-Minute Drive							
Children	16,451	5	3\%	1.5	5	10\%	5.0
Seniors	8,911	7	2\%	1.4	7	6\%	4.2
Total Population	85,683	6	6\%	3.6	6	15\%	9.0
Median Household Income	\$49,223	5	3\%	1.5	5	5\%	2.5
Population Growth (5-Year)	6,838	2	3\%	0.6	2	8\%	1.6
Capacity (based on surface area)	975	10	8\%	8.0	10	10\%	10.0
Attendance (5-Year Avg.)	52,590	10	10\%	10.0	10	10\%	10.0
Attendance/Capacity Ratio	54.0	5	10\%	5.0	5	10\%	5.0
Demographics Total (Out of 100)			100\%	56		100\%	59
Site Conditions							
Entrance/Drive	Yes	10	10\%	10.0	10	5\%	5.0
Parking Spaces (Count)	191	10	10\%	10.0	10	14\%	14.0
Site Area (Acres)	6.4	10	40\%	40.0	10	50\%	50.0
Grade Constraints	Moderate		0\%	0.0	5	14\%	7.0
Health, Safety, Welfare Issues	43\%	4	20\%	8.0	4	5\%	2.0
Designated Historical Features (Count)	0	10	10\%	10.0	10	6\%	6.0
Historic al Structure (Pool House or Pool)	1956	4	10\%	4.0	4	6\%	2.4
Site Total (Out of 100)			100\%	82		100\%	86
Location							
Heavily Trafficked Roadways (Traffic Counts)	5,790	9	5\%	4.5	9	5\%	4.5
Distance from Road	665	10	5\%	5.0	10	5\%	5.0
Railroads	None	10	5\%	5.0	10	5\%	5.0
Flight Zones (Noise Level - Decibels)	None	10	5\%	5.0	10	5\%	5.0
Competing Elements (Count)							
Other PARD Aquatic Facilities (20 Min. Walk)	0	10	20\%	20.0	10	8\%	8.0
Service Area Overlap (20 Min. Walk)	35\%	6	20\%	12.0	6	8\%	4.8
Private Aquatic Facilities (20 Min. Walk)	0	10	7\%	7.0	10	3\%	3.0
Programs By HOA/Private Orgs. (20 Min. Walk)	0	10	3\%	3.0	10	2\%	2.0
Symbiotic Elements (Count)							
Schools/Daycare Providers (5 Minute Walk)	0	0	10\%	0.0	0	19\%	0.0
Recreation Centers (5 Minute Walk)	0	0	10\%	0.0	0	20\%	0.0
Other Park Amenities (5 Minute Walk)	18	9	10\%	9.0	9	20\%	18.0
Location Total (Out of 100)			100\%	71		100\%	55
Accessibility							
Adjacent Roadway Class	Minor Arterial	10	5\%	5.0	8	5\%	4.0
Transit Access	10 minute	3	15\%	4.5	3	15\%	4.5
Pedestrian Connectivity							
Walkways/Trails	Minimal	2	15\%	3.0	2	15\%	3.0
Crosswalks	None	0	5\%	0.0	0	5\%	0.0
Traffic Controls	None	0	5\%	0.0	0	5\%	0.0
Overall	Fair	3	15\%	4.5	3	15\%	4.5
Bicycle Connectivity							

Northwest	Condition	Neighborhood Potential			Community/ Regional Potential		
		Ranking	Importance Rating	$\begin{gathered} \hline \text { Element } \\ \text { Score } \\ \hline \end{gathered}$	Ranking	Importance Rating	$\begin{aligned} & \hline \text { Eement } \\ & \text { Score } \\ & \hline \end{aligned}$
Lanes	None	0	10\%	0.0	0	10\%	0.0
Trails (Count)	None	0	15\%	0.0	0	15\%	0.0
Overall	Good	7	15\%	10.5	7	15\%	10.5
Accessibility Total (Out of 100)			100\%	28		100\%	27
Infrastructure							
Electric Service Provider	Austin Energy	10	10\%	10.0	10	10\%	10.0
Electric Service (Phases)	3	10	5\%	5.0	10	10\%	10.0
Water (Dist. to 4" Line in ft.)	0	10	10\%	10.0	10	20\%	20.0
Reclaimed Water (Dist. in ft.)	None	0	10\%	0.0	0	15\%	0.0
Wastewater (Dist. to 8" Sewer Line in ft.)	370'	3	5\%	1.5	3	15\%	4.5
Pool Condition	Poor	2	25\%	5.0	2	10\%	2.0
Bathhouse Condition	Fair	5	20\%	10.0	5	10\%	5.0
Storage Conditions	Fair	5	10\%	5.0	5	5\%	2.5
COATN Service Area (Wi-Fi)	No	0	5\%	0.0	0	5\%	0.0
Infrastructure Total (Out of 100)			100\%	47		100\%	54
Environmental							
Trees (Number)							
2" to 19" in Diameter	14	9	3\%	2.7	9	5\%	4.5
19" to 24" in Diameter	0	10	3\%	3.0	10	5\%	5.0
Over 24" in Dia meter (Including Hentage)	0	10	11\%	11.0	10	15\%	15.0
Grow Zones	No	10	13\%	13.0	10	10\%	10.0
Aquifer Recharge	No	10	13\%	13.0	10	13\%	13.0
Pollinator Habitat	No	10	6\%	6.0	10	5\%	5.4
Wetlands	No	10	13\%	13.0	10	10\%	10.0
Rock Outcrop	No	10	13\%	13.0	10	13\%	13.0
Springs	No	10	13\%	13.0	10	13\%	13.0
Environmental Sensitivity	Low Sensitivity	10	6\%	6.0	10	5\%	5.4
Soil Suita bility	Somewhat Limited	5	6\%	3.0	5	5\%	2.7
Environmental Total (Out of 100)			100\%	97		100\%	97
Regulatory							
Flood Zones							
25-Year Floodpla in	Within 250	10	20\%	20.0	0	20\%	0.0
100-Year Floodpla in	Within 250	10	10\%	10.0	0	10\%	0.0
500-Year Floodplain	Yes	0	5\%	0.0	0	5\%	0.0
Zoning Designation	P	10	5\%	5.0	10	5\%	5.0
Sub-Chapter E (Distance from Road in ft.)	101	9	5\%	4.5	9	5\%	4.5
Erosion Hazard Review Buffer	No	10	9\%	9.0	10	10\%	10.0
Resource Buffers	No	10	20\%	20.0	10	20\%	20.0
Watershed Regulation Areas	Urban	10	10\%	10.0	10	10\%	10.0
Water Quality Zones	250 Critic al	10	3\%	3.0	0	5\%	0.0
Endangered Species	No	10	3\%	3.0	10	5\%	5.0
Bathhouse	Yes	10	5\%	5.0	10	2\%	2.5
Restrooms (Distance from Pool in ft.)	At pool	10	5\%	5.0	10	2\%	2.5
Regulatory Total (Out of 100)			100\%	95		100\%	59
Operations							
Maintenance Staff/Equipment Ease of Access	Poor	2	20\%	4.0	2	10\%	2.0
Simplic ity of Equipment	Poor	2	20\%	4.0	2	10\%	2.0
Equipment Condition/Replacement Cost	Poor	2	30\%	6.0	2	15\%	3.0
Lawn/Landscaped Area	Fair	5	20\%	10.0	5	10\%	5.0
Employee Safety Measures	Poor	2	10\%	2.0	2	10\%	2.0
Operations Total (Out of 100)			100\%	26		55\%	14

Table A.25: Parque Zaragoza

Parque Zaragoza	Condition	Neighborhood Potential			Community/Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Demographics							
20-Minute Walk							
Children	3,084	10	10\%	10.0	10	3\%	3.0
Seniors	1,165	10	5\%	5.0	10	2\%	2.0
Total Population	11,770	9	15\%	13.5	9	5\%	4.5
Median Household Income	\$33,947	9	5\%	4.5	9	3\%	2.7
Population Growth (5-Year)	970	10	5\%	5.0	10	3\%	3.0
Social Needs and Conditions Index	148	8	15\%	12.0	8	10\%	8.0
10-Minute Drive							
Children	22,332	7	3\%	2.1	7	10\%	7.0
Seniors	8,068	6	2\%	1.2	6	6\%	3.6
Total Population	116,922	8	6\%	4.8	8	15\%	12.0
Median Household Income	\$36,011	8	3\%	2.4	8	5\%	4.0
Population Growth (5-Year)	13,133	10	3\%	3.0	10	8\%	8.0
Capacity (based on surface area)	213	2	8\%	1.6	2	10\%	2.0
Attendance (5-Year Avg.)	5,317	1	10\%	1.0	1	10\%	1.0
Attendance/Capacity Ratio	25.0	2	10\%	2.0	2	10\%	2.0
Demographics Total (Out of 100)			100\%	68		100\%	63
Site Conditions							
Entrance/Drive	No	0	10\%	0.0	0	5\%	0.0
Parking Spaces (Count)	2	1	10\%	1.0	0	14\%	0.0
Site Area (Acres)	0.7	8	40\%	32.0	0	50\%	0.0
Grade Constraints	Low		0\%	0.0	10	14\%	14.0
Health, Sa fety, Welfare Issues	53\%	5	20\%	10.0	5	5\%	2.5
Designated Historical Features (Count)	0	10	10\%	10.0	10	6\%	6.0
Historic al Structure (Pool House or Pool)	1932	1	10\%	1.0	1	6\%	0.6
Site Total (Out of 100)			100\%	54		100\%	23
Location							
Heavily Trafficked Roadways (Traffic Counts)	7,180	8	5\%	4.0	8	5\%	4.0
Distance from Road	681	10	5\%	5.0	10	5\%	5.0
Railroads	Light Rail	5	5\%	2.5	5	5\%	2.5
Flight Zones (Noise Level - Decibels)	None	10	5\%	5.0	10	5\%	5.0
Competing Elements (Count)							
Other PARD Aquatic Facililies (20 Min . Walk)	2	0	20\%	0.0	0	8\%	0.0
Service Area Overlap (20 Min. Walk)	94\%	1	20\%	2.0	1	8\%	0.8
Private Aquatic Facilities (20 Min. Walk)	0	10	7\%	7.0	10	3\%	3.0
Programs By HOA/Private Orgs. (20 Min. Walk)	0	10	3\%	3.0	10	2\%	2.0
Symbiotic Elements (Count)							
Schools/Daycare Providers (5 Minute Walk)	0	0	10\%	0.0	0	19\%	0.0
Recreation Centers (5 Minute Walk)	2	10	10\%	10.0	10	20\%	20.0
Other Park Amenities (5 Minute Walk)	10	5	10\%	5.0	5	20\%	10.0
Location Total (Out of 100)			100\%	44		100\%	52
Accessibility							
Adjacent Roadway Class	Minor Arterial	10	5\%	5.0	10	5\%	5.0
Transit Access	Yes	10	15\%	15.0	10	15\%	15.0
Pedestrian Connectivity							
Walkways/Trails	Minimal	2	15\%	3.0	2	15\%	3.0
Crosswalks	Some	5	5\%	2.5	5	5\%	2.5
Traffic Controls	None	0	5\%	0.0	0	5\%	0.0
Overall	Poor	0	15\%	0.0	0	15\%	0.0
Bicycle Connectivity							

Parque Zaragoza	Condition	Neighborhood Potential			Community/Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Lanes	Many	10	10\%	10.0	10	10\%	10.0
Trails (Count)	None	0	15\%	0.0	0	15\%	0.0
Overall	Good	7	15\%	10.5	7	15\%	10.5
Accessibility Total (Out of 100)			100\%	46		100\%	46
Infrastructure							
Electric Service Provider	Austin Energy	10	10\%	10.0	10	10\%	10.0
Electric Service (Phases)	1	0	5\%	0.0	0	10\%	0.0
Water (Dist. to 4" Line in ft.)	0	10	10\%	10.0	10	20\%	20.0
Reclaimed Water (Dist. in ft.)	None	0	10\%	0.0	0	15\%	0.0
Wastewater (Dist. to 8" Sewer Line in ft.)	330'	3	5\%	1.5	3	15\%	4.5
Pool Condition	Poor	2	25\%	5.0	2	10\%	2.0
Bathhouse Condition	Nonexistent	0	20\%	0.0	0	10\%	0.0
Storage Conditions	Good	7	10\%	7.0	7	5\%	3.5
COATN Service Area (Wi-Fi)	Potential	8	5\%	4.0	8	5\%	4.0
Infrastructure Total (Out of 100)			100\%	38		100\%	44
Environmental							
Trees (Number)							
2" to 19" in Diameter	42	6	3\%	1.8	6	5\%	3.0
19" to 24" in Diameter	7	6	3\%	1.8	6	5\%	3.0
Over 24" in Diameter (Including Heritage)	4	8	11\%	8.8	8	15\%	12.0
Grow Zones	No	10	13\%	13.0	10	10\%	10.0
Aquifer Recharge	No	10	13\%	13.0	10	13\%	13.0
Pollinator Habitat	No	10	6\%	6.0	10	5\%	5.4
Wetlands	No	10	13\%	13.0	10	10\%	10.0
Rock Outcrop	No	10	13\%	13.0	10	13\%	13.0
Springs	No	10	13\%	13.0	10	13\%	13.0
Environmental Sensitivity	Medium Sensitivity	5	6\%	3.0	5	5\%	2.7
Soil Suitability	Somewhat Limited	5	6\%	3.0	5	5\%	2.7
Environmental Total (Out of 100)			100\%	89		100\%	88
Regulatory							
Flood Zones							
25-Year Floodpla in	Yes	0	20\%	0.0	0	20\%	0.0
100-Year Floodpla in	Yes	0	10\%	0.0	0	10\%	0.0
500-Year Flood pla in	Yes	0	5\%	0.0	0	5\%	0.0
Zoning Designation	P-NP	8	5\%	4.0	8	5\%	4.0
Sub-Chapter E (Distance from Road in ft.)	212	7	5\%	3.5	7	5\%	3.5
Erosion Hazard Review Buffer	Yes	0	9\%	0.0	0	10\%	0.0
Resource Buffers	No	10	20\%	20.0	10	20\%	20.0
Watershed Regulation Areas	Urban	10	10\%	10.0	10	10\%	10.0
Water Quality Zones	Yes	0	3\%	0.0	0	5\%	0.0
Endangered Species	No	10	3\%	3.0	10	5\%	5.0
Bathhouse	Yes	10	5\%	5.0	10	2\%	2.5
Restrooms (Distance from Pool in ft.)	At pool	10	5\%	5.0	10	2\%	2.5
Regulatory Total (Out of 100)			100\%	51		100\%	47
Operations							
Maintenance Staff/Equipment Ease of Access	Fair	5	20\%	10.0	5	10\%	5.0
Simplicity of Equipment	Good	7	20\%	14.0	7	10\%	7.0
Equipment Condition/Replacement Cost	Good	7	30\%	21.0	7	15\%	10.5
Lawn/Landscaped Area	Fair	5	20\%	10.0	5	10\%	5.0
Employee Safety Measures	Good	7	10\%	7.0	7	10\%	7.0
Operations Total (Out of 100)			100\%	62		55\%	35

Table A.26: Patterson

Patterson	Condition	Neighborhood Potential			Community/ Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Demographics							
20-Minute Walk							
Children	1,560	7	10\%	7.0	7	3\%	2.1
Seniors	690	5	5\%	2.5	5	2\%	1.0
Total Population	9,453	9	15\%	13.5	9	5\%	4.5
Median Household Income	\$49,903	7	5\%	3.5	7	3\%	2.1
Population Growth (5-Year)	1,530	10	5\%	5.0	10	3\%	3.0
Social Needs and Conditions Index	77	3	15\%	4.5	3	10\%	3.0
10-Minute Drive							
Children	30,272	10	3\%	3.0	10	10\%	10.0
Seniors	12,142	10	2\%	2.0	10	6\%	6.0
Total Population	166,328	10	6\%	6.0	10	15\%	15.0
Median Household Income	\$36,074	8	3\%	2.4	8	5\%	4.0
Population Growth (5-Year)	15,202	10	3\%	3.0	10	8\%	8.0
Capacity (based on surface area)	182	1	8\%	0.8	1	10\%	1.0
Attendance (5-Year Avg.)	8,346	2	10\%	2.0	2	10\%	2.0
Attendance/Capacity Ratio	45.8	5	10\%	5.0	5	10\%	5.0
Demographics Total (Out of 100)			100\%	60		100\%	67
Site Conditions							
Entrance/Drive	No	0	10\%	0.0	0	5\%	0.0
Parking Spaces (Count)	1	0	10\%	0.0	0	14\%	0.0
Site Area (Acres)	0.9	8	40\%	32.0	0	50\%	0.0
Grade Constraints	Low		0\%	0.0	10	14\%	14.0
Health, Safety, Welfare Issues	78\%	8	20\%	16.0	8	5\%	4.0
Designated Historic al Features (Count)	0	10	10\%	10.0	10	6\%	6.0
Historical Structure (Pool House or Pool)	1954	4	10\%	4.0	4	6\%	2.4
Site Total (Out of 100)			100\%	62		100\%	26
Location							
Heavily Trafficked Roadways (Traffic Counts)	37,010	1	5\%	0.5	1	5\%	0.5
Distance from Road	468	9	5\%	4.5	9	5\%	4.5
Railroads	None	10	5\%	5.0	10	5\%	5.0
Flight Zones (Noise Level - Decibels)	None	10	5\%	5.0	10	5\%	5.0
Competing Elements (Count)							
Other PARD Aquatic Facilities (20 Min. Walk)	0	10	20\%	20.0	10	8\%	8.0
Service Area Overlap (20 Min. Walk)	43\%	6	20\%	12.0	6	8\%	4.8
Private Aquatic Facilities (20 Min . Walk)	2	5	7\%	3.5	5	3\%	1.5
Programs By HOA/Private Orgs. (20 Min. Walk)	1	2	3\%	0.6	2	2\%	0.4
Symbiotic Elements (Count)							
Schools/ Daycare Providers (5 Minute Walk)	0	0	10\%	0.0	0	19\%	0.0
Recreation Centers (5 Minute Walk)	0	0	10\%	0.0	0	20\%	0.0
Other Park Amenities (5 Minute Walk)	23	10	10\%	10.0	10	20\%	20.0
Location Total (Out of 100)			100\%	61		100\%	50
Accessibility							
Adjacent Roadway Class	Major Arterial	10	5\%	5.0	10	5\%	5.0
Transit Access	Yes	10	15\%	15.0	10	15\%	15.0
Pedestrian Connectivity							
Walkways/Trails	Many	10	15\%	15.0	10	15\%	15.0
Crosswalks	None	0	5\%	0.0	0	5\%	0.0
Traffic Controls	None	0	5\%	0.0	0	5\%	0.0
Overall	Fair	3	15\%	4.5	3	15\%	4.5
Bic ycle Connectivity							

Patterson	Condition	Neighborhood Potential			Community/Regional Potential		
		Ranking	Importance Rating	$\begin{gathered} \hline \text { Element } \\ \text { Score } \\ \hline \end{gathered}$	Ranking	Importance Rating	Element Score
Lanes	None	0	10\%	0.0	0	10\%	0.0
Trails (Count)	1	5	15\%	7.5	5	15\%	7.5
Overall	Good	7	15\%	10.5	7	15\%	10.5
Accessibility Total (Out of 100)			100\%	58		100\%	58
Infrastructure							
Electric Service Provider	Austin Energy	10	10\%	10.0	10	10\%	10.0
Electric Service (Phases)	3	10	5\%	5.0	10	10\%	10.0
Water (Dist. to 4" Line in ft.)	0	10	10\%	10.0	10	20\%	20.0
Reclaimed Water (Dist. in ft .)	800'	5	10\%	5.0	5	15\%	7.5
Wastewater (Dist. to 8" Sewer Line in ft.)	3601	3	5\%	1.5	3	15\%	4.5
Pool Condition	Fair	5	25\%	12.5	5	10\%	5.0
Bathhouse Condition	Nonexistent	0	20\%	0.0	0	10\%	0.0
Storage Conditions	Good	7	10\%	7.0	7	5\%	3.5
COATN Service Area (Wi-Fi)	No	8	5\%	4.0	8	5\%	4.0
Infrastructure Total (Out of 100)			100\%	55		100\%	65
Environmental							
Trees (Number)							
2" to 19" in Diameter	17	8	3\%	2.4	8	5\%	4.0
19" to 24" in Diameter	6	7	3\%	2.1	7	5\%	3.5
Over 24" in Dia meter (Including Herita ge)	10	5	11\%	5.5	5	15\%	7.5
Grow Zones	No	10	13\%	13.0	10	10\%	10.0
Aquifer Recharge	No	10	13\%	13.0	10	13\%	13.0
Pollinator Habitat	No	10	6\%	6.0	10	5\%	5.4
Wetlands	No	10	13\%	13.0	10	10\%	10.0
Rock Outcrop	No	10	13\%	13.0	10	13\%	13.0
Springs	No	10	13\%	13.0	10	13\%	13.0
Environmental Sensitivity	Low Sensitivity	0	6\%	0.0	0	5\%	0.0
Soil Suitability	Somewhat Limited	5	6\%	3.0	5	5\%	2.7
Environmental Total (Out of 100)			100\%	84		100\%	82
Regulatory							
Flood Zones							
25-Year Floodpla in	No	10	20\%	20.0	10	20\%	20.0
100-Year Floodplain	No	10	10\%	10.0	10	10\%	10.0
500-Year Floodpla in	No	10	5\%	5.0	10	5\%	5.0
Zoning Designation	P-NP	8	5\%	4.0	8	5\%	4.0
Sub-Chapter E (Distance from Road in ft.)	531	0	5\%	0.0	0	5\%	0.0
Erosion Hazard Review Buffer	No	10	9\%	9.0	10	10\%	10.0
Resource Buffers	No	10	20\%	20.0	10	20\%	20.0
Watershed Regulation Areas	Urban	10	10\%	10.0	10	10\%	10.0
Water Quality Zones	No	10	3\%	3.0	10	5\%	5.0
Endangered Species	No	10	3\%	3.0	10	5\%	5.0
Bathhouse	No	10	5\%	5.0	10	2\%	2.5
Restrooms (Distance from Pool in ft.)	100	2	5\%	1.0	2	2\%	0.5
Regulatory Total (Out of 100)			100\%	90		100\%	92
Operations							
Maintenance Staff/Equipment Ease of Access	Good	7	20\%	14.0	7	10\%	7.0
Simplicity of Equipment	Good	7	20\%	14.0	7	10\%	7.0
Equipment Condition/Replacement Cost	Good	7	30\%	21.0	7	15\%	10.5
Lawn/Landscaped Area	Fair	5	20\%	10.0	5	10\%	5.0
Employee Safety Measures	Good	7	10\%	7.0	7	10\%	7.0
Operations Total (Out of 100)			100\%	66		55\%	37

Table A.27: Ramsey

Ramsey	Condition	Neighborhood Potential			Community/ Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	$\begin{array}{\|c} \hline \begin{array}{c} \text { Importance } \\ \text { Rating } \end{array} \\ \hline \end{array}$	Element Score
Demographics							
20-Minute Walk							
Children	726	1	10\%	1.0	1	3\%	0.3
Seniors	430	2	5\%	1.0	2	2\%	0.4
Total Population	5,806	4	15\%	6.0	4	5\%	2.0
Median Household Income	\$51,034	7	5\%	3.5	7	3\%	2.1
Population Growth (5-Year)	437	4	5\%	2.0	4	3\%	1.2
Social Needs and Conditions Index	34	1	15\%	1.5	1	10\%	1.0
10-Minute Drive							
Children	11,197	3	3\%	0.9	3	10\%	3.0
Seniors	7,529	6	2\%	1.2	6	6\%	3.6
Total Population	96,523	6	6\%	3.6	6	15\%	9.0
Median Household Income	\$43,185	7	3\%	2.1	7	5\%	3.5
Population Growth (5-Year)	8,787	4	3\%	1.2	4	8\%	3.2
Capacity (based on surface area)	216	2	8\%	1.6	2	10\%	2.0
Attendance (5-Year Avg.)	18,275	4	10\%	4.0	4	10\%	4.0
Attendance/Capacity Ratio	84.5	8	10\%	8.0	8	10\%	8.0
Demographics Total (Out of 100)			100\%	38		100\%	43
Site Conditions							
Entrance/Drive	No	0	10\%	0.0	0	5\%	0.0
Parking Spaces (Count)	1	0	10\%	0.0	0	14\%	0.0
Site Area (Acres)	0.6	5	40\%	20.0	0	50\%	0.0
Grade Constraints	Low		0\%	0.0	10	14\%	14.0
Health, Safety, Welfare Issues	55\%	6	20\%	12.0	6	5\%	3.0
Designated Historic al Features (Count)	0	10	10\%	10.0	10	6\%	6.0
Historical Structure (Pool House or Pool)	1940	2	10\%	2.0	2	6\%	1.2
Site Total (Out of 100)			100\%	44		100\%	24
Location							
Heavily Trafficked Roadways (Traffic Counts)	11,880	7	5\%	3.5	7	5\%	3.5
Distance from Road	441	9	5\%	4.5	9	5\%	4.5
Railroads	None	10	5\%	5.0	10	5\%	5.0
Flight Zones (Noise Level - Decibels)	None	10	5\%	5.0	10	5\%	5.0
Competing Elements (Count)							
Other PARD Aquatic Facilities (20 Min. Walk)	0	10	20\%	20.0	10	8\%	8.0
Service Area Overlap (20 Min. Walk)	16\%	8	20\%	16.0	8	8\%	6.4
Private Aquatic Facilities (20 Min . Walk)	0	10	7\%	7.0	10	3\%	3.0
Programs By HOA/Private Orgs. (20 Min. Walk)	0	10	3\%	3.0	10	2\%	2.0
Symbiotic Elements (Count)							
Schools/ Daycare Providers (5 Minute Walk)	0	0	10\%	0.0	0	19\%	0.0
Recreation Centers (5 Minute Walk)	0	0	10\%	0.0	0	20\%	0.0
Other Park Amenities (5 Minute Walk)	9	4	10\%	4.0	4	20\%	8.0
Location Total (Out of 100)			100\%	68		100\%	45
Accessibility							
Adjacent Roadway Class	Minor Arterial	10	5\%	5.0	8	5\%	4.0
Transit Access	Yes	10	15\%	15.0	10	15\%	15.0
Pedestrian Connectivity							
Walkways/Trails	Some	5	15\%	7.5	5	15\%	7.5
Crosswalks	None	0	5\%	0.0	0	5\%	0.0
Traffic Controls	None	0	5\%	0.0	0	5\%	0.0
Overall	Good	7	15\%	10.5	7	15\%	10.5
Bic ycle Connectivity							

Ramsey	Condition	Neighborhood Potential			Community/Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Lanes	Some	5	10\%	5.0	5	10\%	5.0
Trails (Count)	None	0	15\%	0.0	0	15\%	0.0
Overall	Good	7	15\%	10.5	7	15\%	10.5
Accessibility Total (Out of 100)			100\%	54		100\%	53
Infrastructure							
Electric Service Provider	Austin Energy	10	10\%	10.0	10	10\%	10.0
Electric Service (Phases)	2	5	5\%	2.5	5	10\%	5.0
Water (Dist. to 4" Line in ft.)	0	10	10\%	10.0	10	20\%	20.0
Reclaimed Water (Dist. in ft.)	None	0	10\%	0.0	0	15\%	0.0
Wastewater (Dist. to 8" Sewer Line in ft.)	80'	8	5\%	4.0	8	15\%	12.0
Pool Condition	Fair	5	25\%	12.5	5	10\%	5.0
Bathhouse Condition	Poor	2	20\%	4.0	2	10\%	2.0
Storage Conditions	Fair	5	10\%	5.0	5	5\%	2.5
COATN Service Area (Wi-Fi)	No	0	5\%	0.0	0	5\%	0.0
Infrastructure Total (Out of 100)			100\%	48		100\%	57
Environmental							
Trees (Number)							
2" to 19" in Diameter	39	6	3\%	1.8	6	5\%	3.0
19 " to 24" in Diameter	4	8	3\%	2.4	8	5\%	4.0
Over 24" in Diameter (Including Heritage)	7	6	11\%	6.6	6	15\%	9.0
Grow Zones	No	10	13\%	13.0	10	10\%	10.0
Aquifer Recharge	No	10	13\%	13.0	10	13\%	13.0
Pollinator Ha bitat	No	10	6\%	6.0	10	5\%	5.4
Wetlands	No	10	13\%	13.0	10	10\%	10.0
Rock Outcrop	No	10	13\%	13.0	10	13\%	13.0
Springs	No	10	13\%	13.0	10	13\%	13.0
Environmental Sensitivity	Low Sensitivity	10	6\%	6.0	10	5\%	5.4
Soil Suitability	Somewhat Limited	5	6\%	3.0	5	5\%	2.7
Environmental Total (Out of 100)			100\%	91		100\%	88
Regulatory							
Flood Zones							
25-Year Floodplain	No	10	20\%	20.0	10	20\%	20.0
100-Year Floodpla in	No	10	10\%	10.0	10	10\%	10.0
500-Year Floodpla in	No	10	5\%	5.0	10	5\%	5.0
Zoning Designation	UNZ	10	5\%	5.0	10	5\%	5.0
Sub-Chapter E (Distance from Road in ft.)	59	9	5\%	4.5	9	5\%	4.5
Erosion Hazard Review Buffer	No	10	9\%	9.0	10	10\%	10.0
Resource Buffers	No	10	20\%	20.0	10	20\%	20.0
Watershed Regulation Areas	Urban	10	10\%	10.0	10	10\%	10.0
Water Quality Zones	No	10	3\%	3.0	10	5\%	5.0
Endangered Species	No	10	3\%	3.0	10	5\%	5.0
Bathhouse	Yes	10	5\%	5.0	10	2\%	2.5
Restrooms (Distance from Pool in ft.)	At pool	10	5\%	5.0	10	2\%	2.5
Regulatory Total (Out of 100)			100\%	100		100\%	99
Operations							
Maintenance Staff/Equipment Ease of Access	Fair	5	20\%	10.0	5	10\%	5.0
Simplicity of Equipment	Good	7	20\%	14.0	7	10\%	7.0
Equipment Condition/Replacement Cost	Good	7	30\%	21.0	7	15\%	10.5
Lawn/Landscaped Area	Fair	5	20\%	10.0	5	10\%	5.0
Employee Safety Measures	Good	7	10\%	7.0	7	10\%	7.0
Operations Total (Out of 100)			100\%	62		55\%	35

Table A.28: Reed

Reed	Condition	Neighborhood Potential			Community/ Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Demographics							
20-Minute Walk							
Children	1,001	2	10\%	2.0	2	3\%	0.6
Seniors	708	6	5\%	3.0	6	2\%	1.2
Total Population	3,765	2	15\%	3.0	2	5\%	1.0
Median Household Income	\$141,677	0	5\%	0.0	0	3\%	0.0
Population Growth (5-Year)	107	1	5\%	0.5	1	3\%	0.3
Social Needs and Conditions Index	28	0	15\%	0.0	0	10\%	0.0
10-Minute Drive							
Children	7,687	1	3\%	0.3	1	10\%	1.0
Seniors	5,987	4	2\%	0.8	4	6\%	2.4
Total Population	68,029	5	6\%	3.0	5	15\%	7.5
Median Household Income	\$51,812	5	3\%	1.5	5	5\%	2.5
Population Growth (5-Year)	5,534	1	3\%	0.3	1	8\%	0.8
Capacity (based on surface area)	182	1	8\%	0.8	1	10\%	1.0
Attendance (5-YearAvg.)	8,393	2	10\%	2.0	2	10\%	2.0
Attendance/Capacity Ratio	46.1	5	10\%	5.0	5	10\%	5.0
Demographics Total (Out of 100)			100\%	22		100\%	25
Site Conditions							
Entrance/Drive	Yes	10	10\%	10.0	10	5\%	5.0
Parking Spaces (Count)	1	0	10\%	0.0	0	14\%	0.0
Site Area (Acres)	0.2	0	40\%	0.0	0	50\%	0.0
Grade Constraints	Low		0\%	0.0	10	14\%	14.0
Health, Safety, Welfare Issues	65\%	7	20\%	14.0	7	5\%	3.5
Designated Historical Features (Count)	2	5	10\%	5.0	5	6\%	3.0
Historic al Struc ture (Pool House or Pool)	1956	4	10\%	4.0	4	6\%	2.4
Site Total (Out of 100)			100\%	33		100\%	28
Location							
Heavily Trafficked Roadways (Traffic Counts)	3,350	9	5\%	4.5	9	5\%	4.5
Distance from Road	385	8	5\%	4.0	8	5\%	4.0
Railroads	None	10	5\%	5.0	10	5\%	5.0
Flight Zones (Noise Level - Decibels)	None	10	5\%	5.0	10	5\%	5.0
Competing Elements (Count)							
Other PARD Aquatic Facilities (20 Min . Walk)	0	10	20\%	20.0	10	8\%	8.0
Service Area Overlap (20 Min. Walk)	8\%	9	20\%	18.0	9	8\%	7.2
Private Aquatic Facilities (20 Min . Walk)	1	5	7\%	3.5	5	3\%	1.5
Programs By HOA/Private Orgs. (20 Min. Walk)	1	5	3\%	1.5	5	2\%	1.0
Symbiotic Elements (Count)							
Schools/Daycare Providers (5 Minute Walk)	0	0	10\%	0.0	0	19\%	0.0
Recreation Centers (5 Minute Walk)	0	0	10\%	0.0	0	20\%	0.0
Other Park Amenities (5 Minute Walk)	5	3	10\%	3.0	3	20\%	6.0
Location Total (Out of 100)			100\%	65		100\%	42
Accessibility							
Adjacent Roadway Class	Collector	10	5\%	5.0	5	5\%	2.5
Transit Access	10 minute	3	15\%	4.5	3	15\%	4.5
Pedestrian Connectivity							
Walkways/Trails	Minimal	2	15\%	3.0	2	15\%	3.0
Crosswalks	Yes	10	5\%	5.0	10	5\%	5.0
Traffic Controls	None	0	5\%	0.0	0	5\%	0.0
Overall	Fair	3	15\%	4.5	3	15\%	4.5
Bicycle Connectivity							

Reed	Condition	Neighborhood Potential			Community/ Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Lanes	None	0	10\%	0.0	0	10\%	0.0
Trails (Count)	None	0	15\%	0.0	0	15\%	0.0
Overall	Good	7	15\%	10.5	7	15\%	10.5
Accessibility Total (Out of 100)			100\%	33		100\%	30
Infrastructure							
Electric Service Provider	Austin Energy	10	10\%	10.0	10	10\%	10.0
Electric Service (Phases)	2	5	5\%	2.5	5	10\%	5.0
Water (Dist. to 4" Line in ft.)	0	10	10\%	10.0	10	20\%	20.0
Reclaimed Water (Dist. in ft.)	None	0	10\%	0.0	0	15\%	0.0
Wastewater (Dist. to 8" Sewer Line in ft.)	$0{ }^{1}$	10	5\%	5.0	10	15\%	15.0
Pool Condition	Poor	2	25\%	5.0	2	10\%	2.0
Bathhouse Condition	Fair	5	20\%	10.0	5	10\%	5.0
Storage Conditions	Poor	2	10\%	2.0	2	5\%	1.0
COATN Service Area (Wi-Fi)	No	0	5\%	0.0	0	5\%	0.0
Infrastructure Total (Out of 100)			100\%	45		100\%	58
Environmental							
Trees (Number)							
2" to 19" in Diameter	12	9	3\%	2.7	9	5\%	4.5
19" to 24" in Diameter	4	8	3\%	2.4	8	5\%	4.0
Over 24" in Diameter (Including Heritage)	3	8	11\%	8.8	8	15\%	12.0
Grow Zones	Within 250	10	13\%	13.0	0	10\%	0.0
Aquifer Recharge	Yes	0	13\%	0.0	0	13\%	0.0
Pollinator Habitat	No	10	6\%	6.0	10	5\%	5.4
Wetlands	Within 250	10	13\%	13.0	0	10\%	0.0
Rock Outcrop	Within 250	10	13\%	13.0	0	13\%	0.0
Springs	No	10	13\%	13.0	10	13\%	13.0
Environmental Sensitivity	Medium Sensitivity	5	6\%	3.0	5	5\%	2.7
Soil Suitability	Very Limited	0	6\%	0.0	0	5\%	0.0
Environmental Total (Out of 100)			100\%	75		100\%	42
Regulatory							
Flood Zones							
25-Year Floodpla in	No	10	20\%	20.0	10	20\%	20.0
100-Year Floodplain	No	10	10\%	10.0	10	10\%	10.0
500-Year Floodplain	Within 250	10	5\%	5.0	0	5\%	0.0
Zoning Designation	SF-3-NP	0	5\%	0.0	0	5\%	0.0
Sub-Chapter E (Distance from Road in ft.)	58	9	5\%	4.5	9	5\%	4.5
Erosion Hazard Review Buffer	Yes	0	9\%	0.0	0	10\%	0.0
Resource Buffers	CEF Buffer	0	20\%	0.0	0	20\%	0.0
Watershed Regulation Areas	Vater Supply Suburba	5	10\%	5.0	5	10\%	5.0
Water Quality Zones	Transition	5	3\%	1.5	5	5\%	2.5
Endangered Species	No	10	3\%	3.0	10	5\%	5.0
Bathhouse	Yes	10	5\%	5.0	10	2\%	2.5
Restrooms (Distance from Pool in ft.)	At pool	10	5\%	5.0	10	2\%	2.5
Regulatory Total (Out of 100)			100\%	59		100\%	52
Operations							
Maintenance Staff/Equipment Ease of Access	Good	7	20\%	14.0	7	10\%	7.0
Simplic ity of Equipment	Good	7	20\%	14.0	7	10\%	7.0
Equipment Condition/Replacement Cost	Good	7	30\%	21.0	7	15\%	10.5
Lawn/Landscaped Area	Fair	5	20\%	10.0	5	10\%	5.0
Employee Safety Measures	Good	7	10\%	7.0	7	10\%	7.0
Operations Total (Out of 100)			100\%	66		55\%	37

Table A.29: Rosewood

Rosewood	Condition	Neighborhood Potential			Community/Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Demographics							
20-Minute Walk							
Children	2,782	9	10\%	9.0	9	3\%	2.7
Seniors	1,029	10	5\%	5.0	10	2\%	2.0
Total Population	11,688	9	15\%	13.5	9	5\%	4.5
Median Household Income	\$37,397	9	5\%	4.5	9	3\%	2.7
Population Growth (5-Year)	1,421	10	5\%	5.0	10	3\%	3.0
Social Needs and Conditions Index	123	7	15\%	10.5	7	10\%	7.0
10-Minute Drive							
Children	24,165	8	3\%	2.4	8	10\%	8.0
Seniors	8,093	6	2\%	1.2	6	6\%	3.6
Total Population	115,620	8	6\%	4.8	8	15\%	12.0
Median Household Income	\$37,533	8	3\%	2.4	8	5\%	4.0
Population Growth (5-Year)	13,420	8	3\%	2.4	8	8\%	6.4
Capacity (based on surface area)	478	5	8\%	4.0	5	10\%	5.0
Attendance (5-Year Avg.)	20,743	4	10\%	4.0	4	10\%	4.0
Attendance/Capacity Ratio	43.4	4	10\%	4.0	4	10\%	4.0
Demographics Total (Out of 100)			100\%	73		100\%	69
Site Conditions							
Entrance/Drive	Yes	10	10\%	10.0	10	5\%	5.0
Parking Spaces (Count)	36	10	10\%	10.0	1	14\%	1.4
Site Area (Acres)	0.7	8	40\%	32.0	0	50\%	0.0
Grade Constraints	Moderate-Severe		0\%	0.0	2	14\%	2.8
Health, Safety, Welfare Issues	55\%	6	20\%	12.0	6	5\%	3.0
Designated Historical Features (Count)	1	8	10\%	8.0	8	6\%	4.8
Historic al Structure (Pool House or Pool)	1932	1	10\%	1.0	1	6\%	0.6
Site Total (Out of 100)			100\%	73		100\%	18
Location							
Heavily Trafficked Roadways (Traffic Counts)	5,940	9	5\%	4.5	9	5\%	4.5
Distance from Road	200	4	5\%	2.0	4	5\%	2.0
Railroads	Light Rail	5	5\%	2.5	5	5\%	2.5
Flight Zones (Noise Level - Decibels)	None	10	5\%	5.0	10	5\%	5.0
Competing Elements (Count)							
Other PARD Aquatic Facilities (20 Min . Walk)	1	5	20\%	10.0	5	8\%	4.0
Service Area Overlap (20 Min. Walk)	71\%	3	20\%	6.0	3	8\%	2.4
Private Aquatic Facilities (20 Min. Walk)	0	10	7\%	7.0	10	3\%	3.0
Programs By HOA/Private Orgs. (20 Min. Walk)	0	10	3\%	3.0	10	2\%	2.0
Symbiotic Elements (Count)							
Schools/Daycare Providers (5 Minute Walk)	0	0	10\%	0.0	0	19\%	0.0
Recreation Centers (5 Minute Walk)	3	10	10\%	10.0	10	20\%	20.0
Other Park Amenities (5 Minute Walk)	19	9	10\%	9.0	9	20\%	18.0
Location Total (Out of 100)			100\%	59		100\%	63
Accessibility							
Adjacent Roadway Class	Major Arterial	10	5\%	5.0	10	5\%	5.0
Transit Access	At pool	10	15\%	15.0	10	15\%	15.0
Pedestrian Connectivity							
Walkways/Trails	Many	10	15\%	15.0	10	15\%	15.0
Crosswalks	Some	5	5\%	2.5	5	5\%	2.5
Traffic Controls	None	0	5\%	0.0	0	5\%	0.0
Overall	Fair	3	15\%	4.5	3	15\%	4.5
Bicycle Connectivity							

Rosewood	Condition	Neighborhood Potential			Community/Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Lanes	Some	5	10\%	5.0	5	10\%	5.0
Trails (Count)	None	0	15\%	0.0	0	15\%	0.0
Overall	Excellent	10	15\%	15.0	10	15\%	15.0
Accessibility Total (Out of 100)			100\%	62		100\%	62
Infrastructure							
Electric Service Provider	Austin Energy	10	10\%	10.0	10	10\%	10.0
Electric Service (Phases)	3	10	5\%	5.0	10	10\%	10.0
Water (Dist. to 4" Line in ft.)	0	10	10\%	10.0	10	20\%	20.0
Reclaimed Water (Dist. in ft.)	None	0	10\%	0.0	0	15\%	0.0
Wastewater (Dist. to 8" Sewer Line in ft.)	330'	7	5\%	3.5	7	15\%	10.5
Pool Condition	Fair	5	25\%	12.5	5	10\%	5.0
Bathhouse Condition	Poor	2	20\%	4.0	2	10\%	2.0
Storage Conditions	Fair	5	10\%	5.0	5	5\%	2.5
COATN Service Area (Wi-Fi)	Potential	8	5\%	4.0	8	5\%	4.0
Infrastructure Total (Out of 100)			100\%	54		100\%	64
Environmental							
Trees (Number)							
2" to 19" in Diameter	34	7	3\%	2.1	7	5\%	3.5
19" to 24" in Diameter	15	2	3\%	0.6	2	5\%	1.0
Over 24" in Diameter (Including Heritage)	22	0	11\%	0.0	0	15\%	0.0
Grow Zones	No	10	13\%	13.0	10	10\%	10.0
Aquifer Recharge	No	10	13\%	13.0	10	13\%	13.0
Pollinator Habitat	No	10	6\%	6.0	10	5\%	5.4
Wetlands	No	10	13\%	13.0	10	10\%	10.0
Rock Outcrop	No	10	13\%	13.0	10	13\%	13.0
Springs	No	10	13\%	13.0	10	13\%	13.0
Environmental Sensitivity	Medium Sensitivity	5	6\%	3.0	5	5\%	2.7
Soil Suitability	Very Limited	0	6\%	0.0	0	5\%	0.0
Environmental Total (Out of 100)			100\%	77		100\%	72
Regulatory							
Flood Zones							
25-Year Floodpla in	Within 250	10	20\%	20.0	0	20\%	0.0
100-Year Floodplain	Within 250	10	10\%	10.0	0	10\%	0.0
500-Year Floodpla in	Yes	0	5\%	0.0	0	5\%	0.0
Zoning Designation	P-NP	8	5\%	4.0	8	5\%	4.0
Sub-Chapter E (Distance from Road in ft.)	200	7	5\%	3.5	7	5\%	3.5
Erosion Hazard Review Buffer	No	10	9\%	9.0	10	10\%	10.0
Resource Buffers	No	10	20\%	20.0	10	20\%	20.0
Watershed Regulation Areas	Unban	10	10\%	10.0	10	10\%	10.0
Water Quality Zones	Critical	0	3\%	0.0	0	5\%	0.0
Endangered Species	No	10	3\%	3.0	10	5\%	5.0
Bathhouse	Yes	10	5\%	5.0	10	2\%	2.5
Restrooms (Distance from Pool in ft.)	At pool	10	5\%	5.0	10	2\%	2.5
Regulatory Total (Out of 100)			100\%	90		100\%	57
Operations							
Maintenance Staff/Equipment Ease of Access	Poor	2	20\%	4.0	2	10\%	2.0
Simplic ity of Equipment	Poor	2	20\%	4.0	2	10\%	2.0
Equipment Condition/Replacement Cost	Poor	2	30\%	6.0	2	15\%	3.0
Lawn/Landscaped Area	Good	7	20\%	14.0	7	10\%	7.0
Employee Safety Measures	Poor	2	10\%	2.0	2	10\%	2.0
Operations Total (Out of 100)			100\%	30		55\%	16

Table A.30: Shipe

Shipe	Condition	Neighborhood Potential			Community/Regional Potential		
		Ranking	$\begin{array}{c}\text { Importance } \\ \text { Rating }\end{array}$	Element Score	Ranking	Importance Rating	Element Score
Demographics							
20-Minute Walk							
Children	1,187	3	10\%	3.0	3	3\%	0.9
Seniors	695	6	5\%	3.0	6	2\%	1.2
Total Population	14,473	10	15\%	15.0	10	5\%	5.0
Median Household Income	\$36,339	9	5\%	4.5	9	3\%	2.7
Population Growth (5-Year)	1,037	10	5\%	5.0	10	3\%	3.0
Social Needs and Conditions Index	112	6	15\%	9.0	6	10\%	6.0
10-Minute Drive							
Children	22,494	7	3\%	2.1	7	10\%	7.0
Seniors	10,594	9	2\%	1.8	9	6\%	5.4
Total Population	145,122	9	6\%	5.4	9	15\%	13.5
Median Household Income	\$28,069	10	3\%	3.0	10	5\%	5.0
Population Growth (5-Year)	13,438	8	3\%	2.4	8	8\%	6.4
Capacity (based on surface area)	292	3	8\%	2.4	3	10\%	3.0
Attendance (5-Year Avg.)	16,981	3	10\%	3.0	3	10\%	3.0
Attendance/Capacity Ratio	58.2	6	10\%	6.0	6	10\%	6.0
Demographics Total (Out of 100)			100\%	66		100\%	68
Site Conditions							
Entrance/Drive	No	0	10\%	0.0	0	5\%	0.0
Parking Spaces (Count)	0	0	10\%	0.0	0	14\%	0.0
Site Area (Acres)	0.4	2	40\%	8.0	0	50\%	0.0
Grade Constraints	Low-Moderate		0\%	0.0	8	14\%	11.2
Health, Safety, Welfare Issues	53\%	5	20\%	10.0	5	5\%	2.5
Designated Historical Features (Count)	1	8	10\%	8.0	8	6\%	4.8
Historical Struc ture (Pool House or Pool)	1934	1	10\%	1.0	1	6\%	0.6
Site Total (Out of 100)			100\%	27		100\%	19
Location							
Heavily Trafficked Roadways (Traffic Counts)	19,620	5	5\%	2.5	5	5\%	2.5
Distance from Road	290	6	5\%	3.0	6	5\%	3.0
Railroads	None	10	5\%	5.0	10	5\%	5.0
Flight Zones (Noise Level - Decibels)	None	10	5\%	5.0	10	5\%	5.0
Competing Elements (Count)							
Other PARD Aquatic Facilities (20 Min. Walk)	0	10	20\%	20.0	10	8\%	8.0
Service Area Overlap (20 Min. Walk)	25\%	7	20\%	14.0	7	8\%	5.6
Private Aquatic Facilities (20 Min . Walk)	1	5	7\%	3.5	5	3\%	1.5
Programs By HOA/Private Orgs. (20 Min. Walk)	0	0	3\%	0.0	0	2\%	0.0
Symbiotic Elements (Count)							
Schools/Daycare Providers (5 Minute Walk)	2	5	10\%	5.0	5	19\%	9.5
Recreation Centers (5 Minute Walk)	0	0	10\%	0.0	0	20\%	0.0
Other Park Amenities (5 Minute Walk)	16	8	10\%	8.0	8	20\%	16.0
Location Total (Out of 100)			100\%	66		100\%	56
Accessibility							
Adjacent Roadway Class	Minor Arterial	10	5\%	5.0	8	5\%	4.0
Transit Access	At pool	10	15\%	15.0	10	15\%	15.0
Pedestrian Connectivity							
Walkways/Trails	Some	5	15\%	7.5	5	15\%	7.5
Crosswalks	Some	5	5\%	2.5	5	5\%	2.5
Traffic Controls	None	0	5\%	0.0	0	5\%	0.0
Overall	Fair	3	15\%	4.5	3	15\%	4.5
Bicycle Connectivity							

Shipe	Condition	Neighborhood Potential			Community/ Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	$\begin{array}{\|c\|} \hline \text { Importance } \\ \text { Rating } \\ \hline \end{array}$	$\begin{gathered} \hline \text { Element } \\ \text { Score } \\ \hline \end{gathered}$
Lanes	None	0	10\%	0.0	0	10\%	0.0
Trails (Count)	None	0	15\%	0.0	0	15\%	0.0
Overall	Good	7	15\%	10.5	7	15\%	10.5
Accessibility Total (Out of 100)			100\%	45		100\%	44
Infrastructure							
Electric Service Provider	Austin Energy	10	10\%	10.0	10	10\%	10.0
Electric Service (Phases)	2	5	5\%	2.5	5	10\%	5.0
Water (Dist. to 4" Line in ft.)	0	10	10\%	10.0	10	20\%	20.0
Reclaimed Water (Dist. in ft.)	$2700{ }^{\prime}$	0	10\%	0.0	0	15\%	0.0
Wastewater (Dist. to 8"Sewer Line in ft.)	3351	3	5\%	1.5	3	15\%	4.5
Pool Condition	Poor	2	25\%	5.0	2	10\%	2.0
Bathhouse Condition	Nonexistent	0	20\%	0.0	0	10\%	0.0
Storage Conditions	Poor	2	10\%	2.0	2	5\%	1.0
COATN Service Area (Wi-Fi)	Yes	10	5\%	5.0	10	5\%	5.0
Infrastructure Total (Out of 100)			100\%	36		100\%	48
Environmental							
Trees (Number)							
2" to 19" in Diameter	108	0	3\%	0.0	0	5\%	0.0
19" to 24" in Diameter	12	4	3\%	1.2	4	5\%	2.0
Over 24" in Diameter (Including Heritage)	10	5	11\%	5.5	5	15\%	7.5
Grow Zones	No	10	13\%	13.0	10	10\%	10.0
Aquifer Recharge	No	10	13\%	13.0	10	13\%	13.0
Pollinator Habitat	Within 250	10	6\%	6.0	0	5\%	0.0
Wetlands	Within 250	10	13\%	13.0	0	10\%	0.0
Rock Outcrop	No	10	13\%	13.0	10	13\%	13.0
Springs	No	10	13\%	13.0	10	13\%	13.0
Environmental Sensitivity	Low Sensitivity	10	6\%	6.0	10	5\%	5.4
Soil Suita bility	Somewhat Limited	5	6\%	3.0	5	5\%	2.7
Environmental Total (Out of 100)			100\%	87		100\%	67
Regulatory							
Flood Zones							
25-Year Floodplain	Within 250	10	20\%	20.0	0	20\%	0.0
100-Year Floodplain	Within 250	10	10\%	10.0	0	10\%	0.0
500-Year Floodplain	Within 250	10	5\%	5.0	0	5\%	0.0
Zoning Designation	P-HD-NCCD-NP	4	5\%	2.0	4	5\%	2.0
Sub-Chapter E (Distance from Road in ft.)	42	10	5\%	5.0	10	5\%	5.0
Erosion Hazard Review Buffer	Yes	0	9\%	0.0	0	10\%	0.0
Resource Buffers	No	10	20\%	20.0	10	20\%	20.0
Watershed Regulation Areas	Urban	10	10\%	10.0	10	10\%	10.0
Water Quality Zones	No	10	3\%	3.0	10	5\%	5.0
Endangered Species	No	10	3\%	3.0	10	5\%	5.0
Bathhouse	No	10	5\%	5.0	10	2\%	2.5
Restrooms (Distance from Pool in ft.)	50	8	5\%	4.0	8	2\%	2.0
Regulatory Total (Out of 100)			100\%	87		100\%	51
Operations							
Maintenance Staff/Equipment Ease of Access	Fair	5	20\%	10.0	5	10\%	5.0
Simplicity of Equipment	Good	7	20\%	14.0	7	10\%	7.0
Equipment Condition/Replacement Cost	Fair	5	30\%	15.0	5	15\%	7.5
Lawn/Landscaped Area	Fair	5	20\%	10.0	5	10\%	5.0
Employee Safety Measures	Good	7	10\%	7.0	7	10\%	7.0
Operations Total (Out of 100)			100\%	56		55\%	32

Table A.31: Springwoods

Springwoods	Condition	Neighborhood Potential			Community/ Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Demographics							
20-Minute Walk							
Children	663	1	10\%	1.0	1	3\%	0.3
Seniors	312	1	5\%	0.5	1	2\%	0.2
Total Population	3,857	2	15\%	3.0	2	5\%	1.0
Median Household Income	\$62,462	5	5\%	2.5	5	3\%	1.5
Population Growth (5-Year)	643	6	5\%	3.0	6	3\%	1.8
Social Needs and Conditions Index	92	4	15\%	6.0	4	10\%	4.0
10-Minute Drive							
Children	27,915	9	3\%	2.7	9	10\%	9.0
Seniors	11,487	9	2\%	1.8	9	6\%	5.4
Total Population	123,518	8	6\%	4.8	8	15\%	12.0
Median Household Income	\$75,028	5	3\%	1.5	5	5\%	2.5
Population Growth (5-Year)	14,654	9	3\%	2.7	9	8\%	7.2
Capacity (based on surface area)	293	3	8\%	2.4	3	10\%	3.0
Attendance (5-Year Avg.)	3,035	1	10\%	1.0	1	10\%	1.0
Attendance/Capacity Ratio	10.3	1	10\%	1.0	1	10\%	1.0
Demographics Total (Out of 100)			100\%	34		100\%	50
Site Conditions							
Entrance/Drive	Yes	10	10\%	10.0	10	5\%	5.0
Parking Spaces (Count)	20	10	10\%	10.0	0	14\%	0.0
Site Area (Acres)	1.1	10	40\%	40.0	0	50\%	0.0
Grade Constraints	Low		0\%	0.0	10	14\%	14.0
Health, Safety, Welfare Issues	80\%	8	20\%	16.0	8	5\%	4.0
Designated Historic al Features (Count)	0	10	10\%	10.0	10	6\%	6.0
Historical Struc ture (Pool House or Pool)	No	10	10\%	10.0	10	6\%	6.0
Site Total (Out of 100)			100\%	96		100\%	35
Location							
Heavily Trafficked Roadways (Traffic Counts)	16,410	6	5\%	3.0	6	5\%	3.0
Distance from Road	302	6	5\%	3.0	6	5\%	3.0
Railroads	None	10	5\%	5.0	10	5\%	5.0
Flight Zones (Noise Level - Decibels)	None	10	5\%	5.0	10	5\%	5.0
Competing Elements (Count)							
Other PARD Aquatic Facilities (20 Min. Walk)	0	10	20\%	20.0	10	8\%	8.0
Service Area Overlap (20 Min. Walk)	0\%	10	20\%	20.0	10	8\%	8.0
Private Aquatic Facilities (20 Min . Walk)	0	10	7\%	7.0	10	3\%	3.0
Programs By HOA/Private Orgs. (20 Min. Walk)	0	10	3\%	3.0	10	2\%	2.0
Symbiotic Elements (Count)							
Schools/Daycare Providers (5 Minute Walk)	1	2	10\%	2.0	2	19\%	3.8
Recreation Centers (5 Minute Walk)	0	0	10\%	0.0	0	20\%	0.0
Other Park Amenities (5 Minute Walk)	5	2	10\%	2.0	2	20\%	4.0
Location Total (Out of 100)			100\%	70		100\%	45
Accessibility							
Adjacent Roadway Class	Major Arterial	10	5\%	5.0	10	5\%	5.0
Transit Access	No	0	15\%	0.0	0	15\%	0.0
Pedestrian Connectivity							
Walkways/Trails	Some	5	15\%	7.5	5	15\%	7.5
Crosswalks	None	0	5\%	0.0	0	5\%	0.0
Traffic Controls	None	0	5\%	0.0	0	5\%	0.0
Overall	Fair	3	15\%	4.5	3	15\%	4.5
Bic ycle Connectivity							

Springwoods	Condition	Neighborhood Potential			Community/ Regional Potential		
		Ranking	Importance Rating	$\begin{gathered} \hline \text { Element } \\ \text { Score } \\ \hline \end{gathered}$	Ranking	Importance Rating	Element Score
Lanes	None	0	10\%	0.0	0	10\%	0.0
Trails (Count)	None	0	15\%	0.0	0	15\%	0.0
Overall	Fair	3	15\%	4.5	3	15\%	4.5
Accessibility Total (Out of 100)			100\%	22		100\%	22
Infrastructure							
Electric Service Provider	Austin Energy	10	10\%	10.0	10	10\%	10.0
Electric Service (Phases)	2	5	5\%	2.5	5	10\%	5.0
Water (Dist. to 4" Line in ft.)	0	10	10\%	10.0	10	20\%	20.0
Reclaimed Water (Dist. in ft.)	None	0	10\%	0.0	0	15\%	0.0
Wastewater (Dist. to 8" Sewer Line in ft.)	75	8	5\%	4.0	8	15\%	12.0
Pool Condition		7	25\%	17.5	7	10\%	7.0
Bathhouse Condition		10	20\%	20.0	10	10\%	10.0
Storage Conditions		5	10\%	5.0	5	5\%	2.5
COATN Service Area (Wi-Fi)	No	0	5\%	0.0	0	5\%	0.0
Infrastructure Total (Out of 100)			100\%	69		100\%	67
Environmental							
Trees (Number)							
2" to 19" in Diameter	11	9	3\%	2.7	9	5\%	4.5
19" to 24" in Diameter	2	9	3\%	2.7	9	5\%	4.5
Over 24" in Dia meter (Including Heritage)	2	9	11\%	9.9	9	15\%	13.5
Grow Zones	No	10	13\%	13.0	10	10\%	10.0
Aquifer Recharge	Yes	0	13\%	0.0	0	13\%	0.0
Pollinator Habitat	No	10	6\%	6.0	10	5\%	5.4
Wetlands	No	10	13\%	13.0	10	10\%	10.0
Rock Outcrop	No	10	13\%	13.0	10	13\%	13.0
Springs	No	10	13\%	13.0	10	13\%	13.0
Environmental Sensitivity	Medium Sensitivity	5	6\%	3.0	5	5\%	2.7
Soil Suita bility	Very Limited	0	6\%	0.0	0	5\%	0.0
Environmental Total (Out of 100)			100\%	76		100\%	77
Regulatory							
Flood Zones							
25-YearFloodpla in	No	10	20\%	20.0	10	20\%	20.0
100-Year Floodpla in	Within 250	10	10\%	10.0	0	10\%	0.0
500-Year Floodpla in	Within 250	10	5\%	5.0	0	5\%	0.0
Zoning Designation	I-RR	0	5\%	0.0	0	5\%	0.0
Sub-Chapter E (Distance from Road in ft.)	103	9	5\%	4.5	9	5\%	4.5
Erosion Hazard Review Buffer	Within 250	10	9\%	9.0	0	10\%	0.0
Resource Buffers	No	10	20\%	20.0	10	20\%	20.0
Watershed Regulation Areas	Suburban	8	10\%	8.0	8	10\%	8.0
Water Quality Zones	Critical	0	3\%	0.0	0	5\%	0.0
Endangered Species	No	10	3\%	3.0	10	5\%	5.0
Bathhouse	Yes	10	5\%	5.0	10	2\%	2.5
Restrooms (Distance from Pool in ft.)	At pool	10	5\%	5.0	10	2\%	2.5
Regulatory Total (Out of 100)			100\%	90		100\%	62
Operations							
Maintenance Staff/Equipment Ease of Access		7	20\%	14.0	7	10\%	7.0
Simplic ity of Equipment		7	20\%	14.0	7	10\%	7.0
Equipment Condition/Replacement Cost		7	30\%	21.0	7	15\%	10.5
Lawn/Landscaped Area		2	20\%	4.0	2	10\%	2.0
Employee Safety Measures		7	10\%	7.0	7	10\%	7.0
Operations Total (Out of 100)			100\%	60		55\%	34

Table A.32: Walnut Creek

Wainut Creek	Condition	Neighborhood Potential			Community/Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Demographics							
20-Minute Walk							
Children	352	0	10\%	0.0	0	3\%	0.0
Seniors	211	0	5\%	0.0	0	2\%	0.0
Total Population	1,715	0	15\%	0.0	0	5\%	0.0
Median Household Income	\$57,679	6	5\%	3.0	6	3\%	1.8
Population Growth (5-Year)	82	1	5\%	0.5	1	3\%	0.3
Social Needs and Conditions Index	79	4	15\%	6.0	4	10\%	4.0
10-Minute Drive							
Children	27,794	9	3\%	2.7	9	10\%	9.0
Seniors	12,373	3	2\%	0.6	3	6\%	1.8
Total Population	179,317	10	6\%	6.0	10	15\%	15.0
Median Household Income	\$48,843	5	3\%	1.5	5	5\%	2.5
Population Growth (5-Year)	16,945	10	3\%	3.0	10	8\%	8.0
Capacity (based on surface area)	626	8	8\%	6.4	8	10\%	8.0
Attendance (5-YearAvg.)	16,863	3	10\%	3.0	3	10\%	3.0
Attendance/Capacity Ratio	26.9	3	10\%	3.0	3	10\%	3.0
Demographics Total (Out of 100)			100\%	36		100\%	56
Site Conditions							
Entrance/Drive	Yes	10	10\%	10.0	10	5\%	5.0
Parking Spaces (Count)	76	10	10\%	10.0	4	14\%	5.6
Site Area (Acres)	4.6	10	40\%	40.0	9	50\%	45.0
Grade Constraints	Moderate		0\%	0.0	5	14\%	7.0
Health, Safety, Welfare Issues	55\%	6	20\%	12.0	6	5\%	3.0
Designated Historic al Features (Count)	0	10	10\%	10.0	10	6\%	6.0
Historical Struc ture (Pool House or Pool)	No	10	10\%	10.0	10	6\%	6.0
Site Total (Out of 100)			100\%	92		100\%	78
Location							
Heavily Trafficked Roadways (Traffic Counts)	24,247	4	5\%	2.0	4	5\%	2.0
Distance from Road	1,100	10	5\%	5.0	10	5\%	5.0
Railroads	None	10	5\%	5.0	10	5\%	5.0
Flight Zones (Noise Level - Decibels)	None	10	5\%	5.0	10	5\%	5.0
Competing Elements (Count)							
Other PARD Aquatic Facilities (20 Min. Walk)	0	10	20\%	20.0	10	8\%	8.0
Service Area Overlap (20 Min. Walk)	0\%	10	20\%	20.0	10	8\%	8.0
Private Aquatic Facilities (20 Min . Walk)	0	10	7\%	7.0	10	3\%	3.0
Programs By HOA/Private Orgs. (20 Min. Walk)	0	10	3\%	3.0	10	2\%	2.0
Symbiotic Elements (Count)							
Schools/Daycare Providers (5 Minute Walk)	1	2	10\%	2.0	2	19\%	3.8
Recreation Centers (5 Minute Walk)	0	0	10\%	0.0	0	20\%	0.0
Other Park Amenities (5 Minute Walk)	18	9	10\%	9.0	9	20\%	18.0
Location Total (Out of 100)			100\%	78		100\%	60
Accessibility							
Adjacent Roadway Class	Major Arterial	10	5\%	5.0	10	5\%	5.0
Transit Access	Yes	10	15\%	15.0	10	15\%	15.0
Pedestrian Connectivity							
Walkways/Trails	Minimal	2	15\%	3.0	2	15\%	3.0
Crosswalks	None	0	5\%	0.0	0	5\%	0.0
Traffic Controls	None	0	5\%	0.0	0	5\%	0.0
Overall	Poor	0	15\%	0.0	0	15\%	0.0
Bic ycle Connectivity							

Walnut Creek	Condition	Neighborhood Potential			Community/Regional Potential		
		Ranking	Importance Rating	$\begin{gathered} \hline \text { Element } \\ \text { Score } \\ \hline \end{gathered}$	Ranking	Importance Rating	Element Score
Lanes	None	0	10\%	0.0	0	10\%	0.0
Trails (Count)	None	0	15\%	0.0	0	15\%	0.0
Overall	Fair	3	15\%	4.5	3	15\%	4.5
Accessibility Total (Out of 100)			100\%	28		100\%	28
Infrastructure							
Electric Service Provider	Austin Energy	10	10\%	10.0	10	10\%	10.0
Electric Service (Phases)	2	5	5\%	2.5	5	10\%	5.0
Water (Dist. to 4" Line in ft.)	0	10	10\%	10.0	10	20\%	20.0
Reclaimed Water (Dist. in ft.)	None	0	10\%	0.0	0	15\%	0.0
Wastewater (Dist. to 8" Sewer Line in ft.)	310'	3	5\%	1.5	3	15\%	4.5
Pool Condition	Fair	5	25\%	12.5	5	10\%	5.0
Bathhouse Condition	Good	7	20\%	14.0	7	10\%	7.0
Storage Conditions	Fair	5	10\%	5.0	5	5\%	2.5
COATN Service Area (Wi-Fi)	Potential	8	5\%	4.0	8	5\%	4.0
Infrastructure Total (Out of 100)			100\%	60		100\%	58
Environmental							
Trees (Number)							
2" to 19" in Diameter	21	8	3\%	2.4	8	5\%	4.0
19" to 24" in Diameter	1	9	3\%	2.7	9	5\%	4.5
Over 24" in Dia meter (Including Heritage)	0	10	11\%	11.0	10	15\%	15.0
Grow Zones	No	10	13\%	13.0	10	10\%	10.0
Aquifer Recharge	No	10	13\%	13.0	10	13\%	13.0
Pollinator Habitat	No	10	6\%	6.0	10	5\%	5.4
Wetlands	No	10	13\%	13.0	10	10\%	10.0
Rock Outcrop	No	10	13\%	13.0	10	13\%	13.0
Springs	No	10	13\%	13.0	10	13\%	13.0
Environmental Sensitivity	Low Sensitivity	10	6\%	6.0	10	5\%	5.4
Soil Suita bility	ery-Somewhat Limite	2	6\%	1.2	2	5\%	1.1
Environmental Total (Out of 100)			100\%	94		100\%	94
Regulatory							
Flood Zones							
25-Year Floodpla in	No	10	20\%	20.0	10	20\%	20.0
100-Year Floodplain	No	10	10\%	10.0	10	10\%	10.0
500-Year Floodplain	No	10	5\%	5.0	10	5\%	5.0
Zoning Designation	P	10	5\%	5.0	10	5\%	5.0
Sub-Chapter E (Distance from Road in ft.)	376	4	5\%	2.0	4	5\%	2.0
Erosion Hazard Review Buffer	No	10	9\%	9.0	10	10\%	10.0
Resource Buffers	No	10	20\%	20.0	10	20\%	20.0
Watershed Regulation Areas	Suburban	8	10\%	8.0	8	10\%	8.0
Water Quality Zones	250 Critic al	10	3\%	3.0	0	5\%	0.0
Endangered Species	No	10	3\%	3.0	10	5\%	5.0
Bathhouse	Yes	10	5\%	5.0	10	2\%	2.5
Restrooms (Distance from Pool in ft.)	At pool	10	5\%	5.0	10	2\%	2.5
Regulatory Total (Out of 100)			100\%	95		100\%	90
Operations							
Maintenance Staff/Equipment Ease of Access	Fair	5	20\%	10.0	5	10\%	5.0
Simplic ity of Equipment	Poor	2	20\%	4.0	2	10\%	2.0
Equipment Condition/Replacement Cost	Poor	2	30\%	6.0	2	15\%	3.0
Lawn/Landsc aped Area	Fair	5	20\%	10.0	5	10\%	5.0
Employee Safety Measures	Fair	5	10\%	5.0	5	10\%	5.0
Operations Total (Out of 100)			100\%	35		55\%	20

Table A.33: West Austin

West Austin	Condition	Neighborhood Potential			Community/Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Demographics							
20-Minute Walk							
Children	644	1	10\%	1.0	1	3\%	0.3
Seniors	714	6	5\%	3.0	6	2\%	1.2
Total Population	7,759	6	15\%	9.0	6	5\%	3.0
Median Household Income	\$68,329	4	5\%	2.0	4	3\%	1.2
Population Growth (5-Year)	1,006	10	5\%	5.0	10	3\%	3.0
Social Needs and Conditions Index	62	2	15\%	3.0	2	10\%	2.0
10-Minute Drive							
Children	8,026	1	3\%	0.3	1	10\%	1.0
Seniors	5,918	4	2\%	0.8	4	6\%	2.4
Total Population	81,072	5	6\%	3.0	5	15\%	7.5
Median Household Income	\$52,433	5	3\%	1.5	5	5\%	2.5
Population Growth (5-Year)	7,552	3	3\%	0.9	3	8\%	2.4
Capacity (based on surface area)	100	0	8\%	0.0	0	10\%	0.0
Attendance (5-YearAvg.)	2,576	1	10\%	1.0	1	10\%	1.0
Attendance/Capacity Ratio	25.8	3	10\%	3.0	3	10\%	3.0
Demographics Total (Out of 100)			100\%	34		100\%	31
Site Conditions							
Entrance/Drive	No	0	10\%	0.0	0	5\%	0.0
Parking Spaces (Count)	0	0	10\%	0.0	0	14\%	0.0
Site Area (Acres)	0.2	0	40\%	0.0	0	50\%	0.0
Grade Constraints	Moderate-Severe	10	0\%	0.0	2	14\%	2.8
Health, Safety, Welfare Issues	65\%	7	20\%	14.0	7	5\%	3.5
Designated Historical Features (Count)	1	8	10\%	8.0	8	6\%	4.8
Historic al Struc ture (Pool House or Pool)	1930s	1	10\%	1.0	1	6\%	0.6
Site Total (Out of 100)			100\%	23		100\%	12
Location							
Heavily Trafficked Roadways (Traffic Counts)	Unavailable	10	5\%	5.0	10	5\%	5.0
Distance from Road	142	10	5\%	5.0	10	5\%	5.0
Railroads	None	10	5\%	5.0	10	5\%	5.0
Flight Zones (Noise Level - Decibels)	None	10	5\%	5.0	10	5\%	5.0
Competing Elements (Count)							
Other PARD Aquatic Facilities (20 Min . Walk)	1	5	20\%	10.0	5	8\%	4.0
Service Area Overlap (20 Min. Walk)	56\%	4	20\%	8.0	4	8\%	3.2
Private Aquatic Facilities (20 Min . Walk)	0	10	7\%	7.0	10	3\%	3.0
Programs By HOA/Private Orgs. (20 Min. Walk)	0	10	3\%	3.0	10	2\%	2.0
Symbiotic Elements (Count)							
Schools/Daycare Providers (5 Minute Walk)	1	2	10\%	2.0	2	19\%	3.8
Recreation Centers (5 Minute Walk)	0	0	10\%	0.0	0	20\%	0.0
Other Park Amenities (5 Minute Walk)	7	3	10\%	3.0	3	20\%	6.0
Location Total (Out of 100)			100\%	53		100\%	42
Accessibility							
Adjacent Roadway Class	Local	5	5\%	2.5	0	5\%	0.0
Transit Access	Yes	10	15\%	15.0	10	15\%	15.0
Pedestrian Connectivity							
Walkways/Trails	Some	5	15\%	7.5	5	15\%	7.5
Crosswalks	None	0	5\%	0.0	0	5\%	0.0
Traffic Controls	None	0	5\%	0.0	0	5\%	0.0
Overall	Fair	3	15\%	4.5	3	15\%	4.5
Bicycle Connectivity							

West.Austin	Condition	Neighborhood Potential			Community/Regional Potential		
		Ranking	Importance Rating	Element Score	Ranking	Importance Rating	Element Score
Lanes	None	0	10\%	0.0	0	10\%	0.0
Trails (Count)	1	5	15\%	7.5	5	15\%	7.5
Overall	Good	7	15\%	10.5	7	15\%	10.5
Accessibility Total (Out of 100)			100\%	48		100\%	45
Infrastructure							
Electric Service Provider	Austin Energy	10	10\%	10.0	10	10\%	10.0
Electric Service (Phases)	3	10	5\%	5.0	10	10\%	10.0
Water (Dist. to 4" Line in ft.)	0	10	10\%	10.0	10	20\%	20.0
Reclaimed Water (Dist. in ft.)	2600'	0	10\%	0.0	0	15\%	0.0
Wastewater (Dist. to 8" Sewer Line in ft.)	185'	5	5\%	2.5	5	15\%	7.5
Pool Condition	Good	7	25\%	17.5	7	10\%	7.0
Bathhouse Condition	Good	7	20\%	14.0	7	10\%	7.0
Storage Conditions	Good	7	10\%	7.0	7	5\%	3.5
COATN Service Area (Wi-Fi)	No	0	5\%	0.0	0	5\%	0.0
Infrastructure Total (Out of 100)			100\%	66		100\%	65
Environmental							
Trees (Number)							
2" to 19" in Diameter	2	9	3\%	2.7	9	5\%	4.5
19" to 24" in Diameter	0	10	3\%	3.0	10	5\%	5.0
Over 24" in Dia meter (Including Heritage)	1	9	11\%	9.9	9	15\%	13.5
Grow Zones	No	10	13\%	13.0	10	10\%	10.0
Aquifer Recharge	No	10	13\%	13.0	10	13\%	13.0
Pollinator Habitat	No	10	6\%	6.0	10	5\%	5.4
Wetlands	No	10	13\%	13.0	10	10\%	10.0
Rock Outcrop	No	10	13\%	13.0	10	13\%	13.0
Springs	No	10	13\%	13.0	10	13\%	13.0
Environmental Sensitivity	Medium Sensitivity	5	6\%	3.0	5	5\%	2.7
Soil Suita bility	Very Limited	0	6\%	0.0	0	5\%	0.0
Environmental Total (Out of 100)			100\%	90		100\%	90
Regulatory							
Flood Zones							
25-Year Floodpla in	No	10	20\%	20.0	10	20\%	20.0
100-Year Floodplain	No	10	10\%	10.0	10	10\%	10.0
500-Year Floodpla in	No	10	5\%	5.0	10	5\%	5.0
Zoning Designation	P-NP	8	5\%	4.0	8	5\%	4.0
Sub-Chapter E (Distance from Road in ft.)	142	8	5\%	4.0	8	5\%	4.0
Erosion Hazard Review Buffer	No	10	9\%	9.0	10	10\%	10.0
Resource Buffers	No	10	20\%	20.0	10	20\%	20.0
Watershed Regulation Areas	Urban	10	10\%	10.0	10	10\%	10.0
WaterQuality Zones	No	10	3\%	3.0	10	5\%	5.0
Endangered Species	No	10	3\%	3.0	10	5\%	5.0
Bathhouse	Restroom	5	5\%	2.5	5	2\%	1.2
Restrooms (Distance from Pool in ft.)	At pool	10	5\%	5.0	10	2\%	2.5
Regulatory Total (Out of 100)			100\%	96		100\%	97
Operations							
Maintenance Staff/Equipment Ease of Access	Good	7	20\%	14.0	7	10\%	7.0
Simplic ity of Equipment	Good	7	20\%	14.0	7	10\%	7.0
Equipment Condition/Replacement Cost	Good	7	30\%	21.0	7	15\%	10.5
Lawn/Landscaped Area	Good	7	20\%	14.0	7	10\%	7.0
Employee Safety Measures	Good	7	10\%	7.0	7	10\%	7.0
Operations Total (Out of 100)			100\%	70		55\%	39

Table A.34: Westenfield

Westenfield	Condition	Neighborhood Potential			Community/ Regional Potential		
		Ranking	$\begin{array}{\|c\|} \hline \text { Importance } \\ \text { Rating } \\ \hline \end{array}$	Element Score	Ranking	$\begin{gathered} \hline \text { Importance } \\ \text { Rating } \\ \hline \end{gathered}$	Element Score
Demographics							
20-Minute Walk							
Children	1,505	4	10\%	4.0	4	3\%	1.2
Seniors	974	9	5\%	4.5	9	2\%	1.8
Total Population	8,854	7	15\%	10.5	7	5\%	3.5
Median Household Income	\$92,134	1	5\%	0.5	1	3\%	0.3
Population Growth (5-Year)	765	8	5\%	4.0	8	3\%	2.4
Social Needs and Conditions Index	37	1	15\%	1.5	1	10\%	1.0
10-Minute Drive							
Children	16,287	5	3\%	1.5	5	10\%	5.0
Seniors	11,882	9	2\%	1.8	9	6\%	5.4
Total Population	133,500	9	6\%	5.4	9	15\%	13.5
Median Household Income	\$56,266	3	3\%	0.9	3	5\%	1.5
Population Growth (5-Year)	11,841	7	3\%	2.1	7	8\%	5.6
Capacity (based on surface area)	293	3	8\%	2.4	3	10\%	3.0
Attendance (5-YearAvg.)	22,110	4	10\%	4.0	4	10\%	4.0
Attendance/Capacity Ratio	75.5	8	10\%	8.0	8	10\%	8.0
Demographics Total (Out of 100)			100\%	51		100\%	56
Site Conditions							
Entrance/Drive	No	0	10\%	0.0	0	5\%	0.0
Parking Spaces (Count)	0	0	10\%	0.0	0	14\%	0.0
Site Area (Acres)	0.6	5	40\%	20.0	0	50\%	0.0
Grade Constraints	Low-Moderate		0\%	0.0	8	14\%	11.2
Health, Safety, Welfare Issues	88\%	9	20\%	18.0	9	5\%	4.5
Designated Historic al Features (Count)	1	8	10\%	8.0	8	6\%	4.8
Historical Struc ture (Pool House or Pool)	No	10	10\%	10.0	10	6\%	6.0
Site Total (Out of 100)			100\%	56		100\%	27
Location							
Heavily Trafficked Roadways (Traffic Counts)	152,326	0	5\%	0.0	0	5\%	0.0
Distance from Road	205	4	5\%	2.0	4	5\%	2.0
Railroads	Amtrack/Freight	0	5\%	0.0	0	5\%	0.0
Flight Zones (Noise Level - Decibels)	None	10	5\%	5.0	10	5\%	5.0
Competing Elements (Count)							
Other PARD Aquatic Facilities (20 Min. Walk)	2	0	20\%	0.0	0	8\%	0.0
Service Area Overlap (20 Min. Walk)	66\%	3	20\%	6.0	3	8\%	2.4
Private Aquatic Facilities (20 Min . Walk)	0	10	7\%	7.0	10	3\%	3.0
Programs By HOA/Private Orgs. (20 Min. Walk)	0	10	3\%	3.0	10	2\%	2.0
Symbiotic Elements (Count)							
Schools/Daycare Providers (5 Minute Walk)	0	0	10\%	0.0	0	19\%	0.0
Recreation Centers (5 Minute Walk)	0	0	10\%	0.0	0	20\%	0.0
Other Park Amenities (5 Minute Walk)	8	4	10\%	4.0	4	20\%	8.0
Location Total (Out of 100)			100\%	27		100\%	22
Accessibility							
Adjacent Roadway Class	Highway	10	5\%	5.0	10	5\%	5.0
Transit Access	Yes	10	15\%	15.0	10	15\%	15.0
Pedestrian Connectivity							
Walkways/Trails	Some	5	15\%	7.5	5	15\%	7.5
Crosswalks	Yes	10	5\%	5.0	10	5\%	5.0
Traffic Controls	Yes	10	5\%	5.0	10	5\%	5.0
Overall	Good	7	15\%	10.5	7	15\%	10.5
Bicycle Connectivity							

Westenfield	Condition	Neighborhood Potential			Community/ Regional Potential		
		Ranking	$\begin{array}{c}\text { Importance } \\ \text { Rating }\end{array}$	$\begin{gathered} \hline \text { Element } \\ \text { Score } \\ \hline \end{gathered}$	Ranking	Importance Rating	Element Score
Lanes	None	0	10\%	0.0	0	10\%	0.0
Trails (Count)	2	10	15\%	15.0	10	15\%	15.0
Overall	Fair	3	15\%	4.5	3	15\%	4.5
Accessibility Total (Out of 100)			100\%	68		100\%	68
Infrastructure							
Electric Service Provider	Austin Energy	10	10\%	10.0	10	10\%	10.0
Electric Service (Phases)	2	5	5\%	2.5	5	10\%	5.0
Water (Dist. to 4" Line in ft.)	0	10	10\%	10.0	10	20\%	20.0
Reclaimed Water (Dist. in ft.)	None	0	10\%	0.0	0	15\%	0.0
Wastewater (Dist. to 8" Sewer Line in ft.)	0^{\prime}	10	5\%	5.0	10	15\%	15.0
Pool Condition	Excellent	10	25\%	25.0	10	10\%	10.0
Bathhouse Condition	Excellent	10	20\%	20.0	10	10\%	10.0
Storage Conditions	Fair	5	10\%	5.0	5	5\%	2.5
COATN Service Area (Wi-Fi)	No	0	5\%	0.0	0	5\%	0.0
Infrastructure Total (Out of 100)			100\%	78		100\%	73
Environmental							
Trees (Number)							
2" to 19" in Dia meter	99	1	3\%	0.3	1	5\%	0.5
19" to 24" in Diameter	14	3	3\%	0.9	3	5\%	1.5
Over 24" in Dia meter (Including Heritage)	2	9	11\%	9.9	9	15\%	13.5
Grow Zones	No	10	13\%	13.0	10	10\%	10.0
Aquifer Recharge	Yes	0	13\%	0.0	0	13\%	0.0
Pollinator Habitat	No	10	6\%	6.0	10	5\%	5.4
Wetlands	No	10	13\%	13.0	10	10\%	10.0
Rock Outcrop	No	10	13\%	13.0	10	13\%	13.0
Springs	No	10	13\%	13.0	10	13\%	13.0
Environmental Sensitivity	Medium Sensitivity	5	6\%	3.0	5	5\%	2.7
Soil Suita bility	Very Limited	0	6\%	0.0	0	5\%	0.0
Environmental Total (Out of 100)			100\%	72		100\%	70
Regulatory							
Flood Zones							
25-Year Floodpla in	No	10	20\%	20.0	10	20\%	20.0
100-Year Floodplain	No	10	10\%	10.0	10	10\%	10.0
500-Year Floodpla in	Yes	0	5\%	0.0	0	5\%	0.0
Zoning Designation	P-NP	8	5\%	4.0	8	5\%	4.0
Sub-Chapter E (Distance from Road in ft.)	224	7	5\%	3.5	7	5\%	3.5
Erosion Hazard Review Buffer	No	10	9\%	9.0	10	10\%	10.0
Resource Buffers	No	10	20\%	20.0	10	20\%	20.0
Watershed Regulation Areas	Urban	10	10\%	10.0	10	10\%	10.0
Water Quality Zones	No	10	3\%	3.0	10	5\%	5.0
Endangered Species	No	10	3\%	3.0	10	5\%	5.0
Bathhouse	Yes	10	5\%	5.0	10	2\%	2.5
Restrooms (Distance from Pool in ft.)	At pool	10	5\%	5.0	10	2\%	2.5
Regulatory Total (Out of 100)			100\%	93		100\%	92
Operations							
Maintenance Staff/Equipment Ease of Access	Good	7	20\%	14.0	7	10\%	7.0
Simplic ity of Equipment	Excellent	10	20\%	20.0	10	10\%	10.0
Equipment Condition/Replacement Cost	Excellent	10	30\%	30.0	10	15\%	15.0
Lawn/Landscaped Area	Poor	2	20\%	4.0	2	10\%	2.0
Employee Safety Measures	Excellent	10	10\%	10.0	10	10\%	10.0
Operations Total (Out of 100)			100\%	78		55\%	44

APPENDIX B - SOCIAL NEEDS AND CONDITIONS ANALYSIS

B. 1 Overview

Certain socioeconomic characteristics should help to identify those individuals or target populations most likely to use and/or benefit from public sector programs and services, and community outreach programs. A Social Needs\& Conditions Index wasdeveloped, using seven (7) socioeconomic indic ators that mea sure the well-being of residents in each of Austin's 200 census tracts, to assist the project tea m in establishing priorities as they relate to outreach and program development.

B. 2 Methodology

Information has been organized specifically for each of Austin's 200 census tracts. Most of the demographic data was taken directly from the 2010 Census data for the City of Austin or from the American Community Survey 5-year averages from years 2007-2011. The censustracts were selected which are within or touching the current city limits. Therefore, some extend beyond the current city limits for the City of Austin.

B. 3 Data Disclaimer

The information contained in the analysis was taken from the 2010 Census data and Americ an Community Surveys data. It is correct, to the best of the author's knowledge; however, some census data is subjective.

It is as accurate as the information that the census participants reported at the time it wascompiled.

B. 4 American Community Survey

The American Community Survey is a part of the U.S. Census Bureau's Decennial Census Program and is designed to provide more detailed demographic, social, economic, and housing estimatesthroughout the decade. The ACS provides information on more than 40 topics including: education, language ability, the foreign-bom, marital status, migration, and many more. Each year the survey randomly samples 3.5 million addresses and produces statistic sthat cover 1-year, 3-year, and 5-year periods for geographic areas in the United States. The 5 -yearestimates are available in a variety of geographic areas. The 5 -yearestimatesused in this a nalysis are the 5-year estimatescovering the period from 2007 to 2011.

B. 5 Data Definitions and Sources

B.5.1 Total Population

Universe: Total Population), Source: Census of Population \& Housing, 2010 Tiger Files DPSF1 - Sex and Age column DP0010001

B.5.2 Target Population

(Universe: Total Population), Source: Census of Population \& Housing, 2010 Tiger Files DPSF1 - Column DP0010002-0004 for the various ages of child ren.

B.5.3 Educational Attainment

Population without a High School Diploma (Universe: Persons 25 Years and Over), Source: U.S. Census Bureau Americ an Community Survey 5-year averages for years 2007-2011, column B23006 - Percent of persons over age 25 without a high school diploma.

B.5.4 Households

(Universe: Households), Source: U.S. Census Bureau Americ an Community Survey 5-year averages for years 2007-2011, c olumn B19001.

B.5.5 Median Household Income

(Universe: Households), Source: U.S. Census Bureau Americ an Community Survey 5-year averages for years 2007-2011, column B19013 - Median household income in the past 12 months (in 2011 inflation-adjusted dollars).

B.5.6 Population Density

Total population divided by the number of land acres (water area excluded) in the census tract area to result in the number of persons per acre. Source U.S. Bureau of the Census 2010 Tiger Files. Table is provided in square meters which were converted to acres.

B.5.7 Poverty Status

Quantity of the Total Population Living in Poverty - (Universe: Persons for Whom Poverty is Detemined in 1999), Source: U.S. Census Burea u Americ an C ommunity Survey 5-yearavera ges for years 2007-2011, column B17010 Households with income in the past 12 months below poverty level.

B.5.8 Employment Status: Percent Unemployed

(Universe: Persons 16 Years and Over in the Labor Force), Source: U.S. Census Bureau Americ an Community Survey 5-yearaverages foryears 2007-2011, column B23025-In laborforce, numberemployed, calculated as the percent of the laborforce not employed.

B.5.9 Crime: Total Population per Actual Reported Incident

Source: City of Austin Police Department Records Management System Indexed and Non-Indexed Offenses by Yearand Census Tract for Year 2012. Indexed crimes used in this a nalysis. The APD uses censustractsfrom previous census. Therefore, where tracts have split, the total incidents were divided by the number of new tracts from the parent tract.

B.5.10 Single Parent Households - Universe

Households with children under age 18. Source: U.S. Census Bureau American Community Survey 5-year a verages for years 2007-2011, column B11004, sum of columns for households with single mothers a nd single fathers with children under the age of 18 in the household.

B. 6 Social Needs \& Conditions Index

The Social Needs\& C onditionsIndexwasdetemined through a three-step processthat included the following components: Total and Target Population Index (TPI); Composite Social Needs Index (CSNI); combining a weighted TPI score and a CSNI score to decide a final Composite Social Needs \& Conditions score; and then ranking the census tracts based upon their final score.

B.6.1 Three-Step Process

- Total and Target Population Index (TPI)
- Composite Social Needs Index (CSNI)
- Index Number - Composite Social Needs \& Conditions Index

B.6.2 Total and Target Population Index

The purpose of the Total and Target Population Index (TPI) is to identify the distribution of the total population and target populations citywide. Each of Austin's 200 census tracts was ranked by their total population and by identified target populations from one to two hundred according to its position citywide, with tied scoresgiven the same ranking status. A number one ranking status suggests the neighborhood exhibiting the least need and a ranking status of 200 suggest the greatest need. When detemining demand for target populations, the ranking of the total population and the target population are summed together, divided by the number of variables (usually two), resulting in a TPI score. The TPI scores are then ranked from one to 200 foreach censustract.

$$
\begin{gathered}
A+B=\text { TPI Score } \\
X \\
A=\text { Total Population } \\
B=\text { Target Population } \\
X=\text { Total Number of Va nia bles in the Numerator }
\end{gathered}
$$

B.6.3 Composite Social Needs Index

A Composite Social Needs Index (CSNI) score was detemined for each census tract. CSNI consists of the seven independent variables or indic ators representing social conditions in each neighborhood. The seven (7) variablesare independently ranked by censustract from one (1) to 200 according to the variablesposition citywide, with tied scores given the same rank. A number one (1) ranking status suggests the neighborhood exhibiting the least need and a ranking status of 200 suggests the greatest need. For each census tract, the ranking score for each of the seven variables were then summed into a composite score. This composite score wasthen divided by the number of variables(seven), weighted by a factorof two, and thus resulting in the CSNI sc ore foreach censustract. The CSNI scores are then ranked from one to 200 foreach censustract.

$$
\begin{aligned}
& 2 \times(\mathrm{C}+\mathrm{D}+\mathrm{E}+\mathrm{F}+\mathrm{G}+\mathrm{H}+\mathrm{I})=\mathrm{CSNI} \text { Score } \\
& \mathrm{X} \\
& \mathrm{C}=\text { Variable } \\
& \mathrm{D}=\text { Variable } \\
& \mathrm{E}=\text { Variable } \\
& \mathrm{F}=\text { Variable } \\
& \mathrm{G}=\text { Variable } \\
& \mathrm{H}=\text { Variable } \\
& \mathrm{I}=\text { Variable }
\end{aligned}
$$

B.6.4 Index Number- Composite Social Needs \& Conditions Index

- The third step involved combining a weighted TPI score and a CSNI score foreach of the independent neighborhood planning districts. This results in a final Composite Social Needs \& Conditions Indicator (CSNCI) score for each census tract.

TPI $+(2 \times$ CSNI $)=$ CSNCI Score

- Finally, the final score for each census tract is ranked from one to 200. The highest index number represents the neighborhood with the greatest need, which is given a ranking status of 200, and the lowest index number, representing the neighborhood with the least need, is given a ranking status of one.

B. 7 Total Population

The map of the Social Needsand Conditionsfor the Total Population indic atesthe censustractsexhibiting the highest social needs (red in color) are concentrated in a coridor extending north to south a long Interstate 35, with the majority of the areaslocated east of I-35. The areas with the lowerneeds (green in color) are located in the growth areas in the southwest (South of Slaughter), northwest and west Austin areas (west of MoPac).

B. 8 Target Populations - 0-14 in Age

One of the main priorities through the public input process has been on the delivery of aquatic facilities for children. Therefore this a nalysis was performed for the children in ages $0-14$. Since there is a ten-yearhorizon for this plan, we have included the entire population of this age group rather than just teens. Of the 200 census tracts, the same general areas exhibited the greatest needs as the a nalysis for the total population with very minordifferences.

Figure B.1: Total Population - Population Density

Figure B.2: Total Population - Social Needs and Conditions

Figure B.3: Target Population - Children Ages 0-14 - Population Density

Figure B.4: Target Population - Children Ages 0-14 - Social Needs and Conditions

APPENDIX C -PUBLC ENGAGEMENTSUMMARES
 C. 1 Summary Of Public Meetings

The following public meetings were held during the three phases of the development of the Aquatic Master Plan. In all, the planning team met with the community on over 60 separate occasions in order to determine their priorities and desires for the future of aquatic facilities and programs in Austin.

C.1.1 Phase I-Aquatic Facilities Needs Assessment (see that doc ument formeeting summaries)

- Neighborhood Workshops (8 from August 2013 to November 2014)
- Northwest Austin
- Anderson High School - August 19, 2013
- Northwest Rec reation Center - November 21, 2014
- Southwest Austin
- Bowie High School - August 20, 2013
- Dittmar Recreation Center - November 19, 2014
- Northeast Austin
- LBJ High School - August 21, 2013
- Tumer Roberts Recreation Center - November 23, 2014
- Southeast Austin
- Dove Springs Recreation Center - August 22, 2013
- Mendez Middle School - November 23, 2014
- First Round of Public Workshops (4 in August 2013)
- Anderson High School
- Bowie High School
- LBJ High School
- Dove Springs Rec reation Center
- Second Rounds of Public Workshops (4 in November 2013)
- Dittmar Recreation Center
- Northwest Recreation Center
- Tumer Roberts Recreation Center
- MendezMiddle School
- Open Houses (2 in December 2013)
- Tumer Roberts Recreation Center Community Holiday Dinner - December 14, 2013
- Dove Springs Rec reation Center Christmas Gift Give-a way and Festival - December 19, 2013
- Television and Telephone Town Hall (April 2014)
- Interactive Town Hall Meeting - April 29, 2014

C.1.2 Phase II - SWMM512 Meetings

- On-site Community Conversations (3 Munic ipal Pools and 8 Neighborhood Pools in August 2015)
- Municipal
- Garison August - 17, 2015
- Mabel Davis - August 19, 2015
- Northwest August - 19, 2015
- Neighborhood Pools
- Dittmar- August 17, 2015
- Dick Nichols - August 18, 2015
- Dove Springs - August 18, 2015
- Patterson - August 20, 2015
- Brentwood - August 21, 2015
- Martin - August 21, 2015
- Dottie J ordan - August 22, 2015
- Givens- August 22, 2015
- Neighborhood Talksat neighborhood association and organization meetings(14 meetingsSeptember through November 2015)
- Gracewood Neighborhood Association - September 1, 2015
- Allendale Neighborhood Association - September 2, 2015
- East Town Lake Community Neighborhood Association - September 2, 2015
- River Oak Neighborhood Association - September 8, 2015
- Colony Park Neighborhood Association - September 21, 2015
- ANC Monthly General Meeting: Meet/Greet - September 23, 2015
- Restore Rundberg Meeting - September 24, 2015
- Ramsey Park Neighborhood Association Meeting - September 28, 2015
- South River City Citizens Association - October 5, 2015
- Colony Park National Night Out - October 6, 2015
- Amadillo Park National Night Out - October 6, 2015
- AISD Let's Talk Community Engagement Meeting - October 9, 2015
- Friends of Gus Garcia Park and Recreation Center- October 28, 2015
- Austin Counc il of Parent Teac her Associations - November 19, 2015
- Community Foc us Groups (7 meetings in November 2015)
- Community Engagement Center - November 2, 2015
- Dittmar Recreation Center - November 3, 2015
- Tumer-Roberts Rec reation Center-November 2, 2015
- Hancock Recreation Center (cancelled for weather) - November 5, 2015
- Northwest Recreation Center (3 sessions) - November 7, 2015
- Carver Museum \& Cultural Center - November 12, 2015
- Gus Garcia Recreation Center - November 23, 2015

C.1.3 Phase III - Aquatic Master Plan Meetings

- First Round of Public workshops (2 in March 2016)
- Dove Springs Recreation Center - March 7, 2016
- Tumer-Roberts Rec reation Center - March 8, 2016
- Neighborhood Meetings (2 one in April and one in August 2016)
- Pecan Springs Neighborhood Association - April 9, 2016
- Colony Park Neighborhood Association - August 15, 2016
- Focus Group Meetings (2 in J une 2016)
- Lamar Senior Activity Center - J une 30, 2016
- Northwest Recreation Center - J une 30, 2016
- Second Round of Public Workshops (4 in July 2016)
- Circle C Community Center - J uly 12, 2016
- Montopolis Rec reation Center - J uly 13, 2016
- Spic ewood Spring Branch Library - July 20, 2016
- Asian Americ an Activity C enter - July 21, 2016
- Third Round of Public workshops (in J une 2017)
- Pan Am Rec reation Center - J une 10, 2017
- Spic ewood Springs Public Library - J une 13, 2017

This page intentionally blank.

AUSTIN AQUATIC MASTER PLAN PROJ ECTNO. 15092

Phase A - Public Input Process

The following activities have been completed as part of Phase A - Process Development Phase

1. The Public Involvement Plan (PIP) wascompleted and approved on J anuary 8, 2016. Several meetings were held in the preparation of this Plan. Presentations were made to the Land, Programming, and Fa cilities Sub-committee on J a nuary 11 and to the Park Board on J a nuary 26, 2016, at which meetings these bodies approved the plan.
2. Meetings were held with the Aquatic Advisory Board.
3. A Staff and Sta keholder PowerPo int presentation wasprepared.
4. PARD Staff met with the Technical Advisory Group (TAG), Aquatic Advisory Board (AAB), a nd District Representatives Group (DRG) to provide an orientation to the process.
5. The web based survey wasfinalized, published, a nd promoted by the PARD PIO using Survey Monkey.
6. The database of stakeholders which wasstarted aspart of Dr. Cortez' SWIM 512 initiative is continuously being updated. This list was used to promote attendance for the workshops and to complete the surveys. A copy of the database which was color coded as to who was contacted and how was provided to PARD.
7. The first two Community Meetings were held (only one was in the scope of services) on March 7 a nd 8 , 2016. Two meetings were held to betterdistribute the meetingsthroughout the community. A 16-page summary of the meetings is attached which includes documentation of the process, notifications, meeting materials, format, a nd summa ries of the enga gement.
8. In addition, Adisa Communic ations continues to meet with neighborhood a nd stakeholder groups to promote the survey and the Master Plan process. A two-page summary is attached (dated April 14, 2016) which identifies the ta rgeted communities and process.
9. Following the Public Workshops, a debrief meeting was held on March 28, 2016 to discuss what worked and what did not, as well as ways to improve the process in future meetings. A few key points from that meeting include:
a. Earlier coordination of meeting materials and promotional efforts to allow for more coordination and review.
b. Try more to re-engage the SWIM 512 Stakeholders.
c. More signage at meeting locationsto directattendees.
d. Consultants to take the lead in the meetings with less of a role by PARD Staff.
10. On April 12, 2016 during a Team conference call, it was discussed that PARD would like to engage youth through their programs at after-school and summer camps regarding the Aquatic Master Plan. A ten to fifteen-minute time frame would be used and conducted by PARD Central Programming staff. BCI and Adisa are to provide input on methods and materials to be used in the process. Suggested methodsinclude:
a. Introduc tion simply desc ribing that the City is looking to improve its pools a nd needs the input from a ll citizens, especia lly children who will use the pools.
b. General discussion by PARD staff about pool and swimming safety. Key points such as swimming with an adult, wearing life jackets, etc. I am sure PARD staff can come up with some great points based on their swim lesson programs.
c. Ask and write down the pools they currently use. Ask what they like about them. Have someone write the responses on a pad, not a flip chart. You will want to go fast to keep them engaged.
d. Show and discuss the two Aquatic Features visual preferences boards. Give them each two dots to put on their two favorite pool features they want and would use.
11. PARD Staff also suggested an additional public workshop in a similar format to be held in an underserved portion of the City. This would take place in May, 2016. Date and location to be set by PARD. The format would be similar to the original March workshops.
12. PARD Staff asked about the possibility of a separate poll/survey of underserved populations. Adisa is preparing a proposal with a polling agency to provide these services.
13. The additional meeting would result in moving the workshopsoriginally scheduled in J une to be moved to July. Suggested dates include July 12, 13, 20 and 21, 2016. But, these will be dependent on a vaila bility of suitable locations.
14. At the April 12, 2016 c onference call, the details of meeting promotion and supplies were disc ussed. It was clarified that the cost of printing of the promotional and meeting materials for the workshops are to be prepared and provided by the BCI Team. PARD will assist with promotion through distribution of flyers and other methods, email blasts, Next Door notifications, etc. It was the intent of the Amendment to the contract to include this in the contract. This clarifies paragraph 2.2.5 of the Agreement.

Fatrich D. Haapland
 Patrick Hoagland, ASLA Project Manager

Attachments:
Community Meeting Summary (16 pages)
April 14, 2016 Memo on Outreach (2 pages)

AQUATIC MASTER PLAN
 MY AUSTIN. MY POOL. COMMUNITY MEETING SUMMARY

Process Overview - Master Plan Kickoff Community Meetings

As part of the consulting team led by Brandstetter Carroll Inc. (BCI), Adisa Communications supported a multi-phase stakeholder process in order to educate interested parties, facilitate community engagement, and ensure community input on the Aquatic Master Plan (AMP). The community engagement process incorporated two open houses in order to diversify the manner in which input was received, and in order to include a wide array of public participants who might not otherwise be aware of the Aquatic Master Plan. The most common feedback received from the public meetings were the following:

- Longer seasonal hours
- More shaded areas
- Better maintenance of pool facilities

Notifications

The Adisa team utilized a variety of tools to notify potential stakeholders of the two open houses and the opportunity to provide input and learn about the Aquatic Master Plan. Meeting notifications were distributed via email to neighborhood associations and stakeholder lists, and follow up phone calls were made. Event posters and flyers were placed in all the Parks and Recreation Department's recreation centers. Yard signs for the two open houses were placed at the recreation centers in order to notify recreation center traffic of upcoming open houses. Information was posted on "NextD oor," an internet community calendar. Time Warner Cable News Austin aired a feature on the AMP open houses on Saturday evening, March 5, 2016.

Public Meeting Materials

Attendees were greeted and given a Fact Sheet, comment card, and "swim lane card." The "swim lane card" was used as an incentive for participants to view all of the display boards, give input, and complete a survey. A completed swim lane card was entered into a drawing for one of five one-day swim passes valued up to $\$ 8.00$. Meeting materials were provided in both English and Spanish.

Overview of Open Houses

The Aquatic Master Plan Team held two Community Meetings to obtain input on the Aquatic Master Plan. The Community Meetings were held on Monday, March 7, 2016, from 4:30 p.m. to 7:30 p.m. at the Dove Springs Recreation Center, 5801 Ainez Drive, Austin 78744, and on Tuesday, March 8, 2016, from 4:30 p.m. to 7:30 p.m., at the Turner-R oberts Recreation Center, 7201 Colony Loop Drive, Austin, 78724. Approximately 35 attended the first open house, and approximately 29 people attended the second open house.

An open house format allowed the public to view illustrative boards and maps of the aquatic facilities in Austin and to interact with staff from the Aquatic Department and Brandstetter Carroll Inc team. The illustrative boards covered goals and timeline for the Aquatic Master Plan, history and location of water facilities in Austin, and results of P hases I and II of the AMP. A PowerP oint presentation complemented the illustrative boards and maps with additional details about the AMP (Presentation included in Attachments). A Spanish translation hard-copy of the Presentation was made available at the open houses.

Participants were asked to indicate their preferences on aquatic features and programs depicted on illustrative boards. Participants were also asked to comment on five questions around the Aquatic Master Plan (AMP). The five questions were also featured on an illustrative board. The full responses to the five questions are provided below as is a tally of input on aquatic features and programs.

Community Input

Participants were given a Comment Card with five questions (Attachment B) to collect information specific to the AMP. Participants could also write responses to the questions on a post-it note and place it on an illustrative board.

The most suggested changes for aquatics facilities based on written feedback from the Comment Cards are as follows:

- Longer seasonal hours
- Shaded areas
- Better maintained pools

In addition, Austin areas most mentioned in need of pool facilities are Colony Park and South Austin, in particular the 78744 area. The most mentioned key factors to consider for older pools are costs and funding for repairing and building and distance to the pools. Full results from Comment C ards can be found in Attachment G .

The top three aquatics features preferred from the visual preference boards by open house participants were:

- Shade over the pool deck - 16 votes
- Tall waterslides - 16 votes
- 50M lap lanes - 14 votes
- Shade over pool - 14 votes

The top three programming activities from the visual preference boards were:

- Swim lessons - 39 votes
- Water fitness - 25 votes
- Lifeguard training - 26 votes
- Swim teams - 22 votes

Full results from visual preference boards can be found in Attachment F.
In summary, the suggested changes for Austin pool facilities are longer seasonal hours, shaded areas, and better maintained pools. Austin areas most mentioned in need of pool facilities are Colony Park and South Austin, in particular the 78744 area. The most mentioned key factors to consider for older pools are costs and funding for repairing and building and distance to the pools. Results from the visual preference facilities boards are as follows:

Other Opportunities for Engagement

Citizens of Austin who could not attend can provide input on the Aquatic Master Plan by completing on on-line survey at https://www.surveymonkey.com/r/swim512, sending an email to swim512@ austintexas.gov or calling 512.895.9591. This information was included in all notices, flyers, invitations, fact sheet, illustrative boards, and PowerP oint presentation.

Attachments
Attachment A Attachment B: Attachment C: Attachment D: Attachment E: Attachment F: Attachment G:

Fact Sheet (E nglish and Spanish)
Comment Card (two sided-English and Spanish)
"S wim Lane Card" (two sided-English and Spanish
PowerP oint Presentation (English and Spanish)
Invitation to Open Houses (two sided-English and Spanish)
Full results from the visual preference boards
Full results from Comment Cards

BE PART OF THE PLAN

The Master Plan will help the City of Austin Parks and Recreation Department decide how to manage aging pool facilities and the development of a guide to determine the future location of aquatic facilities to better serve the growing Austin population. Your input will help a skillful team of aquatic industry leaders and COA staff develop a vision for the next 20 years for the city of Austin aquatic facilities.

WHAT WE HAVE HEARD FROM AUSTINITES

More than 1,000 citizens, including adults and youth, have participated in public meetings. They told us they would like the following:

- Keep pools open and affordable
- Increase hours and swim season
- Improve bathhouse, shade, and seating

WHO IS LEADING THE PRCCESS?

The Aquatic Division of Austin's Parks and Recreation Department is in charge of creating the Aquatic Master Plan We are working with industry professionals, a citizen's advisory board, and you to create a 20-year vision for Austin's aquatic facilities. The Master Plan will be presented to the Austin City Council for adoption in
late 2016.

HEEES HOW YOU CAN GIVE INPUT

Sharing your thoughts is simple. Join a meeting. Fill out a survey. Give us a call. Or send us an email. YOU CAN FIND OUT MORE HERE: www.austintexas.gov/department/aquatics-assessment PHONE NUMBER: (512) 895-9591
EMAIL: swim512@austintexas.gov

(OMO
For more information call (512) 895-9591
Email swim512@austintexas.gov
2818 San Gabriel, Austin, TX 78705

For more information call (512) 895-9591
Email swim512@austintexas.gov
2818 San Gabriel, Austin, TX 78705

Please share your thoughts about the Aquatic Master Plan.

1. What changes would you like to see at Austin pool facilities?
2. What would you like to remain the same?
3. Are there any types of programs or features you would like to see at Austin pool facilities?
4. Are there areas of Austin that need pool facilities? Areas or populations that are underserved?
5. What are the key factors the City should consider when determining how to address old pools that become in danger of closing due to age or condition?

Thank you for your input. Please leave your comment card at the registration table.

Public comments submitted here will be considered as part of the Aquatic Master Plan process but will not be included in the Final Report. If you would like to provide more comments, please visit our survey on SurveyMonkey at https://www.surveymonkey.com/r/swim512.

Por favor, comparta su opinión sobre el Plan Maestro Acuático.

1. ¿Qué cambios le gustaría en las piscinas/albercas de Austin?
2. ¿Qué le gustaría que siguiera igual?
3. ¿Hay algún tipo de programa o partes de algun programa que quisiera que tuvieramos en las facilidades de piscinas/albercas en Austin?
4. ¿Hay áreas de Austin que necesitan facilidades de piscina/alberca? ¿Áreas o poblaciones que no tienen suficientes servicios?
5. ¿Que debe la Ciudad tomar en cuenta para decidir cómo resolver el problema de piscinas/albercas anticuadas y deterioradas por los años en servicio o por su condición?

Gracias por su aportación. Por favor, deje su tarjeta de comentarios en la mesa de registro.
Los comentarios públicos presentados aquí serán considerados en el proceso del Plan Maestro Acuático, pero no se incluirán en el informe final. Si desea proporcionar más comentarios, por favor visite nuestro cuestionario en SurveyMonkey en https://www.surveymonkey.com/r/swim512spanish.

Welcome to the Aquatic Master Plan Open House
Staff are here to answer questions and take your suggestions. To enter for a chance to win a city of Austin Summer Swim Pass, add a sticker to your swim lane card when you visit each display, write your comments on our "We Want to Hear from You" board, and complete a brief survey before you leave. Turn in your completed swim lane card to the front desk to enter to win one of 5 one time visit swim tickets.

Welcome to the Aquatic Master Plan	History of Austin Swimming Pools	About the Master Plan
We want to hear from you (complete and give to staff member)	FREE	
Aquatic Facility Preferences	Aquatic Program Preferences	What We Know (complete and give to staff member)

Bienvenido a la Recepción Pública del Plan Maestro Acuático
Personal estará presente para responder a preguntas y escuchar sus sugerencias. Para participar en la rifa de un Pase de Natación, Austin Summer Swim Pass, ponga una etiqueta en su tarjeta "swim lane card" cuando visite cada exhibición, escriba sus comentarios en el CARTEL "Queremos Saber su Opinión - We Want to Hear from You," y complete una breve encuesta antes de irse. Entregue su tarjeta de natación una vez completada a la mesa de recepción para la rifa de natación para ganar una de 5 visitas.

Bienvenido a la Receipción Pública del Plan Maestro Acuático	Historia Aquática - Austin	El Plan Maestro Acuático
Queremos saber lo que usted desea (completa y devuelva al miembro del personal)	Gratis	
Preferencias de las Comodidades Aquática	Preferencias de Que Sabemos	
Programa Aquática		
(completa y devuelva al		
miembro del personal)		

 Department plan for the future. Both meetings will be an Open House format, so please come at any time that is easy for you so that you can learn about the Aquatic Master Plan and have your questions answered!

 Dove Springs Recreation Center 5801 Ainez Drive, Austin, TX 787444:30 p.m.- 8:00 p.m.

MARLH 8, 2016 Family-friendly, children welcome

Turner-Roberts Recreation Center
Turner-Roberts Recreation Center
7201 Colony Loop Drive, Austin, TX 78724
4:30 p.m. - 8:00 p.m.

HELP CREATE THE FUTUHE OF aUSTIN'S PUELLC POOL FCLLLITIES

JOIN THE DISCUSSION

Join the community conversation, share your vision, and help shape Austin's pool and water play areas. Tell us what programs, amenities and features, and improvements need to happen to make Austin a community model for public pools and water play areas. Your input will guide the City leaders, PARD staff, and pool industry experts lay out a 20-year vision for Austin's pools and water play areas.

AUSTIN PARKS RECREATION
Cultural Places, Natural Spaces

Complete a survey: https://www.surveymonkey.com/r/swim512 Give us a call. Phone Number: (512) 895-9591 Send us an email. Email: swim512@austintexas.gov

adisa
 communications

Facilities and Programs Visual Preference Boards Responses

March 7 Results Facilities Boards

- 50M Lap Lanes - 7
- Family Slide - 3
- Climbing Wall - 5
- Diving Boards - 3
- Dumping Bucket-7
- Lily Pad Bridge - 4
- Lazy River - 5
- Tall Waterslide - 5
- Splash Pad - 10
- Shallow Water - 2
- Shade over pool-7
- Shade over deck - 8
- Vortex-3
- Toddler Area - 5
- Indoor lap lanes - 5
- Indoor family activity area - 3

March 7 Results Programming Features

- S wim Lessons - 15
- Snorkeling - 1
- Water Fitness - 8
- Kayaking - 0
- Swim Teams - 7
- Lifeguard Training - 9
- Scuba Diving - 4
- Paddleboarding - 2
- Water Basketball - 1
- Battleship - 3
- Innertube Water Polo - 1
- Log Rolling - 1
- Synchronized Swimming - 1
- Paddleboard Yoga - 1
- Water Volleyball - 3
- Springboard Diving Lessons - 1

March 8 Results Facilities Boards

- 50M Lap Lanes - 7
- Family Slide - 1
- Climbing Wall - 6
- Diving Boards - 5
- Dumping Bucket-1
- Lily Pad Bridge - 4
- Lazy River-7
- Tall Waterslide - 11
- Splash Pad - 0
- Shallow Water - 4
- Shade over pool-7
- Shade over deck - 8
- Vortex - 3
- Toddler Area - 4
- Indoorlap lanes - 3
- Indoor family activity area - 10

March 8 Results Programming Features

- Swim Lessons - 24
- Snorkeling-5
- Water Fitness - 17
- Kayaking-3
- Swim Teams - 15
- Lifeguard Training - 17
- Scuba Diving - 14
- Paddleboarding - 6
- Water Basketball - 3
- Battleship - 4
- Innertube Water Polo - 4
- Log Rolling - 3
- Synchronized Swimming - 3
- Paddleboard Yoga - 2
- Water Volleyball - 6
- Springboard Diving Lessons - 4

Please share your thoughts about the Aquatic Master Plan.

1. What changes would you like to see at Austin pool facilities?

More Shade. Tables and chairs. Charge small fees to help the City maintain pools in middle class areas.
Need more, at least one more pool, in SE Austin south of Ben White and east of IH 35
More splash pads and pools south
Longer seasons
Shade. Dove Springs pool has no seating. Sticker weeds in the grass.
Shower area never has shower curtains
Provide shades
Less pools but better maintained ones
Better distribution around the city-equitable
More in areas that many people have access to
Evening hours
Specifically, at Dove Springs-shade/fun
Poop activities-slides, diving boards, etc.
Reaching out to community about program neighborhood rec centers/swimming centers offer

2. What would you like to remain the same?

Free admission in lower class areas.
Repair the one at Dove Spring and maintain in good repair
Programming such as lessons, teams
Free pools in lower income areas
Opening hours
Keep pools clean
Relaxed atmosphere
Hours of operation
3. Are there any types of programs or features you would like to see at Austin pool facilities?

Free swimming. Life guard training.
Access for Sr. citizens and programs
Programs for children and adolescents
More child/young child friendly features (like shallow pools like Deep Eddy)

Senior aerobics
Teach people to swim
Swim lessons
Aquatic fitness
Like soccer water
Swim plus play-West Enfield is a great model
Swimming lessons, swim teams
4. Are there areas of Austin that need pool facilities? Areas or populations that are underserved?

I think there should be more splash pads built instead of pools. Would help with water and help other pools with staffing.
See \#1 and YES!
NOTE: Do a comparison on spending between east of I 35 vs west of 35 . Historically, less is spent on east of 35 .
South/South East
Dell Valle has no pools.
And South Austin has no splash pads or year round pools
78744 is historically underserved by the city budget
Yes, S.W. Austin north of 290
Like in the South
Far south neighborhood pools are crowded—all the edges
n/a
5. What are the key factors the City should consider when determining how to address old pools that become in danger of closing due to age or condition?

The volume of people visiting these pools each year. Does it give kids and families around the area an activity to do especially in lower class areas.
Repair, but if beyond repair, replace with a new pool. We need pools that are free to the public in SE Austin.
Population, current facilities
Distance to other free pools
If it is used or not-partly used facilities like Givens can be converted to skate board park
What is the alternative
What is expense
What public transportation is available at alternative sites
Funding the pools
Can we centralized and upgrade to Bartholomew style?
Consider the population of the surrounding area before closing-how far is the pool closest to them.
Demographic: Is it underprivileged not have access to water facilities

Post it notes from board:

Swimming race
Shade: for guards \&patrol
Open access
ADA/accessibility

Please share your thoughts about the Aquatic Master Plan.

1. What changes would you like to see at Austin pool facilities?

Updating and repairs for restrooms, covered areas, and landscaping
Clean functional bath houses and shade
Year round access
Water aerobics
Longer hours
Longer operation hours during the summer
Life guards that can relate to all races
Diversity hiring of people that will be able to help a child become successful
Better staff
Longer season
Longer hours
Givens needs repairs-showers, changing rooms
More shade
2. What would you like to remain the same?

Let the left lanes remain the same size. 50 meters not reduced
Free neighborhood pools
Nothing
Neighborhood pool's same
Currently open pools remain open
Prioritize fixing pools on needs list
Givens needs to remain the same
The hours that the pool are open

3. Are there any types of programs or features you would like to see at Austin pool facilities?

More swim lessons and swim teams
Swim fitness would help those in rehab from injuries
Continue to add ADA equipment
Swim programs for youth and for adults
Water aerobics
Aquatic pool-indoor heated pool
More swim lessons for younger children in the underserved areas of the city

Water polo

Lifeguard training for free for at risk students helping first job training
New aquatic facility at Colony Park
Water aerobics
4. Are there areas of Austin that need pool facilities? Areas or populations that are underserved?

The Colony Park area
And, the Delco Center, an indoor pool
There can never be enough pools
Colony Park/Lakeside neighborhood-we don't have a pool
Yes, Colony Park, LBJ Davis \& White
North east Braker Avenue
Colony Park/Lakeside
East Austin
290 East \& Springdale
5. What are the key factors the City should consider when determining how to address old pools that become in danger of closing due to age or condition?

Do the proper repairs to make them environmentally compliant and meet ADA requirements
Neighborhood usage levels/demands
Distance accessibility to from alternative facilities
Proximity to other pools
Population of active swimmers
Underserved children that don't have transportation to go to other pools. Children should have a neighborhood pool in every community
Same funds and move to other area
Prioritize \$ to fix them
The cost
Repair them if cost is not too high to repair

Post it notes from board:

Need security lighting trail \& signage
More shade at Walnut Creek
Accessible Access from bust stop (North Lamar) to Walnut Creek Metro Park no sidewalks exist Meeting rooms for teams, staff, and public (Walnut Creek)
Deck Showers and bathrooms to be shared with park users/pool (Walnut Creek)
Senior's life guards
Pools that are close down for repairs can be change for skate boards

To: Patrick Hoagland
From: Kevin Opp
Date: April 14, 2016
Re: Aquatics Master Plan Community Outreach Memo

Process Overview

Drawing from the City of Austin's Neighborhood Association database, Adisa team members are contacting leadership from underrepresented neighborhoods and minority focused organizations. Calls and follow-up emails are then made requesting that an Adisa team member be placed on the agenda to make a presentation during the Neighborhood Association's or organization's regularly scheduled meeting time.

Targeted Community Presentations

Adisa is targeting neighborhood associations in the following zip codes in communities underrepresented by public aquatic facilities in West and Northwest Austin.

- 78759
- 78750
- 78730
- 78732
- 78733
- 78735
- 78726

Adisa is also targeting neighborhoods associations in the following zip codes in minority communities in Northeast and Southeast Austin:

- 78702
- 78721
- 78723
- 78752
- 78753
- 78741
- 78744

Additionally Adisa is targeting the following organizations:

- NAACP
- Austin Council of PTA's
- Boys and Girls Club
- Central Texas Water Safety Coalition
- Foundations Communities
- Go Austin (Vamos Austin)
- Urban League
- Easter Seals Central Texas
- Austin Interfaith

cominurications

- Austin Optimist Club
- Communities in Schools
- Austin Swim Club
- Colin's Hope
- Joe Jamail Foundation
- Young Men's Business League
- Austin Sunshine Camps
- Austin Sports Academy
- Jewish Community Center
- YMCA swimming programs

Attendees are presented with information from the attached fact sheet, invited to complete the online summary, and informed about the upcoming charrette series. An Adisa team member is currently scheduled to present on the following dates:

- Windsor Park - completed on 3/12
- Pecan Springs/Springdale Neighborhood - 4/2 @10
- Mueller Neighborhood - 4/16 @10
- East MLK Combined Neighborhood - 4/18 @ 7:15
- Harris Branch Master Association w Michael McLaughlin (week of March 28)
- University Hill Neighborhood Association -August Regularly Scheduled Meeting

Additionally Adisa team members have already reached out to the following organizations:

- Responsible Growth for Windsor Park
- Mueller Neighborhood Association
- LBJ Neighborhood Association
- Axel Lane Neighborhood Association
- Sweeney Farms Neighborhood Association
- Colony Park Neighborhood Association
- Agave Neighborhood Association
- Cavalier Neighborhood Association
- Heritage Village Neighborhood Association
- Imperial Valley Neighborhood Association
- Eastfield Neighborhood Association
- Jackie Robinson Acres Neighborhood Associations

TECHNICAL MEMORANDUM NUMBER 3
 AUSIIN AQUATIC MASTER PLAN
 PROJ ECTNO. 15092

Technic al Memorandum \#3 includes the following components:

1. SWMM 512 Survey Results (Prepared by Cara Welch)
2. J une $\mathbf{3 0}$ Foc us Group Agendas and Summaries

Summary of the focus groups held on J une 30, 2016 in advance of the July Public Workshops.
3. J uly Public Workshops Summaries

Summary of the four public workshops held in July, 2016
4. Neighborhood Association Meetings Summaries.

Summaries of the individual Neighborhood Association Meetings
5. Youth Stakeholder Group Preferences

Summary tables from the after school program and summer day camp programs

This page intentionally blank.

SWM 512 SURVEY RESPONSE SUMMARIES

The survey wasconducted using Survey Monkey and printed versions that were then inserted into Survey monkey. A total of nearly 1,700 persons partic ipated. The following are some of the key results. The responses were distributed as indic ated on the following map.

Question 1 - During the past 12 months, have you or any member of your household visited an outdooraquatic facilities in the City of Austin?

Question 2 - From the following list, please select AL of the outdoor aquatic facilities that you or members of your house hold have visited in the past 12 months.

Question 1B- How would you rate the overall physical condition of the facilities you have visited

Question 3- Whic h three of the facilities from the list in Question \#5 did you visit the most in the last $\mathbf{1 2}$ months?
The most sited responses were Barton Springs Pool with a total of 475 responses, Deep Eddy Pool with 432 total responses, and Northwest Pool with 272 total responses. Other popular answers were various neighborhood pools and splash pads.

Question 4- Please indic ate AL the reasons that prevent you or other members of your household from using aquatic facilities and programs of the City of Austin more often. The most common answer provided to question 7 aside from the answer choices provided was that patrons did not use the pools because they were closed forvarious reasons (35.98\%). Respondents cited causes from lifeguard shortages, to maintenance issues, to lack of pool hours that met the needs of the community and usage. The second most common responses referred to the type of amenities being offered (18.11\%). Many respondents stated that the lack of an indoor pool, or heated pool caused them to use other facilities. Others noted lack of lap lanes, ina dequate bathrooms, showers, and changing areas, and other a menities like toddler play areas, benches, lounge space and shade. The third most common response was a short swim season (15.14\%). Respondents felt that the pool season did not meet the need of the extremely hot and long summers of Austin. Other rea sons given were lack of maintena nce of the facilities, convenience, the use of chlorine, shade, safety, and the use of private and other facilities. Some respondents stated that they did not use aquatic facilities because their children were eithertoo young ortoo old.

Question 5. What day and time does yourswim or pool visits fall?

Question 6. Please select (all) options below that desc ribe the type of pool user you are?

Question 7. With the tremendous suc cess and popularity of Bartholomew Pool, how likely would you support the development of large family aquatic centers in regional locations throughout the city?

Question 8- If you are (unlikely or extremely unlikely) to support the development of aquatic centers in regional locations throughout the city, can you provide reasons why? The most common answer provided to question 8 aside from the answer choices provided was the cost to support regional aquatic centers (26.13\%). Respondents were concemed about both increased taxes and entry fees into the facilities. An addition 25.13% of the open ended answers provided stated that they preferred the neighborhood pool, which was an answer choice. The next most common response was in reference to proposed areasfor regional centers (9.55%). Respondents were concemed that they would have to drive to these facilities, or that they would not be distributed equitably a round Austin. The third most common response was the preference for othertypes of facilities (9.05%). Respondents noted places like Barton Springs and Deep Eddy, natural swim facilities, and non-chlorinated pools. Some referenced the need for heated pools and indoorfacilities. Otherconcems were staffing needs, safety, and crowding, which was an answer choice given.

Question 9- In 2013, the City conducted an Aquatics Needs Assessment and discovered many pools were in critical need of repair to remain in operation. The City wants to have criteria in place to help determine what they should do when a pool is no longerfeasible to operate in their c urrent condition. What criteria do you feel should be most important in making the determinations?
The most common answer choice to question 12 aside from the answer choic es provided was to establish criteria based off of neighborhood need or the benefit that having an aquatic facility
would add to the quality of life of that area (26.26\%). Respondents believed the availability of private and other community pools should be considered before closing any pools. If the neighborhood pool is an a sset that enhancesthe quality of life of the neighborhood, then respondents felt it should be preserved. The next most common response was that people believed that pools should be repaired regardless of the cost (25.7\%). Respondents stated that it was community preference to preserve the pools, therefore funding should be applied to repair and replace them. Similarly, the third most common response was preferred pool maintenance (13.41%). Respondents stated that the department should prioritize funding to maintain the pools so that they do not deteriorate to a condition no longer feasible to operate. Other suggestions provided included the type of facility, who it serves, the historic al signific ance, the neighborhoods ability to provide addition funding for repairs, and the pools proximity to other recreational facilities.

Question 10. What approach do you believe the City should take when a pool is beyond repair?

Question 11 - Do you believe there should be a series of multisport aquatic facilities across the City dedicated to competitive swimming and training?

Question 12 - How likely would you support a centrally located Natatorium? A natatorium is an aquatic facility with an indoor swimming pool, running track, climbing walls, and exercise room?

Question 13- Given the limited amount of resources and funding, how do you believe the City should prioritize repairs or renovations to all City pools?

> How the City Should Priontize Repairs or Renovations to all City pools

- Close pools that are beyond repair and make necessary renovations to remaining pools
\square Close pools that are beyond repair and add a series of larger swimming pools to serve all areas of the city
\square Close pools that are beyond repair and add a series of small splash pads to senve all areas of the city
-Close pools that are beyond repair and add new pools in areas of the city have NO pools

Question 14 - Given the limited amount of resources and funding, how likely would you pay a fee at pools that c urrently do not charge an entrance fee?

Likelihood Respondents Would Pay a Fee at Pools that Currently Do Not Charge an Entrance Fee

Extremely Likely

Likely

Neutral

Unlikely

Extremely Unlikely

Question 15-The following are actions that the City of Austin may consider to improve aquatic facilities and services. Please indicate whether you would be very supportive, somewhat supportive, supportive, not supportive, or not sure of each action by circling your option.

Question 16- As you may be aware, the City is working on various strategies to inc rease the number of lifeguards. Do you have any helpful ideas or suggestions on how we might rec ruit more individuals for these positions?
The most common response to improve lifeguard hiring and recruitment was to partner with local high schools (37.06\%). Many respondents stated that rec ruitment could be done through the high schools a nd that training could be provided for PE credit. The next most common response wasto increase wages (32.98%). Some respondents specific ally cited the City of Austin living wage, others stated that lifeguards should be paid competitively and fairly for the skills they are required to have. Another popular response was to provide otherbenefits to lifeguards (22.49\%). Many respondents provided examples like PE credit, college credit, and college scholarships. Othersuggestions were hiring bonuses, incentives to retuming guards, and other Austin perks from local businesses. Other responses suggested targeted outreach, social media marketing, partnerships with universities and swim teams, and targeting adults. Many respondents suggested year round training and recruitment.

Question 17- Do you have any additional feedback or comments?

A total of 703 open ended responses were submitted. Many of the comments were complex and provided multiple suggestions, support for certa in elements of the current aquatic system, and overall concems; however, several themes emerged. Most commonly respondents supported the notion of neighborhood pools (33.85%). Many people stated that they wanted to see the current neighborhood pools preserved and maintained. In many cases respondents were concemed that these pools would close, and felt that they should be renovated instead (16.5%). People believe that they should be able to walk to these neighborhood pools and that they are an asset for residents to get relief from the extreme Austin weather in the summer. In several comments respondents asked for new neighborhood pools to be built in specific areas where they are lacking. The next most common open ended responses related to other improvements that needed to be made to the overall aquatic system (16.93\%). Many of these responses mentioned improved programming options, including more swim lessons, more programming for seniors, and swim teams. Many people commented on the need fornew, different types of facilities, inc luding a natatorium, indoor facility (4.98\%), and/or heated pools. The need formore and improved splash padswasmentioned in 8.82% of the comments. Other improvements mentioned addressed a menities at the pools- shade, benches, water play features. Many comments addressed the need formore and better maintained bathrooms. Also, commonly expressed was the desire for an extended swim sea son (13.09\%), a nd more lap/recreation swim options and times (8.11\%). Many people expressed their opinions of fees at the public pools (4.98\%); however, of those comments respondents were divided on whether fees should be imposed at the poolsornot. Many people said that they would be willing to pay a fee if it meant the pools could be better maintained and that staffing issues would not be a problem. Others felt strongly that the pools should stay free. Other respondents requested that the department carefully prioritize the spending where there is most need (4.55%). A large number of respondents gave general support for what the Aquatic Division is currently doing (12.8\%). They provided positive feedback to the hard work of the staff and stated that they "cherished" Austin pools.

This page intentionally blank.

BCI101
CITY OF AUSTIN AQUATIC DEPARTMENT
AQUATIC MASTER PLAN
SWIM 512 FOCUS GROUP MEETING
MEETING DATES:
6.30 .16

AQUATIC MASTER PLAN
 MY AUSTIN. MY POOL FOCUS GROUP DISCUSSION MEETING SUMMARY

Process Overview - Focus Group Meetings

As part of the consulting team led by Brandstetter Carroll, Inc. (BCI), Adisa Communications supported two follow up meetings with an established Focus Group for the Aquatic Master Plan. Two open public community meetings were held in March 2016 to obtain preferences on aquatic features and programs depicted on illustrative boards. The input on aquatic features and programs gathered from the established Focus Group and the community meetings were developed into three alternatives for Austin's aquatic facilities.

Notifications

Adisa sent email invitations and made phone calls to the Focus Group stakeholder list, neighborhood associations, and the Aquatic Division's subscription lists.

Meeting Materials

Attendees were provided with a workbook containing facts about Austin swimming pools, three Aquatic Master Plan alternatives, pros and cons for each alternative, and criteria to rank for redeveloping or closing existing pools.

Overview of Focus Group Meetings

The Aquatic Master Plan Team held two Focus Group meetings on Wednesday, J une 30, 2016. The first meeting was held from 11:30-1:00 at Lamar Senior Activity Center, 2874 Shoal Crest Avenue. The second meeting was held from 7:00-8:30 at Northwest Recreation Center, 2913 Northland Drive. Approximately 13 people attended the earlier meeting, and 21 attended the evening meeting.

Three alternatives were presented to the Focus Groups:

- Alternative \#1: Neighborhood Pool Focused;
- Alternative \#2: Regional/Community P ool Centered; and
- Alternative \#3: Combination Alternative.

Participants were asked to write in their workbooks reactions/responses to each of the three alternatives. The Adisa facilitator asked the following three questions to obtain feedback on each alternative: 1) What do you like about the alternative; 2) What do you not like, and 3) How

adisa
 communications

can this alternative be improved? The participants were also asked to rank criteria to be used in closing or upgrading existing aquatic facilities.

Focus Group Input

The two focus groups favored Alternative \#3, the Combination Alternative, in that it provides a frame for planning for several options and keeps the neighborhood pools as part of the plan. Both groups emphasized the value of neighborhood pools as part of their communities and requested that their neighborhood pools be kept open and maintained.

The criterion to evaluate closure or redevelopment of exiting pools that emerged are as follows:

- Current annual visitation to the pool;
- Population within a mile of the pool;
- Distance to other pools; and
- Costs to upgrade to current standards.

Features, costs, and locations were the focus of discussions on Alternative \#1: Neighborhood Pool Focused. Participants indicated that features could be varied depending on the need of the neighborhood; all groups were in favor of shade, bathhouses, and lap lane features. Concern was expressed about costs to maintain and/or upgrade existing pools, especially the costs of the shortage of lifeguards. Focus group participants wanted more information on how the City would determine where neighborhood pools would be built.

Participants questioned the expense of Alternative \#2, Regional/Community Pool Centered, in terms of land use, transportation, and entrance fees. Participants asked how much acreage this plan requires and where community pools would be situated. Participants also questioned the equitability of charging entry fees and in transportation to and from the pools, especially for lower income neighborhoods. Participants indicated in their discussions that funds would be better used to fix and maintain existing pools.

The consistent comment from the focus groups during discussions of alternatives is that neighborhood pools are important to the community. The consistent question is how do existing neighborhood pools fit into the Aquatic Master Plan. One participant's written response, "There could be both neighborhood and centralized facilities. But there is no doubt that neighborhood pools work and the City should be committed to maintain them" summarizes the support the Focus Group participants feel for their neighborhood pools.

Future Opportunities for Engagement

Four open public community meetings are scheduled for J uly $12,13,19$, and 20 in various locations around Austin. Flyers will be distributed, notices will be posted, email blasts will be sent, and reminder phone calls will be made

Attachments and Photographs

Appendix A - Workbook

Appendix B - Meeting flyer

MY AISTIN. MY POOL.

AQUATIC MASTER PLAN FOCUS GROUP

JUNE 30, 2016

We want to hear your thoughts on the future of Austin's aquatic facilities. Today you have the opportunity to give feedback on draft ideas for the Swim 512 Aquatic Master Plan. We appreciate your help with this process.

WE NEEC YOUR INPUT ON AUSTIN'S AOUATIC FACLLITIES AND PROCAAMS

Austin's public pools and water play areas are yours to enjoy. We are working with industry professionals, a citizen's advisory board, and you to create a 15-30 year vision for Austin's aquatic facilities. Your input will help determine how to best manage aging pool facilities and guide installation of new pool facilities to best serve the Austin community.
The Master Plan will be presented to the Austin City Council for adoption in late 2016.

- Today, more than 1 million people use Austin's public pool facilities.
- Aging pools, growth, and funding pressures make strategic and sustainable planning a necessity
- Advancements in technology, materials, and science can be included in the aquatic system
- Public health and safety issues can be addressed

2

Altegnatlve \#1: NEGHBOBHOOD POOLS FCCLSED

This alternative focuses on creating a system of smaller, neighborhood-serving pools throughout the Austin community. In this alternative we upgrade existing facilities, for example adding:

- new bathhouse
- lap lanes
- activity pool with zero depth access
- new deck
- landscaping
- shade structures

- Each facility located within a walkable or bikable distance
- Costs less to build each facility
- All facilities are free

An example of a neighborhood pool with these upgrades is Westenfield pictured on page 5.

The Neighborhood Pools alternative requires numerous facilities to equitably serve Austin residents, possibly as many as 50 facilities.

- More facilities cost more to operate and maintain
- More facilities require more lifeguards
- Lack of variety and features across the system
- Doesn't bring money back into pool system

3

ALTEANATVE \#1: NEIGHBORHOOD POOLS FOCLSED

Mdes Rewh

ALTEPNATVE \#: NEIGHBOHHOD POLLS FCCUSED

Neighborhood Pool

ADOITINNAL COMMENTS:

Altennative \#: REEIONAL/COMMUNTY POOL CENTEEED

In this alternative there is a mix of facility types including larger regional and community scale facilities, each serving multiple neighborhoods across Austin. Community Pools would serve a three-mile or ten-minute drive area and the Regional Family/Fitness Centers would serve an
even larger area, about a five-mile radius or 15-minute drive area. Based on Austin's current size, this alternative would require about 3 Regional Fitness Aquatic Centers, 4 Regional Family Aquatic Centers, and 14 Community Aquatic Centers. Examples of these facilities can be found on pages 8-9.

- Least expensive option to build out and maintain
- Requires the fewest number of lifeguards
- Least expensive way to serve the entire community equitably
- Increased programming options like swim lessons, meets, and lifeguard training

- Residents will have to travel farther
- Most facilities would require an entrance fee

ALTEANATVE \#2: REIONAL/COMMUNTY POOL CENTEEED

altennative \#: REGIONAL/COMMUNTY POOL CENTEEED

Community Pool

Regional Family Aquatic Center

ALTEANATVE \#2: REGIONAL/COMMUNTY POOL CENTEEED

Regional Fitness Aquatic Center

AODITIONAL CDMMENTS:

ALTEENaTIVE \#3: COMBINaTON ALTEENATIVE

This alternative provides aquatics users the opportunity to utilize four different types of facilities: Regional Family/Fitness, Community, and Neighborhood pools.

Regional Family and Regional Fitness Aquatic Centers would be distributed throughout the City to serve everyone equitably, supplemented by Community

Pools. Where there are gaps between the larger facilities, Neighborhood Pools would give residents access to facilities closer to their home. This alternative would require approximately 4 Regional Family Aquatic Centers, 3 Regional Fitness Aquatic Centers, 8 Community Pools, and 14 Neighborhood Pools.

PROS

- Provides the most variety of options for features, fees, and experiences for residents
- Provides close to home/free options
- Equitably serves all residents
- Opportunity to generate revenue to support the aquatic system

- Requires the most investment to build out

10
altennative \#ł: COMEINaTION ALTEANaTIVE

altennative \#ł: COMEINaTION ALTEENATIVE

Neighborhood Pool

Shade

Activity Pool

Beach Lawn

Community Pool

altennative \#3: COMBINatION altefnative

Regional Family Aquatic Center

Regional Fitness Aquatic Center

ALTEANaTIVE \#3: COMBINaTION ALTEENATIVE

aסIITIONaL COMMENTS:

WHAT DO WE DO WITH EXISTING POOLS?

We just talked about a vision for future aquatic facilities, but now we want you to tell us what the City should be looking at when evaluating the closure or redevelopment of existing pools. Please rank by order of importance from 1 to 11 (with 1 being most important, and 11 least important).
\qquad Current annual visitation to the pool
\qquad Distance to other pools
\qquad Population within a mile of the pool
\qquad Costs to upgrade to current standards
\qquad Pool is in a park with other activities
\qquad Age of the pool
\qquad Need to develop bathhouses/bathrooms (significant expense)
\qquad Availability of parking
\qquad Access by public transportation
\qquad Historic or cultural significance of the existing facility
\qquad Other \qquad

ADOITIONAL COMMENTS:

MYAIISTK. MY PIUIL

Join the Svin 512 Discussion and
Plan the Future of Austin't Poots

You have two opportunities on
Thursday, June 30th to join us and give your feedback on the Aquatic Master Plon process:

7.98-8.30 PM
ThUIISUAYY. JINE 30
Norlhwest
Recreation Center
2915 Northland Dr.

This page intentionally blank.

BCI101
CITY OF AUSTIN AQUATIC DEPARTMENT
AQUATIC MASTER PLAN
SWIM 512 COMMUNITY MEETINGS
MEETING DATES:
7.12.16 and 7.13.16
7.19.16 and 7.21.16

AQUATIC MASTER PLAN
 MY AUSTIN. MY POOL COMMUNITY MEETINGS SUMMARY

Process Overview Community Meetings

As part of the consulting team led by Brandstetter Carroll, Inc. (BCI), Adisa Communications supported four community meetings held in Southwest, East, Northwest, and Northeast Austin. The purpose of the community meetings was to gather public input on three alternatives for Austin's aquatic facilities. An interactive map exercise was introduced for the purpose of identifying where to build aquatic facilities in various areas throughout Austin. In total, approximately 73 people attended over the four meetings.

Notifications

Adisa sent email invitations and made phone calls to neighborhood associations, stakeholders, and previous meeting participants.

Meeting Materials

Attendees were provided with an agenda and concept feedback form. Display boards depicting the phases of the Aquatic Master Plan and the three concepts for aquatic facilitates were placed around the meeting room.

Overview of Meetings

The Aquatic Master Plan Team held four community meetings to cover four areas of Austin: J uly 12, 2016 Circle C Community Center, 7817 La Crosse Avenue, (Southwest Austin) J uly 13, 2016 Montopolis Recreation Center, 1200 M ontopolis Drive, (E ast Austin) J uly 20,2016 Spicewood Springs Branch Library, 8637 Spicewood Springs Road, (Northwest Austin) J uly 21, 2016 Asian American Activity Center, 8401 Cameron Road, (Northeast Austin)

All meetings were held 6:00-8:00 pm. Approximate attendance at each meeting is as follows: 20 people attended the Circle C meeting, 12 attended the Montopolis meeting, 29 attended the Spicewood Springs meeting, and 12 attended the meeting at the Asian American Activity Center.

A PowerP oint presentation covering the phases of the Aquatic Master Plan and the three concepts were presented for discussion by Brandstetter Carroll. Three alternatives--Concept \#1: Neighborhood Pool Focused; Concept \#2: Regional/Community Pool Centered; and Concept \#3: Combination Alternative were explained to the participants.

Participants were asked to identify their preference from the three concepts and to provide written feedback on 1) What they like about the alternative; 2) W hat did they not like, and 3) How can the preferred alternative be improved. The participants were also asked to rank 16 criteria to be used in closing or upgrading existing aquatic facilities with one being the highest or most important. See Appendix C.

City of Austin Parks and Recreation Department Aquatic staff were available to answer any questions about current facilities.

In addition to the four public meetings, the City of Austin Parks and Recreation Department sent via email to their database a survey of the three concepts using the same questions in the feedback form used at the public meetings. (See Appendix C). Fifteen responses were received; the responses are included in the Community Input and in Exhibits A and B.

Interactive Map

An interactive map to plan for neighborhood, community, and regional pools was introduced at the four community meetings. Participants placed various sized circles representing the different aquatic facilities on a map of Austin to create a layout of where neighborhood, community, and regional pools could be built.

Community Input

The four community groups and the email responses, as a whole, favored Alternative \#3, the Combination Alternative. Forty-five participants favored Alternative \#3, thirteen participants favored Alternative \#2, and eleven participants favored Alternative \#1.

The top five criterion to evaluate closure or redevelopment of existing pools that emerged are as follows:

- Current annual visitation to the pool;
- Population within the service area;
- Location in an area with no pools;
- Costs to upgrade to current standards/condition; and
- Proximity to other public aquatic facilities (avoid overlap).

Participants favored Alternative \#3 in that it provides for neighborhood pools as well as larger facilities for lap lanes, swim teams, and other aquatic activities. "Variety," "multiple uses," and "equitable" were frequently mentioned as positives. As one participant stated about Alternative \#3, "addresses concerns of those who just want a place to 'cool off' that is close to home while also 'thinking big' with the possibility of offering other aquatic opportunities-competition, water polo, synchronized swimming, etc."

Geographic area of Austin may have impacted the preference of Alternative \#2 as a second choice. Eight of the ten participants who favored Alternative \#2 attended the community meeting in Southwest Austin. Alternative \#2 was viewed as "a good compromise choice that utilizes economies in scale especially when factoring in private pools available."

The consistent comment from the community groups during discussions of alternatives is that neighborhood pools are important to the community. Neighborhood pools were viewed as "community hubs," "gathering places," and "supporting neighborhood relations." The focus groups placed the same emphasis on neighborhood pools. Also, universal priorities for the community and focus groups was keeping pools open with longer seasons and schedules and addressing the life guard shortage. Participants did not like having their neighborhood pool closed because a life guard was not available.

Participants were also concerned with costs to build facilities. Suggestions for offsetting costs included collaborative efforts with Austin Independent School District and private-public partnerships with Austin based companies.

Future Opportunities for Engagement
A proposed plan will be presented to Austin City Council at the end of 2016. Neighborhood associations and other special interest groups can schedule a meeting up to October 2016.

Attachments and Photographs

Appendix A - Comments
Appendix B - Criteria Results
Appendix C - Survey
Appendix D - Agenda / Fact Sheet
Appendix E - Presentation

AppendixA - Community Comments

BCI101
CITY OF AUSTIN AQUATIC DEPARTMENT
AQUATIC MASTER PLAN
SWIM 512 COMMUNITY MEETINGS
MEETING DATES:
7.12.16 and 7.13.16
7.19.16 and 7.21.16

APPENDIX A - COMMUNITY COMMENTS

Aquatic Master Plan Community Meetings
Tuesday, J uly 12, 2016 / Circle C Community Center, 7817 La Crosse Avenue, 6:00-8:00 pm
Wednesday, J uly 13, 2016 / Montopolis Recreation Center, 1200 Montopolis, 6:00-8:00 pm
Tuesday, July 20, 2016 / Spicewood Springs Branch Library, 8637 Spicewood Springs R oad, 6:00-8:00 pm
Wednesday, July 21, 2016 / Asian American Activity Center, 8401 Cameron Road, 6:00-8:00 pm Email Survey sent by Parks and Recreation Department, Community Engagement

Participants:
General Mailing list, Neighborhood associations, and stakeholders

Circle C Community Center

20 participants (NOTE: 7 children)
21 responses
Please check which concept you liked the most.
___ 0 Concept \#1 Neighborhood Pools Focused
___ 8 Concept \#2 Reginal/Community Centered
__13__Concept \#3 Combined

Concept \#1 Neighborhood Pools Focused

What did you like about this concept?
No comments
What did you not like about this concept?
No comments
How do you think this concept can be improved?
No comments

Concept \#2 Regional/Community Centered

What did you like about this concept?

- Funding will keep facilities current
- This was a good compromise choice that utilizes economies in scale especially when factoring in private pools available (e.g., HOAs, family pools \& Nitro)
- It seems to be the most cost-effective.
- Least expensive and I believe can provide adequate swimming programs with smaller built out of land.
- That most pools are easily accessible by any means of transportation.
- It creates larger versatile pools that people tend to like while maintaining neighborhood pools that have history and are important to surrounding communities.
- More space, cheaper and upgrade existing pools.
- That it is better for the environment.

What did you not like about this concept?

- There needs to be a price break for affordability/free lunch
- My only complaint would be the user fees. It is palatable if only adults are charged, and the fees are nominal/reasonable.
- The idea of closing existing community pools. Maybe the city could slowly phase out neighborhood pools over time as the new pools gain attendance. Then there could be community input as to cool ideas of what to do with the old pools i.e., skateboard parks, gardens, playscapes, climbing walls etc. Hopefully get people excited about new opportunities.
- Hopefully can find land in South Austin area to build multiple community centered pools.
- I am not too happy about paying a fee to get in.
- Additional travel distance. Hopefully not longer than about 10 minutes.
- There's a lot of it overlaps.

How do you think this concept can be improved?

- Swim passes through schools
- Add concession space to increase revenue stream.
- Perhaps have a "frequent swimmer" card/program where a lap swimmer can pay one annual fee (of family) to use the pool's amenities.
- Provide good programs with small entrance fee to maintain them.
- Despite being easy to get to for most there are still groups where you may need to travel quite a distance to reach a pool.
- In order to figure out what pools to phase out or keep, meet with the community and neighborhood leaders. It's not just economics. It's people with a history.
- Maximize programs e.g., swim team, at large pools using this concept.
- Spread the pools out more.

Concept \#3 Combined

What did you like about this concept?

- Balance
- Good way to utilize current pools and all layers of accessibility with larger facilities.
- This concept would allow access for underprivileged families along with the ability to provide revenue to the community.
- Most flexible
- Best compromise
- Coverage, needs met, variety
- Ambitious attempt to bring facilities with different focus within reasonable distance
- Variety-multiple uses
- Accessibility and variation of options, overlap
- Okay with fees, with options for passes for regular users or local area residents
- Some level of consolidation to reduce costs without losing the smaller pools
- It provides a little bit of everything
- Affective spread of pools
- Effective compromise between cost and equitable access to swimming for residents

What did you not like about this concept?

- It spaced all the pools (neighborhood and regional) evenly although I feel like keeping demographics in mind should be crucial.
- Not enough indoor pools
- Farther distance to neighborhood pools but that is understandable
- Cost
- Looks like the most expensive option
- Pools are farther away from people and less available
- Bigger pools, more distance
- Upfront cost could be a hard sell. More (heterogeneous) facilities could become expensive to maintain and prone to closure which could disproportionately affect a "combination" type plan

How do you think this concept can be improved?

- I would focus neighborhood pools in underprivileged areas
- Add public transportation to pools
- Covered pools that are mid-sized
- Sufficient space
- Ensure individualized approach based on community input for each area and facilities and incorporate creative access/programming for folks with disabilities.
- The interactive mapping table was excellent!
- If there was a little more of the neighborhood pools.
- Create an easy safe path to take to bigger pools.
- All three should be described in a manner more specific to the city. The abstract presentation is hard to conceptualize in terms of benefits to residents.

Additional Comments

I'm concerned about having pools for economically disadvantaged kids. I hope you consider placing pools on or near AISD schools so that lots of kids would have access for longer periods of the year. If you had a deal w/AISD, you might be able to defray more costs.

Montopolis Recreation Center

12 participants
7 responses
Please check which concept you liked the most.
__1__ Concept \#1 Neighborhood Pools Focused
_Concept \#2 Reginal/C ommunity Centered
-- 4 _-_ Concept \#3 Combined

Concept \#1 Neighborhood Pools Focused

What did you like about this concept?

- Free

What did you not like about this concept?

- Funding

How do you think this concept can be improved?

- Re-open closed pools-P alm, Civitan, Kealing

Concept \#2 Regional/Community Centered

What did you like about this concept?

- Bigger, needed in community
- More space and activities

What did you not like about this concept?

- May take away from neighborhood focus
- Nothing

How do you think this concept can be improved?

- Community input

Concept \#3 Combined

What did you like about this concept?

- More options at facilities
- Closer to dense areas
- Service is diversified between rec and fitness
- Income
- It may satisfy different kinds of needs from community and cover the most area of Austin
- Meets several needs
- Provides opportunity to close obsolete pools
- Reduces staffing needs
- Strategic for city growth
- Allows development in underserved areas

What did you not like about this concept?

- Cost to City of Austin therefore to taxpayers
- Still too many pools
- Capital costs - where is money coming from

How do you think this concept can be improved?

- Less overlap and greater accessibility in some neighborhoods
- It may be better if it is done based on a specific requirement analysis, population density analysis, budget, and so on.
- Reduce number of neighborhood pools
- Consider public transit to pool for youths

Spicewood Springs Branch Library

29 participants
21 responses
Please check which concept you liked the most.
___6 Concept \#1 Neighborhood Pools Focused
______ Concept \#2 Reginal/Community Centered
__15__ Concept \#3 Combined

Concept \#1 Neighborhood Pools Focused

What did you like about this concept?

- Neighborhood pools are the most important amenity. Number 3 is ideal but neighborhood pools are most important.
- Supports neighborhood relations
- Reduces traffic
- Provides swim teams for kids
- More pools/less travel
- When your regular pool is closed one day a week, you don't want to drive 10 miles to find another. I'm $31 / 2$ miles from both of my closest pools
- Neighborhood pools are community builders. They are more than just a place to cool down. They are gathering places for friends and neighbors. I have 2 kids, ages 6 and 8 . We are members of the NW Family YMCA with their zero entry pool and slides and yet my kids 100% prefer Balcones District Park pool over the YMCA. Balcones is where their friends can be found. After the novelty of going down a slide the first few times wears off. What they really want to do is jump off the wall and splash with friends. I haven't been able to get them to Bartholomew Pool yet because they say they don't know anyone there. They want to be with the neighborhood kids. Beyond just what benefits my family, neighborhood pools that are free show Austin's population that we all count, not just the folks who can afford to pay an entrance fee.
- Serves a good cross-section of the population.
- I am most interested in having the pools open for longer season, and I believe that neighborhood pools are vital to community strength. Kids will find water. We need to provide well supervised places for families to swim.

What did you not like about this concept?

- Pool season is too short. Balcones Pool should continue to be open year-round
- Need basic amenities like shade.
- Fewer water activities for kids but think they'd rather have a pool with no slide than no pool
- There should be a few of the family aquatic pools but heavy on neighborhood pools!

How do you think this concept can be improved?

- Maintenance and operations are important
- Longer swim season
- Shade cover over pools could possibly reduce costs- plant more trees
- I come from a city with one pool that you paid to get in. This is part of Austin's greatness! Lots of parks-lots of free pools!
- Your surveying is skewed-there is doubt that the lower income segment of population was fully polled. They are not likely to vote for something they cannot pay an entry fee for.
- Neighborhood pools are the priority for me. I would like to see the pools open for a longer season and to have the neighborhood pool not charge additional fees. Neighborhood pools are community hubs. They are vital to improving and maintaining strong communities. Swim teams and lessons, lap swimming and family play areas are vital. A city wide natatorium and one or two regional centers would be great but not at the cost of the neighborhoods.

Concept \#2 Regional/Community Centered

What did you like about this concept?
No comments

What did you not like about this concept?

- This increases traffic, destroys opportunities for neighbors to meet at the pool and is unnecessary since we have Zilker Park. (NOTE: Respondent favored Concept \#1)

How do you think this concept can be improved?
No comments

Concept \#3 Combined

What did you like about this concept?

- I'd support a natatorium. Regional events draw child development and competitive swimming
- Preserve free neighborhood pools
- Establish fitness aquatic centers with more features/capacities
- Most equitable
- It is the most feasible and equitable option
- Keep neighborhood pool open as well as larger facilities. Keep Balcones Park Pool open!
- The only realistic choice. The other two are straw men.
- I like 50 meter pool and would like access close to my home
- I think there is a great need for a large aquatic complex in Austin. I have been to many community pools around the US and have always been astounded that we don't have one. There are many competitive swim teams, synchro teams, water polo, and divers that need a year round indoor facility. A place for lap swimmers to go year round. You could have income from the above mentioned teams for practice and competitions if you are able to keep steady income.
- I really want to check concept 1 and 3 independent on criteria used to close pools. (Do not close pools in less affluent areas!)
- I like the idea of having variety, but that's about it. I think there are a lot more negatives than positives.
- Keep some neighborhood pools but add a central, new, more versatile indoor facility open year-round.
- This concept provides heterogeneous overlapping coverage to meet multiple needs.
- I attend my neighborhood pool almost daily and my wife goes downtown weekly to Deep Eddy. The combined plan provides both nearby convenience and distant amenities.
- It would address concerns of those who just want a place to "cool off" that is close to home while also "thinking big" with the possibility of offering other aquatic opportunitiescompetition, water polo, synchronized swimming, etc.
- Diversity of ways to give feedback.
- Meets mixed needs but what do we give up to get it.

What did you not like about this concept?

- Possibility of losing existing neighborhood pools
- Some neighborhood pools will close?
- The "conceptual diagrams" don't work. Do not raze viable facilities to build the Taj Mahal.

The new Taj Mahals should go in areas with population but no swim facilities.

- Cost
- As a synchro coach, we have a real need for a 25 yard, six lane pool with a minimum depth of 8 feet. Other than UT, which we cannot use, there is nothing else in Austin. I hope that you don't plan to what our current needs are, but what Austin's future needs are.
- My major concern is where they will locate these pools. Also, how do you determine which pools remain open? I use my neighborhood pool regularly. I love that it's free and it makes me feel like I get a real sense of community. Neighbors are regularly there. I'm afraid that the sense of community will be lost as well as affordability.
- I support closing a few pools in order to improve others. Looking at ones that don't have a lot of attendance or are close to others. Do not close Balcones Pool.
- These concepts do not tell us what we would be giving up. I love the neighborhood pool at Balcones District Part.
- The survey on opposite side could be used to justify almost any action, especially the asterisked ones which could be taken either way.
- Safety was not a variable mentioned in the models, i.e. 1) ability to provide lifeguards, and 2) place to hold swim lessons for all Austin children.
- What do we give up to get this.

How do you think this concept can be improved?

- We need to support/renovate older pools in East and Southeast Austin
- Model neighborhoods pools as large draw areas. One-mile circle under values the neighborhood pools. Scale service areas by average attendance.
- Longer season! Stay open for evenings and weekends after school year starts in Fall
- Keeping pools open (season, schedules, staffing, maintenance) should be priorities
- Don't do splash pads. Not worth the costs
- Placement is key. Put new facilities that have nothing. Close permanently the smallest, least attended, and in worst shape. Avoid closing pools that are getting decent attendance.
- Try to eliminate overlap between neighborhood, community to keep cost down
- Have you been in contact with the area school districts? Could they offer some funding so that high school teams have a place to practice.
- Have you contacted USA swimming about developing a complex that could be for elite athletes as well as the community? USA S wimming-USA syncro (probably also diving) want to have an aquatic facility with dorms where elite athletes can train and the infrastructure would be in place so that adding a community pool would be less expensive.
- Increase neighborhood pools in areas that are underserved and improve pools that are falling apart.
- Please keep our diverse population in mind, affordability and easy access are imperative.
- Charge at least $\$ 0.50$ for entry to help offset costs.
- I also support public/private partnerships to raise funds to build (e.g. Dell, etc.)
- Embrace heterogeneity by outfitting some pools with specialized features that appeal to special interests willing to commute, e.g. water volleyball at our pool, lazy river at another, and slide at another.
- Also, add artwork like at Deep Eddy. (This is Austin).
- Consider premium offerings like food or sales/rentals to supplement money while ensuring
broad access.
- A thought to consider (not related to above question): Every 4 years-Olympic years-the Olympic swim trials are held in Myrtha pools, which are assembled on site and then taken apart and sold after the event. Look ahead to 2020 and see if this is a viable option for a new Austin pool Austin would have to supply the land, etc. for it.
- Consider safety-how can we recruit lifeguards to staff all pools? We need a funnel to train lifeguards.
- Keep neighborhood pools—add regional and area

Asian American Activity Center

12 participants
5 responses

Please check which concept you liked the most.

___O__ Concept \#1 Neighborhood Pools Focused

-_-_ Concept \#3 Combined

Concept \#1 Neighborhood Pools Focused

What did you like about this concept?
No comments

What did you not like about this concept?
No comments

How do you think this concept can be improved?
No comments

Concept \#2 Regional/Community Centered

What did you like about this concept?
No comments

What did you not like about this concept?
No comments

How do you think this concept can be improved?
No comments

Concept \#3 Combined

What did you like about this concept?

- Both smattering of neighborhood pools with larger pools w/more amenities
- Has good mix with neighborhood pools
- I like to swim laps and love having pools open for a long season or all year long. I also like the idea of neighborhood pools without a fee for anyone to use during summer. It is great to get people outside and active. Neighborhood swim team is also very important.
- People need all three kinds of pools for different occasions, activities, group sizes
- Need concept w/indoor pools-maybe not as large as the natatorium.
- Variety is good. Austin needs more of the larger multi-activity pools. Cost and accessibility for low income families is a priority consideration. I'd suggest an indoor facility at Home Depot/car dealerships at St. J ohn.

What did you not like about this concept?

- Expense
- Too many regional fitness pools. Two max, one north and one south
- Nothing
- Nothing. I don't think the other two concepts make any sense. All neighborhood pools are too expensive and limiting (in terms of possible uses). All regional eliminates free pools.

How do you think this concept can be improved?

- Less pools in all categories. Downsize plans
- The "regional family" and "community" pools should be opportunistically located on basis of available land to reduce costs.
- More pools available year round. All central or south. Four are available and two are cold. Could Murchison be enclosed and/or hearted? Maybe a north pool. Bartholomew hours aren't great. Could it open at 11 am for the lunch crowd? Suggestion: M-F 11-7 and SS 1-6. I would pay a fee.
- Keep working to get a (premier) natatorium in the mix whether as a city/private partnership or possibility w/AISD.

Criteria for Redevelopment/What do we do with Existing Pools?

See Appendix B
NOTE: Comments from meeting held July 20, 2016 at Spicewood Springs Public Library:

- Neighborhood pool- longer hours, a) better for environment: reduced traffic; b) supports neighborhood relations; c) swim teams.
- Please change your presentation from discussing how much the city "loses" on pools per year. Pools are a subsidized public service that are accounted for in the city budget. The consultants need to realize that this discussion should not be about trying to "make money" on pools the discussion needs to be reframed to be making best decisions for all Austin given our resources. If we are trying to "make money" we'd be having a completely different conversation.
- I feel like the project planning started two years ago with the assumption that all of Austin
wants fancy, new slides and amenities. The surveys that we've been given are heavily biased towards regional aquatic centers-leading questions without explanations. People want open pools that they can easily access that are maintained! We don't need fancy amenities and if you give folks a survey asking clearly: this or this you'll get better answers. No one is going to want their neighborhood pool closed in exchange for a regional aquatic center.
- Swim teams (summer league and schools) seem to be treated as an afterthought. Supporting these programs with appropriate facilities and schedules should be a higher priority.
- Year-round lap-swim opportunities are important and I would be willing to pay to use it, more so than for family swim facilities. I don't mind paying for one person to swim laps, paying for six people to splash gets expensive.
- Amenities are nice but working, functional open pools is the priority.
- More neighborhood pools keep the numbers at the pools down and makes them safer.
- Number 1 criteria: Ability to recruit lifeguards for the facility
- Number 2 criteria: Hub for swim lessons for all kids
- Impact on the neighborhood-teaching kids to swim year round!
- Please consider a renewed relationship with Austin ISD. When the city quit heating Balcones and Dick Nichols, it left several high school teams without places to train. There could also be opportunities for swim lessons. If there was a way to have a facility where high school students could take life guard courses, it might alleviate the need for life guards. I have heard that several pools were short of guards for the past several years.
- Swim lessons for kids year-round would be doable! Colin's Hope is doing this successfully.

Interactive Pool Location Exercise

- Closest pool is Dick Nicols
- Preference for community pool south
- Youth prefer larger pools with slides
- Preference for neighborhood pools in "poor" areas
- Consider public transportation
- Need to know where HOA pools are to make informed decisions
- Questions about why we don't charge at some of the larger neighborhood pools
- Parking at Dove Springs and Dick Nicols is adequate to convert to larger family aquatic centers
- Look at 50 meter pools and facilities with parking to convert to family and regional fitness centers

Online Survey Responses

15 responses
Please check which concept you liked the most.
__4__Concept \#1 Neighborhood Pools Focused
_ 3__ Concept \#2 Reginal/Community Centered 2
__

Concept \#1 Neighborhood Pools Focused

What did you like about this concept?

- Regional means the same thing as denying access to many young Austinites.
- Accessible
- The smaller neighborhood pools are more community focused. They are typically close by to neighborhoods whereby community can walk and bike to the pool without motorized transportation.
- Less crowded
- Less travel time to get there... within 1.5 miles/walking distance of my house.
- If I have to travel more distance I won't go. not convenient to go do laps then go back home to shower before going to work.

What did you not like about this concept?

- You have a duty to steward the parks on behalf of the citizens. To say you cannot fulfill that mission because of years of neglect is shameful. And then to say it is just as well, most kids who will not be able to reach the suburbanized style pool set up will just have to suffer?
- Pool areas tend to fall into neglect in areas such as landscaping, grass (or lack thereof) and fire ant control.
- Not open more months the year... especially since we have good swimming weather at least 8 months out of the year.
- Wish it could open at 7 pm to do laps before work.

How do you think this concept can be improved?

- You should put more effort into training life guards. The shortage is of our own making.
- More attention to improving landscape and growing turf for grass areas; irrigation is much needed.
- During summer keep current hours but when school starts perhaps open early 7-9 am then close until 4-7 pm. When swim classes can be offered and lap lanes available.

Concept \#2 Regional/Community Centered

What did you like about this concept?

- Having a year round indoor swim center
- Happy to pay more for quality facilities
- That it does not close down all neighborhood pools.
- This option serves a greater pool of constituents while allowing the city to generate money off of its investment.

What did you not like about this concept?

- Might not be convenient, traffic is limiting accessibility to some locations
- It does not leave enough neighborhood pools in operation. How will they determine which pools remain?
- It's cost-prohibitive and doesn't offer equal access to all.

How do you think this concept can be improved?

- Community input
- The combined plan would be better if it had 1-2 less regional/community centers and 4-6 more neighborhood pools.
- Leaving pools in low-income areas open for free or reducing rates for people in those areas would allow for greater accessibility.

Concept \#3 Combined

What did you like about this concept?

- It's the only realistic one. The others are straw men. The city is not going to build an additional 20 to 25 neighborhood pools while maintaining the ones you already have. It would be too expensive and wouldn't staff. Besides, if the city was going to do that, there would be no need for a master plan.
- The combined plan is obviously what the city is going to do. It should make use of existing facilities, build new ones in the most underserved areas first, and improve existing pools in order of how bad a shape they're in.
- You're going to close some existing pools which will be difficult. I think you should use a common sense approach to closing, starting with pools that have the least features and are in the worst shape; ideally, after a replacement pool is available.
- Maintains existing neighborhood pools (like Ramsey, our favorite), that are easy to bike/walk to from home, improvement to deck, surrounding areas provides more family-focused recreation options with more amenities. provides lap swim at convenient locations throughout city provides larger facilities for camps, etc. rather than overwhelming neighborhood pools may reduce overcrowding
- Not to disrespect the work of those who came up with the concept, but it seems that options \#1 and \#2 exist only to make option \#3 the consensus choice. Option 3 is the only choice to offer both a diverse range of features and meet accessibility concerns in any real way.
- It seems to bring the greatest opportunity to provide swimming accessibility to the greatest number of people and areas of the community to maximize the enjoyment of swimming and all around aquatic pleasure all over the City of Austin. It also provides for free access within neighborhoods with simpler pool sizes and facilities, but then provides larger and more fully diverse facilities and opportunities for recreation at additional facilities that involve fees for those who wish to utilize those or go there occasionally. It also provides revenue to the City of Austin to help pay for operating the facilities and provides a compromise in the number of lifeguards needed within any other single other plan. In essence, there is more of "something for everyone" in the combined plan.
- serves needs for smaller, free facilities and larger, more amenity facilities
- Larger community pools are nice, but want to keep our small/free neighborhood pool (Shipe Park).
- Because people don't have to give up their well loved neighborhood pools, but also get some bigger centers located in multiple areas.
- Focus on the pools that we have and improve the facilities and extend the hours and the length of the season. I prefer the neighborhood pools and the family fitness centers

What did you not like about this concept?

- I worry about the city closing Northwest Pool. You're not very forthcoming on details like how you decide which pools are permanently closed or even what the decision process for that is.
- I'm sure everyone will worry that their neighborhood pool will be closed because you're going to close some of them.
- Indoor natatorium not important
- More recreational "free swim" space for children (not just super shallow water for little kids) the rec swim areas in renderings looked small, crowded and focused primarily on young children.
- It is too heavy on Community and Regional Pools, and too light on neighborhood pools. The nature and features of the larger aquatic facilities seem to make them ore ideal for less densely populated and less walkable areas of the city. I don't think the distribution needs to be as even as implied on page 23 of the presentation.
- I have not really identified anything that I did not like about the plan, except like everything, all plans cost a lot of money. However, I am a product and my children are products of participation in the older City of Austin's Parks and Recreation swimming pools and swimming lessons. My 3 children all learned to swim free in City of Austin park pools by earning "Turtle, Duck, Fish, etc." badges and I believe the aquatics is one of the best opportunities for recreation that the City of Austin provides. I would be very pleased to see whatever can be provided to the residents of the city all over town. Some will need to be feebased, but it would be wonderful if some could still be offered free of charge.
- Cost (2 responses)
- I don't like the idea of wasting money on fancy new facilities if it means losing some of the pools we have. We don't have enough as it is, and a pool needs to be very close to home to be a place that gets a lot of use.

How do you think this concept can be improved?

- By being more forthcoming about the details that determine which pools are closed.
- Understand that Neighborhood pools are more appropriate and preferable for some areas than others. Add to the number of neighborhood pools and reduce the number of larger facilities.
- I have not studied the details enough to know how improvements can be made, but I am sure that improvements will evolve as the plans are developed further.
- renovate existing pools
- J ust start doing it!
- I think that every pool in this city should be maintained or improved. It is too hot to live here without adequate pools. I would recommend adding a very small (\$1-\$2) fee for the pool rather than eliminating any pools, and I would prefer that the existing pools be fixed rather than changed to these fancier, more expensive pool options.

Criteria for Redevelopment/What do we do with Existing Pools?

See Appendix B
NOTE: Comments from email surveys

- THIS QUESTION IS TOO LEADING TO ANSWER. HOW MANY TIMES HAVE YOU TWISTED THIS QUESTION TO GET THE STATS TO REFLECT YOUR GOAL OF A

MEGA/SUBURBANIZED POOL SYSTEM AND ONLY PRETENDED TO COLLECT INPUT?! Take care of neighborhood pools. You have failed in your work thus far and are now diverting attention.

- When money IS ALLOCATED APPROPRIATELY, what should we do with our existing pools? Help the City decide whether to renovate, upgrade, or replace.
- I do not understand this question and the ranking system. For example, if availability of parking receives the most votes as most important criteria, then does that mean that only current neighborhood pools with available parking will remain in operation? The wording is confusing and impossible to answer accurately.
- This is ambiguous. You should split the choices out between replace (or close) and the other two. Otherwise, I'm not sure what I'm ranking: the likelihood my pool will be closed or replaced or whether it might be repaired.
- Location in an area with no pools doesn't make sense. If this question is about existing pools, how can it be located in an area without pools?
- Annual visitation to the pool- - THIS CAN BE VERY MISLEADING AS MOST DON'T CURRENTLY GO TO AUSTIN POOLS BECAUSE THEY ARE OFTEN CLOSED AND VERY POORLY MAINTAINED; ATTENDANCE WOULD IMPROVE IF IT WAS A PLEASANT EXPERIENCE.

	Rank by Community Member															
Criteria	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
TOTAL MEEIINGS																
location in an area w/no poo	7	9	11	3		4		3		1		1	3	2	2	
annual visitation to the pool	13	7	5	1	6	3	4	4	1	2	2		2	2	1	2
proximity to otherfacilities	2	3	6	5	5	8	5	4	1	2	1	3	1	1	1	
population w/in service area	5	10	5	7	6	4	3	2	3	1	2	1		1	2	
cost to upgrade	7	6	6	6	8		5	3	2	1	1	2	3	1		
located in park w/otherfacilitie		2	1	5	2	1	1	5	5	4	2	1	3	2	3	8
age of facility	6	7	4	1	5	3	2	3	3	5	3	1	1	3	2	1
need to develop bathhouse	1		3	2	2	3	5		4	4	5	8	4	2		
parking		1		2	3	3	2	2	5	1	8	6	2	5	2	1
accessbile by public transport	2		4	8	5	2	1	6	2	6	1	2	3	4	3	1
pedestrian safety	3		1	4	1	1	5	1	3	4	2	2	6	4	5	1
historic signifcance	3	2	2	3	1	2	2	3	3	3	2	5	3	7	5	11
ADA accessibility	1	2	3	2	6	8	2	3	1	5	1	8	6	1	1	
adequate area on the site			2	2		1	6	4	5	4	5	2	5	7	3	3
HOA and private pools in area				1	1	1	1	1		1	4	2	3	5	5	13
income level of neighb orhood	5	5	1			1	1	2	6	2	2	2	2	1	8	9

Criteria
Circle C Meeting 7122016 annual visitation to the poo proximity to otherfacilities populationa service located in park w/otherfa age of facility
paing
accessbile by pub
historic signifcanc
ADA accessib
adequate area on the site
HOA a nd private pools in area

Appendix B - Focus Group Criteria Ranking Results

Criteria
current annual visitaton
distance
population
costs
pool in park w/activities
age of pool
need bathhouse
parking
public transportation
historic

BCI101
CITY OF AUSTIN AQUATIC DEPARTMENT
AQUATIC MASTER PLAN
ALTERNATIVES MEETING STRATEGY DRAFT
JULY 1, 2016

Meeting Logistics

Date:

July $12,13,19,20$

Number of attendees:

TBD
Meeting Locations:
Circle C, Montopolis Rec Center, Spicewood Springs Rec Center, Asian American Activity Center

Meeting Format

Meeting Title:

My Austin. My Pool. My Input. Alternatives Open House Meeting

Purpose:

To present and solicit feedback from the general public on their preferred scenario of the Aquatics Master Plan process

Objectives:

- Provide information on the Aquatics Master Plan purpose and process, and present scenarios that came out of that process to the general public
- Solicit and collect input from participants in survey/questionnaire format about their scenario preferences

Format:

Presentation: Project team members will give an overview of the Aquatics Master Plan process, including: goals and objectives, outreach activities, and alternative options
Input/Interactivity Opportunities: Room will be set up with boards describing each alternative along with the option for interaction with a project team who can answer participant's questions. Survey/questionnaires will be handed out and the Aquatic Division will provide an incentive for participants who complete the survey.

Concepts Descriptions:

Each alternative option presented should include the following information:

1. Why are they proposing these alternatives? What are the benefits/opportunities to this particular option?
2. What are the drawbacks/tradeoffs to this option?
3. How close are these facilities to me?
4. What will these options cost me?
5. Are there any options that are ADA accessible?
6. What kind of facilities and programming is envisioned in these options?
7. What are the employment opportunities?
8. What is the order/timeline for building out alternatives? Does land need to be required? What about zoning changes? Opportunities to co-locate projects with other public facilities.
9. Does this have a negative environmental impact?
10. Are there any public/private partnership opportunities available for these facilities?

Agenda Overview

\square Meeting should last up to 2 hours
\square Attendee arrives and is provided a meeting overview and survey to solicit their preferred concept
\square Presentation of Aquatics Master Plan purpose, process, and concepts
\square Participants interact with project team members at boards going into each alternative into greater detail
\square Participants fill out and return their survey/questionnaire as they exit

Room Set Up:

- Registration Table - At registration participants are greeted and provided with an overview of the meeting and placemat.
- Chairs arranged for main presentation
- Display Boards on easels of the alternatives (30 " x 40") Quantity TBD
- Aquatic Division can offer to provide a 'daily swim pass’ as incentive to participants who fill out a survey/questionnaire.

Notifications

Item	Description	Staff
1. Invitation emailed to stakeholder list	Email blast to database	PARD
2. Phone calls to stakeholder list 3. Flyers	Phone calls to database members Meeting flyers placed in Aquatics, Park, Library, and Recreation facilities	Adisa PARD
4. Advertisement	Public Service, radio announcements, story on local news both print/television	Adisa
5. Neighborhood outreach	Ensuring that meeting notices are posted to targeted neighborhood listserves, newsletters, Nextdoor, etc.	Adisa

Meeting Supplies

Registration Table Supplies	Table, name tags, markers, sign in sheets, b/w copies of handouts Supplies: Markers Stickers Pens Sticky Notes Note pads - 10	Spend 100	Adisa
Refreshments	Individually wrapped goods, small bottles of water	25 for each mtg	Adisa
Presentation	Projector, screen, computer, remote	$?$	
Easels for Boards	Quantity TBD	Adisa / PARD / BCI	

Facility

TBD

Staffing:

- Wayne Simmons, Aquatic Program Manager
- Rey Hernandez, CIP-PM, PLA, CPO
- Pat Hoagland, ASLA, P roject Manager; Brandstetter Carroll Inc.
- Kevin Opp, Adisa Communications
- Shuronda Robinson, Adisa Communications
- Christine Buendel, Adisa Communications

Meeting Materials

Title	Description	Notes
Agenda	Handout	Adisa
Survey/Questionnaire	Survey	Adisa
Signage for Registration	11×17 Table Signs	Adisa/Completed
City of Austin Aquatic Facilities Map	- (42×30) - Description - Map showing all locations	Adisa/Completed
About the Master Plan	- (42×30) - Description - Timeline	Adisa/Completed
Assessment Results	- (42×30) - Description 1. Austin Pools Service Areas Map 2. Swim Lesson Locations 3. Closed Pools 4. 50 Meter Pools 5. Critical Pools 6. Current Extended Season Pools A. Bartholomew B. Deep Eddy C. Big Stacy D. Barton Springs E. Springwoods	Adisa/Completed
How to Provide Input	- (42×30) - List ways to provide input	Adisa/Completed

ATHUATVIS METME EOR THE

The Aquatic Master Plan will help the Parks and Recreation Department decide how to manage existing pools and guide installation of new pools where they are needed most.

JU|N \|S \|N JULY for a discussion of Alternative Options of the Master Plan that'll guide the future of Austin's aquatic facilities.

Circle C
Community Center 7817 La Crosse Ave.

Montopolis Recreation Center 1200 Montopolis Dr.

Spicewood Springs Branch Library 8637 Spicewood Springs Rd.

Asian American Resource Center 8401 Cameron Rd.

MY AISTIN. MY PUUL.

Join the Swim 512 Discussion and

Plan the Future of Austin's Pools
Fact Sheet - July Workshops

AGENDA

- Introduction
- Meeting Purposes
- Share the Aquatic Master Plan purpose and process, and gather input regarding concepts that came from previous feedback processes.
- Solicit and collect additional input from participants about concept preferences and criteria for implementation of the Master Plan

- Presentation

- The State of Austin Aquatics
- Public Engagement - What we heard from you
- Potential new classifications of pool types to serve Austin
- Potential City-wide Concepts
- Criteria for Implementation of the Master Plan

- Group Discussions

- Criteria for Development
- City-wide Concepts
- Aquatic Facility Mapping Exercise
- Comment Cards

THREE PHASES OF THE ADUATIC MASTER PLAN

- Phase I - Facility Assessment - COMPLETED 2014
- Phase II - SWIM 512 Public Engagement - COMPLETED 2015
- Phase III - Aquatic Master Plan Development - CURRENT
- The Master Plan Addresses:
- Accessibility
- Amenities and features
- Potential improvements to existing pool facilities
- Aquatic Programs
- System Financial Sustainability
- Staffing Needs
- Public and environmental safety
- Maintenance and cost of new pools
- Development of criteria to determine locations for new aquatic facilities and addressing existing facilities

PUBLIC ENEAGEMENT - SWIM 512 PHASES I-III

- Engaged over 13,000 residents so far in all three phases
- Public Workshops
- Stakeholder groups and focus groups
- Statistically valid, random sample surveys
- Online and paper surveys
- In-park interviews at pools
- Neighborhood Association meetings
- Television Town Hall
- After-school and summer camps for youth

(9)

For more information call (512) 895-9591
Email swim512@austintexas.gov
2818 San Gabriel, Austin, TX 78705

AUSTINS AMUATIC FALLITILS
 WHAT WE HEARO \& LEARNED FROM YOU!

Phase I \& II SWIM 512 (2013-2015)

- Keep pool facilities open and affordable
- Increase hours and swim season
- Improve restrooms, bathhouses, shade, and seating areas

Phase III Kick-Off Meetings (March 7 \& 8, 2016)

- Longer hours and season
- More shade (deck and pool) and seating
- Better maintained/clean pools, bathhouses, restrooms
- Desired Amenities: Lap lanes, family friendly areas, waterslides, diving boards, shade
- Desired Programming: Lessons, water fitness, lifeguard training, swim teams, senior programs

AOUATIC SYSTEM IMPLEMENTATION CRITERIA TO CONSIIER

- Location in an area with no pools
- Annual visitation to the pool
- Proximity to other public aquatic facilities (avoid overlap)
- Population within the service area
- Cost to upgrade to current standards / Condition
- Located in a park with other recreation facilities
- Age of the facility
- Need to develop bathhouses/restrooms (significant expense)
- Availability of parking
- Accessibility by public transportation (walk, bike, auto, bus)
- Pedestrian safety - Traffic controls
- Historic or cultural significance of the existing facility
- Accessibility - Ability to meet current ADA standards
- Adequate developable area on the site
- HOA and Private pools in the area
- Income levels of the neighborhood
- Other?

REDUIIRED CONSTHUCTION/DESIGN TECHNICAL CHITERIA

- Access to required utilities (sanitary, storm, water, electricity)
- Avoid flood zones
- Zoning and site development permitting regulations
- Impact on Heritage and high value trees
- Proximity to Critical Water Quality Zones / Aquifers / Riparian zones
- Impact on endangered species
- Soil conditions
- Proximity to negative features such as flight zones, heavily trafficked roads, overhead powerlines, railroads, etc.
- Accessibility for maintenance

For more information call (512) 895-9591
Email swim512@austintexas.gov
2818 San Gabriel, Austin, TX 78705

- Propósito de las Reuniones
- Repasar juntos el propósito y proceso del Plan Maestro Acuático, y colectar opiniones sobre los conceptos que surgieron del proceso anterior de colectar opiniones de la comunidad.
- Solicitar y colectar comentarios adicionales de participantes sobre los conceptos preferidos y criterio para implementar el Plan Maestro.

- Presentación

- La Condición de Facilidades Acuáticas en Austin
- Participación del Público-Lo que Ustedes Nos Dijeron
- Posibles clasificaciones nuevas de tipos de piscinas que servirían a la comunidad de Austin
- Conceptos posibles para la ciudad entera
- Criterio para Implementar el Plan Maestro

- Conversaciones/discusiones de Grupo

- Criterio para el desarrollo
- Conceptos para la ciudad entera
- Ejercicio de Mapeo para Facilidades Acuáticas
- Tarjetas de Comentarios

LAS TRES FASES DEL PLAN MAESTRO ACUÁTICD

- Fase I - Asesoramiento de Facilidades - TERMINADO 2014
- Fase II - SWIM 512 Participación Publica - TERMINADA 2015
- Fase III - Desarrollo del Plan Maestro - ACTUAL
- El Plan Maestro-Incluye Temas de:
- Accesibilidad
- Seguridad del público y ambiental
- Comodidades y funciones especiales
- Mantenimiento y costo de piscinas nuevas
- Mejoras de lass facilidades de piscinas existentes
- Programas Acuáticos
- Desarrollo de criterio para determinar ubicaciones de nuevas facilidades acuáticas y
- Sostenibilidad Financiera del Sistema resolver la situación de facilidades existentes
- Necesidades de Personal

PARTILIPACLÓN PÚBLLLA -NATACLÓN/SWIM 512 FASES I-III

- Participación de más de 13,000 residentes hasta el presente en las tres fases

- Talleres Públicos
- Grupos de enfoque y de interés
- Encuestas estadísticamente válidas y muestreos aleatorios
- Encuestas en línea y impresas
- Entrevistas en los parques y en piscinas
- Reuniones de Asociaciones de Vecindarios
- Reunion Pública via Television
- Campamentos después de clases y en el verano parajóvenes

Para más información llame al (512) 895-9591
Email swim512@austintexas.gov
2818 San Gabriel, Austin, TX 78705

faclilianis culuátias DEALSTHO

ill due USTEDES NOS DJJERON Y LO DUE APPENIIMOS DE USTEDES!

Fases I \& II NATACIÓN/SWIM 512 (2013-2015)

- Mantener abiertas las facilidades de piscinas, y economicamente razonable
- Aumentar horas y temporada de natación
- Mejorar los sanitarios, casas de baño/vestidores, sombra, y áreas para sentarse

Fase III Reuniones de Inauguración (Marzo 7 \& 8, 2016)

- Extender horas de servicio y la temporada
- Más sombra (en la terraza de la piscina y en la piscina) y asientos
- Mejorar mantenimiento/limpiar piscinas, casas de baño/vestidores, sanitarios
- Comodidades Especiales: Carriles de natacion para entrenamiento, áreas para familias, resbaladeros, trampolines, sombras
- Programas deseados: Lecciones, ejercicios acuáticos, capacitación para salvavidas, equipos de natación, programas para personas mayores

CONSIDERACIONES POSIBLES DEL CRITERIO PARA IMPLEMENTAR EL SISTEMA ACLÁTICD

- Ubicar piscinas en áreas sin piscinas
- Visitas anuales a la piscina
- Proximidad a otras facilidades acuáticas públicas (evitar duplicaciones)
- Población dentro del área de servicio
- Costo de actualizar para lograr estándares y condiciones deseables contemporáneas
- Ubicar o estar ubicada en parques con otras facilidades de recreación
- Antiguidad de la facilidad
- Necesidad de desarrollar casas de baños/ vestidores (gasto significante)
- Disponibilidad de estacionamiento
- Accesibilidad vía transporte público (caminando, en bicicleta, auto, autobús)
- Seguridad peatonal-Controles de trafico
- Significancia histórica o cultural de la facilidad existente
- Accesibilidad - Habilidad de cumplir con estándares actuales de ADA (para personas discapacitadas)
- Área adecuada para desarrollo en el sitio
- HOA (asociación privada de vecinos) y piscinas privadas en el área
- Nivel económico-de ingresos personales en el vecindario
- jOtro?

Chterlo heouerloc para construlh/IISEÑO técnico

- Acceso a servicios públicos necesarios (sanidad, drenajes de tormentas, agua, electricidad)
- Evitar zonas de inundaciones
- Reglamentos de zonificación y permisos para desarrollo del sitio
- Impacto en árboles patrimoniales y de valor elevado
- Proximidad a Zonas Críticas para la Calidad del Agua/Acuíferos/Zonas Ribereñas
- Impacto en especies en peligro
- Condiciones del la tierra
- Proximidad a características negativas en el área tales como zonas de vuelo, calles, caminos muy transitables, líneas eléctricas aéreas, ferrocarriles, etc.
- Accesibilidad para mantenimiento

Para más información llame al (512) 895-9591
Email swim512@austintexas.gov
2818 San Gabriel, Austin, TX 78705

City of Austin Aquatic Master Plan Draft Concepts Review

My Austin. My Pool.

Agenda

- Meeting Purposes
- Share the Aquatic Master Plan purpose and process, a nd gather input regarding conceptsthat came from previousfeedback processes
- Solicit and collect additional input from partic ipants about concept preferences and criteria for implementation of the Master Plan
- Presentation
- The State of Austin Aquatics
- Public Engagement - What we heard from you
- Potential new classific ations of pool types to serve Austin
- Potential City-wide Concepts
- Criteria for Implementation of the Master Plan
- Group Disc ussions
- Criteria for Implementation
- City-wide Concepts
- Aquatic Facility Mapping Exercise
- Comment Cards

Three Phases of the Aquatic Master Plan

- Phase I - Facility Assessment - COMPLEIED 2014
- Phase II - SWIM 512 Public Engagement - COMPLEIED 2015
- Phase III - Aquatic Master Plan Development - CURRENT
- The Master Plan Addresses:
- Accessibility
- Amenities and features
- Potential improvements to existing pool facilities
- Aquatic Programs
- System Fina nc ial Susta ina bility
- Staffing Needs
- Public a nd environmental safety
- Ma intena nce a nd cost of new pools
- Development of criteria to determine locationsfornew aquatic facilities and addressing existing facilities

The State of Aquatics in Austin

My Austin. My Pool.

Master Plan Public Engagement Process:

What we heard from you!

My Austin. My Pool.

Public Engagement- Swim 512 Phases I-III

Engaged over 13,000 residents so far in all 3 Phases

- Public Workshops in regional locations
- Stakeholdergroups and focus groups
- Statistic a lly va lid, ra ndom sample surveys
- Online and papersurveys
- In-park interviews at pools
- Neighborhood Association meetings
- Television Town Hall
- After-school a nd summer camps for youth

What We Heard \& Leamed From You!

Phase I \& II SWM 512 (2013-2015)

- Keep pool facilitiesopen and affordable
- Increase hours and swim season
- Improve restrooms, bathhouses, shade, and seating areas

Phase III Kick-Off Meetings (March 7 \&8, 2016)

- Longerhours and season
- More shade (deck and pool) and seating
- Better mainta ined/clean pools, bathhouses, restrooms
- Build pools where there are none
- Deșired Amenities: Lap lanes, family friendly a reas, waterslides, diving boards, shade
- Desired Programming: Lessons, water fitness, lifegua rd tra ining, swim teams, senior programs

Supportfor Large Family Aquatic Centers

Need for Multi-Sport Facility Dedic ated to Competitive Swimming

Support for Centrally Located Natatorium

Likelihood to Pay a Fee

Proposed Aquatic Facility Classific ations

My Austin. My Pool.

Neighborhood Pool

Community Pool

Classific ation Elements

- Service Area:
- 3 miles/ 10 minute drive
- Bikeable
- Water Surface Area:
- 5,000-7,000 s.f.
- Base Features:
- Bathhouse with family changing rooms
- Activity Pool
- Small slide
- Shallow water area with play
ures
- Sprayground within fence
- Combined Recreation/Lap Pool (6-8 lap lanes $\times 75$ ' length)
- Potentially fee based
- Covered Eating Area
- Cost
- New = $\$ 5 \mathrm{~m}$
- Renovated $=\$ 3-\$ 4 \mathrm{~m}$

Regional Family Aquatic Center

Regional Finess Aquatic Center

Classific ation Elements

- Service Area:

- 5 miles/ 15 minute drive
- WaterSurface Area: - 10,000-12,000 s.f.
- Features:
- 50 meter length by 8-12 lane Lap Pool by 25 yard width
- Aerobics/program pool
- Small slide
- Diving boards at varying heights
- Activity/wading pool or splash
- 2-4 shade structures
- Spectator area
- Meeting/tra ining/party room
- To host swim lessons, exerc ise
and swim teams
- Concession area
- Fee based
- Cost
- New $=\$ 8$-9 m
- Renovated/Expanded $=\$ 5-\$ 7 \mathrm{~m}$

Premier Indoor Aquatic Center

- Partnership potential
- Economic Impact to Austin through hosting large meets
- Allows for year-round aquatic programs and lifeguard training

Classification Elements

- Service Area:
- City-wide
- Water Surface Area:
- 10,000 +s.f.

- Features:

- 50 meter length by 25 yard width Competition/Lap Pool
- Aerobics/Program Pool
- Diving Well Pool
- Small Activity/Wading Pool
- Meeting/training/party rooms
- Spectator area for hosting swim/diving competitions
- Fitness facilities
- Cost $=\$ 18-\$ 25$ million

City-Wide Facility Distribution Concepts

My Austin. My Pool.

Concepts - Legend

legend

Concept \#1 -Neighborhood Pool Foc used

Numerous sma ll fac ilities with one pool within a mile radius

- Opportunities
- Each facility within a walkable orbikeable distance
- Costs less to build each facility
- All facilities are free
- Constraints
- Increased number of facilities cost more to operate and mainta in
- Increased number of facilities will require more lifeguards
- Lack of va riety and features a c ross the system
- Does not bring revenue into the aquatic system
- Many residents are not within a service area of a pool

Concept \#2 - Regional/ Community Centered

Combination of community and regional focus

- Opportunities

- Least expensive option to build out and ma inta in
- Fewer number of facilities costs less to develop
- Requires less lifegua rds overall
- Most economic method to provide aquatic programming to all of Austin in a susta inable manner
- Increased programming options
- Most residents live within a bikeable distance to a pool.
- Constraints
- Distance to aquatic facilities requires additional tra vel time
- Most facilities would require a fee

Concept \#3 - Combination Concept

Combines all pool classific ations to serve a community

- Opportunities
- Provides the most variety of a quatic facilities, features, fees, and experiences for residents
- Neighborhood Poolsprovide close to home/free options
- Equitably serves all residents
- Provides an opportunity to generate revenue for the aquatic system
- Supports a va ila bility of aqua tic programming
- Constraints
- Requires substantial capital investment

Criteria for Implementation of the Master Plan

My Austin. My Pool.

Aquatic System Implementation Criteria to Consider

- Location in an area with no pools
- Annual visitation to the pool
- Proximity to other public aquatic facilities (a void overlap)
- Population within the service area
- Cost to upgrade to current standards/ Condition
- Located in a park with other recreation facilities
- Age of the facility
- Need to develop bathhouses/restrooms (signific ant expense)
- Availability of parking
- Accessibility by public transportation (walk, bike, auto, bus)
- Pedestrian safety - Traffic controls
- Historic or cultural signific ance of the existing facility
- Accessibility - Ability to meet current ADA standards
- Adequate developable area on the site
- HOA and Private pools in the area
- Income levels of the neighborhood
- Other suggestions

Required Construction/ Design Technic al Criteria

- Access to required utilities (sa nitary, storm, water, electric ity)
- Avoid flood zones
- Zoning and site development permitting regulations
- Impact on Heritage and high value trees
- Proximity to Critical Wa ter Quality Zones/ Aquifers/ Riparian zones
- Impact on endangered species
- Soil conditions
- Proximity to negative features such asflight zones, heavily traffic ked roads, overhead powerlines, railroads, etc.
- Accessibility for ma intenance

Let's Disc uss Concepts

My Austin. My Pool.

Group Exercises

- Group Disc ussions \& Exerc ises
- Discuss the type and number of pools in the Austin Aquatic System (specific ally considering cost)- Mapping Exerc ise
- Prionitize the criteria from most important to least important when considering implementation
- Comment Cards

Thank You for Your Participation

- Future Meetings
- Fall - Public Meeting to Review Draft Master Plan
-Winter - Public Meeting on Final Master Plan
My Austin. My Pool.

This page intentionally blank.

BCIIO1
BRANDSTETTER/COA PARD
AQUATIC MASTER PLAN - PUBLIC ENGAGEMENT
PUBLIC ENGAGEMENT
8.15.16 PRESENTATION TO COLONY PARK NA SUMMARY
8.26.16

Attendees:

23 Participants :
17 from Neighborhood Associations
5 from City of Austin (4 from PARD)

Topics:

Overview of the Aquatic Master Plan, three concepts for aquatic facilities, and the community input process.

Meeting Materials:

PowerPoint - Three Aquatic Concepts
Comment Card

Items Discussed:

A. Aquatic Master Plan - City Staff reviewed the information about the Aquatic Master Plan (AMP) process prepared by Brandstatter Carroll Inc (BCI) for presentation at public meetings.
B. A PowerP oint presentation was used to explain three concepts for aquatic facilitiesConcept \#l: Neighborhood Pool Focused; Concept \#2: Regional/Community Pool Centered; and Concept \#3: Combination Alternative--were explained to the participants.
C. Attendees were invited to give their feedback through the Comment Card or online.

Feedback and Input

Neighborhood association members from Agave and Colony Park neighborhoods, representatives from Vision East, Sim Center, Forklift Danceworks, and Travis County Expo, and local business Halff Associates shared in the AMP discussion. Their questions and concerns were specific to funding a pool in their neighborhood and any implementation proposed by the Aquatic Master Plan and the timeline for the planning process.

Two Comment Cards were completed at the meeting. Both participants favored Concept \#3: Combined. One participant favored both Concept \#2: Regional/Community Centered and Concept \#3: Combined. One participant responded to the questions about the concepts.

In response to "W hat did you like about this concept?" the participant wrote, "I like both \#2 and \#3. I like the added features at the larger pools, but the distance is a concern - so link pools directly to trials so area kids can safely ride their bikes to a pool."

The participant's response to "W hat did you not like about this concept? was "distance to the larger pools." And, the response to "How do you think this concept can be improved?" was "C an you partner with others who have pools? i.e., schools, YMCA or hospitals to build more pools?

The top criteria for what to do with existing pools is as "Location in an area with no pools." One participant noted that "the area east of 183 has no pools-very important to build one here."

BCI101
Brandstetter Carroll/City of Austin PARD
AQUATICS MASTER PLAN

4.9.16 MEETING WITH PECAN SPRINGS NA

4.13 .16

Attendees:

Kevin Opp, Adisa Communications

Topic:

Overview of the Aquatics Master Plan community input process

Materials Distributed:

My Austin. My Pool. Fact Sheet
Comment Card

Items Discussed:

A. Aquatics Master Plan - Adisa reviewed the information about the Aquatic Master Plan process contained within the fact sheet, invited attendees to give their feedback through the online survey, and to take part in the series of community workshops planned for May and J une

Feedback

A. Association members were concerned whether the plan includes lap facilities
B. A member was interested in whether aquatic climbing walls were currently available in the community
C. Association members were interested to know whether new aquatic facilities would resemble the new Barthlomew pool, this was positive, and brought up a few points of concern:
a. Residents are concerned with the crowds, cleanliness, cost of entrance for children, and maintenance of Barthlomew, while they appreciate the features available

CDMMENT CARD Mrassin My Pool . ounatic MIster Pian Merch $\overline{7}, 2016$: Dove fering \& Rearcetion Cemtor -

Please share your thoughts about the Aquatic Master Plan.

1. What changes would you like to see at Austin pool facilities?

Have more programs, specifically swimming lessons for children
Concerned about connectivity to existing YMCA pool with new highway 183
Hire more lifeguards
2. What would you like to remain the same?

Only minor changes with room for possible improvements
Swim lanes and free swim areas
3. Are there any types of programs or features you would like to see at Austin pool facilities?

Swim lessons, lifeguard training, water fitness, and increased capacity
Keep pools open for a longer time
4. Are there areas of Austin that need pool facilities? Areas or populations that are underserved?

We have great pools in Austin, but need more facilities for kids
PSSNA Area
A pool in the former Rio Lake Apts. (btwn Manor and Springdale)
5. What are the key factors the City should consider when determining how to address old pools that become in danger of closing due to age or condition?

Cost and impact of reduced access.

This page intentionally blank.

YOUTH AFIER SCHOOLAND SUMMER CAMP PROG RAM PREFERENCES

In June 2016, the Aquatic Master Plan team visited summer camps and after school programs to receive feedback from children between 5 and 12 years old. The tables summarizing these results are provided below, separated into two age groups: 8 and under and 9 and over.

Total Number of Responses
Aquatic Features
50 Meter Lap Lanes
Family Slide
Climbing Wall
Diving Boards
Dumping Bucket
Lily Pad Bridge
Lazy River
Tall Waterslide
Splash Pad
Shallow Water
Shade Over Pool
Shade Over Deck
Vortex
Toddler Area
Indoor Lap Area
Indoor Family Activity Pool
Total Number of Responses

Aquatic Features
50 Meter Lap Lanes
Family Slide
Climbing Wall
Diving Boards
Dumping Bucket
Lily Pad Bridge
Lazy River
Tall Waterslide
Splash Pad
Shallow Water
Shade Over Pool
Shade Over Deck
Vortex
Toddler Area
Indoor Lap Area
Indoor Family Activity Pool
Total Number of Responses

Aquatic Features
50 Meter Lap Lanes
Family Slide
Climbing Wall
Diving Boards
Diving Boards
Dumping Bucket
Dumping Bucket
Lily Pad Bridge
Lazy River
Tall Waterslide
Splash Pad
Shallow Water
Shade Over Pool Shade Over Pool

Vordder Area
Toddler Area
Indoor Lap Area
Indoor Family Activity Pool
Total Number of Responses

$\begin{aligned} & \\ & \\ & 0 \text { and Over Surveyed } \\ & 1 \\ & 11 \\ & 1 \\ & 1 \\ & 16 \\ & 3 \\ & 6 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 3 \\ & 48\end{aligned}$
South Austin Recreation Center
8 and under Surveyed

Aquatic Features
50 Meter Lap Lanes
Family Slide
Climbing Wall
Diving Boards
Diving Boards
Lily Pad Bridge
Lazy River
Tall Waterslide
Splash Pad
Shallow Water
Shade Over Pool Shade Over Pool Deck

Vortex
Toddler Area
Indoor Lap Area
Indoor Family Activity Pool
Total Number of Responses

Davis-White Park
8 and under Surveyed
Turner-Roberts Recreation Center
8 and under Surveyed
Aquatic Features 50 Meter Lap Lanes Family Slide
Climbing Wall Diving Boards
Dumping Bucket Lily Pad Bridge Lazy River Splash Pad Shallow Water
Shade Over Pool
 Vortex
Toddler Area
Indoor Lap Area
Indoor Family Activity Pool Total Number of Responses
Aquatic Features
50 Meter Lap Lanes
Family Slide
Climbing Wall
Diving Boards
Lily Pad Bridge
Lazy River
Tall Waterslide
Splash Pad Shallow Water Shade Over Pool Shade Over Deck
Toddler Area
Indoor Lap Area
Indoor Family Activity Pool
Total Number of Responses

	$\begin{array}{l}\text { Dottie Jordan Recreation Center } \\ \mathbf{1 2} \text { and Over Surveyed }\end{array}$
Aquatic Features	
50 Meter Lap Lanes	2
Family Slide	0
Climbing Wall	2
Diving Boards	0
Dumping Bucket	0
Lily Pad Bridge	0
Lazy River	3
Tall Waterslide	1
Splash Pad	0
Shallow Water	0
Shade Over Pool	0
Shade Over Deck	0
Vortex	0
Toddler Area	0
Indoor Lap Area	0
Indoor Family Activity Pool	0
Total Number of Responses	$\mathbf{8}$

$\begin{array}{ll}\text { Aquatic Features } & \mathbf{1 2} \text { and Over Surveyed } \\ 50 \text { Meter Lap Lanes } & 2 \\ \text { Family Slide } & 0 \\ \text { Climbing Wall } & 2 \\ \text { Diving Boards } & 0 \\ \text { Dumping Bucket } & 0 \\ \text { Lily Pad Bridge } & 0 \\ \text { Lazy River } & 3 \\ \text { Tall Waterslide } & 1 \\ \text { Splash Pad } & 0 \\ \text { Shallow Water } & 0 \\ \text { Shade Over Pool } & 0 \\ \text { Shade Over Deck } & 0 \\ \text { Vortex } & 0 \\ \text { Toddler Area } & 0 \\ \text { Indoor Lap Area } & 0 \\ \text { Indoor Family Activity Pool } & 0 \\ \text { Total Number of Responses } & \mathbf{8}\end{array}$
$\begin{array}{ll}\text { Aquatic Features } & \mathbf{1 2} \text { and Over Surveyed } \\ 50 \text { Meter Lap Lanes } & 2 \\ \text { Family Slide } & 0 \\ \text { Climbing Wall } & 2 \\ \text { Diving Boards } & 0 \\ \text { Dumping Bucket } & 0 \\ \text { Lily Pad Bridge } & 0 \\ \text { Lazy River } & 3 \\ \text { Tall Waterslide } & 1 \\ \text { Splash Pad } & 0 \\ \text { Shallow Water } & 0 \\ \text { Shade Over Pool } & 0 \\ \text { Shade Over Deck } & 0 \\ \text { Vortex } & 0 \\ \text { Toddler Area } & 0 \\ \text { Indoor Lap Area } & 0 \\ \text { Indoor Family Activity Pool } & 0 \\ \text { Total Number of Responses } & \mathbf{8}\end{array}$
$\begin{array}{ll}\text { Aquatic Features } & \mathbf{1 2} \text { and Over Surveyed } \\ 50 \text { Meter Lap Lanes } & 2 \\ \text { Family Slide } & 0 \\ \text { Climbing Wall } & 2 \\ \text { Diving Boards } & 0 \\ \text { Dumping Bucket } & 0 \\ \text { Lily Pad Bridge } & 0 \\ \text { Lazy River } & 3 \\ \text { Tall Waterslide } & 1 \\ \text { Splash Pad } & 0 \\ \text { Shallow Water } & 0 \\ \text { Shade Over Pool } & 0 \\ \text { Shade Over Deck } & 0 \\ \text { Vortex } & 0 \\ \text { Toddler Area } & 0 \\ \text { Indoor Lap Area } & 0 \\ \text { Indoor Family Activity Pool } & 0 \\ \text { Total Number of Responses } & \mathbf{8}\end{array}$
$\begin{array}{ll}\text { Aquatic Features } & \mathbf{1 2} \text { and Over Surveyed } \\ 50 \text { Meter Lap Lanes } & 2 \\ \text { Family Slide } & 0 \\ \text { Climbing Wall } & 2 \\ \text { Diving Boards } & 0 \\ \text { Dumping Bucket } & 0 \\ \text { Lily Pad Bridge } & 0 \\ \text { Lazy River } & 3 \\ \text { Tall Waterslide } & 1 \\ \text { Splash Pad } & 0 \\ \text { Shallow Water } & 0 \\ \text { Shade Over Pool } & 0 \\ \text { Shade Over Deck } & 0 \\ \text { Vortex } & 0 \\ \text { Toddler Area } & 0 \\ \text { Indoor Lap Area } & 0 \\ \text { Indoor Family Activity Pool } & 0 \\ \text { Total Number of Responses } & \mathbf{8}\end{array}$
səunłeə」 ગ!!̣enb \forall

| | Virginia L. Brown Recreation Center
 A and under Surveyed |
| :--- | ---: | ---: |
| 50 Meter Lap Lanes | 0 |
| Family Slide | 1 |
| Climbing Wall | 2 |
| Diving Boards | 0 |
| Dumping Bucket | 1 |
| Lily Pad Bridge | 3 |
| Lazy River | 6 |
| Tall Waterslide | 1 |
| Splash Pad | 0 |
| Shallow Water | 0 |
| Shade Over Pool | 1 |
| Shade Over Deck | 1 |
| Vortex | 1 |
| Toddler Area | 0 |
| Indoor Lap Area | 0 |
| Indoor Family Activity Pool | 0 |
| Total Number of Responses | $\mathbf{1 7}$ |

This page intentionally blank.

Aquatic Vision, Objectives and Goals
 Austin Aquatic Master Plan

Information collected from a meeting held J une 13, 2016 with Wayne Simmons, Pedro Petlan, Ashlee Wells, Aaron Levin
June 24, 2016

Purpose for Aquatic Division:

- Recreation programming in water
- Meet age development goals
- Fa mily oriented
- Safety in water

Vision:

- World Class - Indoorl outdoor training facility
- Year round training opportunities
- Programming opportunities year round
- Support Recreational swimming
- Yearround heated pools
- Standardized features, ease of maintenance
- Limit pool closures
- Swimming event opportunities

Objectives:

- Yearround programming
- Support development of new facilities that address needs
- Foster partnerships with AISD, UT, a nd other entities
- Establish an Aquatic only maintenance facility
- Increase, develop, and mainta in staff including maintenance staff
- Reduce weather related influences
- Provide free training for potential life guards
- Provide free uniforms for lifegua rds

Goals:

- Year round facility
- Wordd class facilities and amenities
- Standardized equipment including mechanical and other aquatic components
- Strea mline/Standard life guard and aquatic staff hiring practices
- Proper storage space for equipment, preferred one location
- Improve life guard comfort a reasduring summer heat
- Increase front line operational staff
- Programming infrastructure to support use of existing facilities for public and private events
- 20-25 full time life gua rds
- Increase pool mechanic staff
- Esta blish three (3) dedicated opening days

This page intentionally blank.

Aquatic Master Plan Summer Meetings

J une 10 ${ }^{\text {th }}$ and 13h, 2017

Ovenview

The team consisting of the Austin Parks and Recreation Department Aquatic Division, Brandstetter Carroll Inc. and Adisa Communic ations held two public meetings. The first was held on J une 10 th, 2017 at 10am at the Pan Am Rec Center. The second public meeting washeld on June 13 ${ }^{\text {th }}, 2017$ at 6:30pm at the Spicewood Springs Public Library.

Stakeholders - property owners, local neighborhood a ssociations, City Council Members, staff and citizens - were informed of the meetings using multiple methods. Posters and fliers were distributed to community centers and yard signs were distributed to public areas. Adisa Communications was in charge of making over 200 phone calls to citizens. Adisa Communicationsalso made about 40 phone calls to past attendees.
Attendees were greeted by the Adisa team and each person received a fact sheet, comment card, site suitability pamphlet and demographic card. The attendees were given the first half hour to look over the project boards and ask any questions to team members present. After 3045 minute open house period, a presentation was given by Patrick Hoagland of Brandstetter Carroll. Seventeen (17) people attended the first meeting at Pan Am Rec Center, and thirty-four (34) people attended the second meeting at Spicewood Springs Library.

Input Received

The project team fielded questions from attendees about the proposed improvements as shown on the schematic. Questions voiced by the attendees are as follows:

- Is our neighborhood pool indicated in red on the boards going to close?
- How do you prioritize your process?
- What are other mea sures for community input?
- How is the budget for the Aquatics Department created in relation to taxes?
- Is there a Master Plan draft available to the public?

Comment Cards

Attendees were asked to answer three questions on the comment card. Below is a log of the comments received foreach of the questions. A total of 17 comment cards were collected from both meetings. The questions were as follows:

1. Are there any parts of the Aquatic Master Plan that need cla rifying?
2. What does the future of Austin's aquatic systems and poolslook like to you?
3. Please share additional comments or questions here.

Format	Date	Zp Code	Question 1	Question 2	Question 3
Comment Card	6/10/17	78756		I would hope that with Austin's growing population that the revenue would help cover the expenses of running these pools. With the population growing rapidly, there will be obviously a need forpools - preferably neighborhood pools that can be walked to, to help ease traffic congestion.	
Comment Card	6/10/17	78758	I appreciate all the time and work that has been done on this aquatic mater plan, but I, like many others, I believe, thought this plan might actually be an action plan. Instead, it sounds more like an emergency plan.	A city the size of Austin without a competitive swim facility - which can also service the community needs of lessons, lifeguard tra ining, team training, etc. - is almost an embarrassment. UTX has one indoor facility which is touted as "Austin's Pool". But it's not accessible to most of us. J ust as the 2013 AISD Bond that included a pool failed, it's looking as if the city is headed in the same direction.	A biggerfacility can accommodate smaller needs, such as lessons, etc. and provide a competitive site, but no number of small neighborhood pools. As appealing as they are, can accommodate greater needs such as swim meet hosting, etc.
Comment Card	6/10/17	78759	The color coding is a bit confusing. I'd also like to see an estimate of which pools are looking at failure in the next 20 years. I know that it's impossible to accurately predict, but just to give the public a general idea of how dire the situation is a nd when they could be directly affected in their neighborhood.	I'd like to see current facilities mainta ined and improved, rather than developing new facilities. My main facility of use is C a nyon Vista. The pool itself is great and we use it 3 times per week in the summer. It could use better shade coverage, some seating and table and restroom facilities.	Before any planned pool closings/renovations I would love to have a similar meeting for neighborhood residents to give feedback on a ny potential changes.

Format	Date	Zp Code	Question 1	Question 2	Question 3
Comment Card	6/10/17	78757	All of it. What plan? There is no plan and apparently the plan is a vague set of guidelines.	Murky at best. Very concemed system rigged to make Bartholomew the cookie cutter model for all other pools.	Process is not transparent at all. Public meetings feature easels with not much info on them.
Comment Card	6/10/17	78703			Please figure out a way to keep the lap swimming pools cooler. Too many people are swimming lapsat Deep Eddy because it is the only pool you can swim in due to pool water temperature.
Comment Card	6/10/17	78759	No: please continue offering all the info to the public via these meetings and your website. We really appreciate this transpa rency. If these boards and the slides aren't in the website already, please put them up.	A range of accessible, convenient options that serve all people, from young families to seniors. It looks like you're addressing this.	Please continue offering diving options. If you're going to change a fee, please offer seasonal or annual membership options. Don't tum everything into splash pads.
Comment Card	6/10/17	78757	I would like to see a more detailed explanation of the site suitability rating system.	Dire. Money seems to be a problem, but my priority on spending is to repair the existing pools before moving to new pools. I think the emphasis should be on fa mily swimming experience servicing all ages. A traditional swimming pool doesthis. People will come up with their own activities and don't need slides, etc. to have a good time. I also think teaching kids to swim should be a priority, and for this, a traditional pool works just fine.	
Comment Card	6/10/17	N/A	Costs of repairs/replacements	Dire. It looks like some pools will fail before any improvements can even be implemented.	It would be good to organize some grassroots local engagement to drum up some interest/urgency on

Format	Date	Zp Code	Question 1	Question 2	Question 3
					the conditions of our pools, and building not just for maintenance but for future generations.
Comment Card	6/10/17	78757	How will neighbor input be sought, collected, and used when the master plan tool a ssessment puts a pool in the crosshairs for redesign or retirement?		
Comment Card	6/13/17	$\begin{aligned} & 78704 \text { (Alison } \\ & \text { Breuse, 512- } \\ & 568-0033 \text {) } \end{aligned}$	No.	I think there is more support for Sunday Pools than the process reflects and there is likely more support for Sunday.	I swim at Stacey Pool (Big). Here are some fundraising ideas: 1) After hours where there is suffic ient lighting, leagues be established in water polo and water volleyball, they are used as fundraising. They must pay for lifeguards so the leagues don't cost the city money. Scholarships are offered to people who can't afford it. 2) There would be a day where relays are conducted. People pay to participate (fatherdaughter, motherdaughter, friend-friend, etc.) I think this could produce money like the capital 10,000. 3) A carbe raffled off but rather than pick the winning ticket, you can

Format	Date	Zn Code	Question 1	Question 2	Question 3

Format	Date	Zip Code	Question 1	Question 2	Question 3
					meet a college requirement Bathrooms fixed - Wok with Habitat for Huma nity, seniors, places where builders are trained to let them do training on our pools
Comment Card	6/13/17	78745	The freakout over the possibility of closure needs to be addressed... maybe avoid the color red (my color-blind husband would agree for other reasons)	Equity and Regularity/Predictability Fun Regular planning for upgrades and care	More help from PARD on sustaining Friends groups for neighborhood parks without current organizations.
Comment Card	6/13/17	78757		Maintaining current neighborhood pools is $1^{\text {st }}$. In order to do this the public needs to be more aware of how diffic ult and critic al this issue is. Most lap swimmers at Deep Eddy or others I swim at are unaware of the magnitude.	Very helpful to know info on money - how and where \$ comes from. Without ne bonds, sounds like this is a crisis point for pools. Thanks for including us!
Comment Card	6/13/17	78703	Looks good to me, although I think it's worth identifying additional/altemative sites since a number of pools are located in places where you may not be able to rebuild if a pool fails. I do think it's important to be clearthat some pools won't survive but if we don't let these old pools go, we'll never have funds for new pools.	It looks good but only if someone can power through the diffic ult decisions of closing some pools even when the partisans of that pool complain.	Thanks fordoing a master plan.

Format	Date	Zp Code	Question 1	Question 2	Question 3
Comment Card	6/13/17	78704		Deep Eddy and Stacy (big and little) need to be continued - Stacy provides free swimming for more east Austin folks and local community and Deep Eddy provides both lap swimming into "spring water" (even when Barton Springs in flooded).	Pools like Northwest Pool and Gamison Pool need to be continued. Especially on weekends fa milies with folks of all ages and races enjoy time together in the large poolasopposed to Bartholomew where participants are segregated by age based on slides and other age-related special facilities.
Comment Card	6/13/17	78757	I confess that I haven't had a change to review the full plan, though I appreciate the attention given to neighborhood need. I wish there had been more time for questions Note: I worked for a city/county (not here) for almost 10 years and I know how much work goes into plans like this. Thank you!	An equitable distribution of highquality a quatic systems/services accessible to all. The system should be sustainable, so that Austinites of all ages can enjoy these facilities for years to come. Have these possible tools been considered to help financial susta ina bility? -concessions -bond measure- l'd vote forit! -increase the entry fee but develop kind of finance assistance program for those who need it	- Love the idea of a centrally located natatorium - particularly if it is opened yearround - Like others, I wish pools facilities were open more of the year - The pool system has the opportunity to be a crown jewel of Austin. It's boiling here for much of the years and it's a shame we can't use the system more extensively throughout the year. - Please save NW Pool. It draws an a mazingly and wonderfully diverse crowd - fare more diverse than its home neighborhood - and it would be a temible loss to let it go. We love it and summer wouldn't be the same without it. I'd say let Brentwood pool go if it would save NW.

Format	Date	Zp Code	Question 1	Question 2	Question 3
					-Any chance Austin could salinate vs chlorinate?
Comment Card	6/13/17	78750 (Anita Murray)			I was unable to see most of the presentation. This is the time I swim down the street at C a nyon Vista Pool. I have swam there with my fa mily for 31 years (in additional to swim lessons and swim team). Our pools have been a huge positive force in building community, encouraging families to be healthy, kids to join swim team, and welcoming to families who move to the City. The pools are a safe and healthy place for our kids. Springwoods Pool is an excellent place to swim all year: I (and my husband sometimes) swam there most every day of the winter. Aaron Levin has promptly responded to all my concems. Yes, there are issues but no insumountable. Please, please keep our pools open, safe and free. Balcones is also an excellent pool.
Comment Card	6/13/17	78759	Clanify that because a pool is in "red" it doesn't mean it's going to be closed tomorrow. Clanify how/when the big pools would/could be built.	Bleak. The number of neighborhood pools are what makes Austin special. All the great things about ourcity are being disappeared one-by-one. You'll close Northwest Pool and luxury condos will be built. Or another strip mall. Don't make us drive in traffic to get to a massive pool somewhere. Please.	Rank the pools by need. Renovate them one-by-one. Get community around each pool motivated. Get \$\$ from local businesses.

Pan Am Rec Center
 10am-12 noon
 Meeting Notes

1. Where's the balance of cost effic iency and clanity?

- Pools that have an entrance fee offset the cost per participant (Deep Eddy and Stacy compared to Bartholomew)

2. Can you increase the lap swimming at Bartholomew?

- That is one of the major c ritic isms, and it has been proposed

3. Can you clarify the weighing system?

- Some elements had more factors tha n others.

4. Isn't it chea per to have open outdoor facilities year round?

- Not necessarily due to the operationscosts and need for lifeguards and staff. Plus Attendance drops in the non-summerseason..

5. Why does Bartholomew have bad hours in the winter?

- The weather becomes an issue.

6. What happened to the ten-yearplan? It went from 30 to 20 yearplan.

- The Master Plan will addressa 30-20 year time frame.

7. If attendance is a sign of success, is Bartholomew "suc cessful" beca use there are no other pools in the neighborhood?

- Bartholomew is an example because it a facility that wasdesigned by the community.

8. Is there already a Master Plan that is planning to be used?

- There is a needs assessment, but there is not Final Master Plan.

9. Will our comments be considered?

- Yes.

10. What is the future of Mabel Davis?

- They are currently working with a contractor to identify scope of work.

11. Ramsey Parks - there is a low score on demographics, 20,000 annual attendance, it's $\$ 1.57$ a person and there are over 100 children on the swim team. Why is it in red?

- The red indicates site suitability based on 78 factors. It is not on the "chopping block' but rather a way to indicate the suitability based on the factors we measured.

12. My neighborhood pool sits in red - are these pools on the chopping block?

- It is possible that the pools will be closed, but if they are improved to a level of susta ina bility, they will rema in.

13. How do they determine if they can be improved?

- Through the baseline data, but the data is not available yet.

- As long as the pool serves at a sustainable level, it will remain open.

Spic ewood Springs Public Library 6:30pm to 8:30pm Meeting Notes

1. What makes a neighborhood worse?

- Tems of conditions
- Not a good candidate for investing further?

2. When I look at pool that is in the red, does that mean it is not a good candidate to invest further?

- If you had a blank slate on where to put a pool, that a rea might not be the best option

3. Is the draft available?

- Not yet.

4. Who is revising the Draft Plan?

- Staff, advisory board

5. Where are the details? Doesthe board not want the public to see the draft?

- The plan is a tool and guide to assist future decisions

6. At a past neighborhood meeting, a man said (regarding Bartholomew) that he didn't remember anyone asking how they wanted that pool to look? They didn't get input.

- 3 community meetings
- Specific ally asked for public input one would like to see at Bartholomew
- Went back to public a fter running into issuesduring construction
- Lifeguard said, "When school closes, there will be small kids a nd old people, but no longer a place for families."

7. Will the final draft go back to the PARD board?

- Yes

8. How are you prioritizing your process?

- Preparing cost estimates
- Priority: fix up what you have
- 2 pools c urrently in design a sa result of assessment.

9. If you close a neighborhood pool, what happens to that neighborhood?

- Master plan will recommend what we do with that space
- City has a lot of needs, the reason for the Assessment is so they have a tool that will help make decisions
- We will have to use this document to guide some diffic ult decisions

10. Why are the Ramsey and Reed numbers the same?

- Close together, but they are in a floodplain. Numbers should be different and will be changed.

11. Is the Parks system budget based on a percentage of the taxesthe city takes in? Do they get more money as the taxes go up?

- Not based on percentage, it's from the City General Fund
- Based off of needs
- Increased based on needs, and increase on cost of living
- Present and make casesfor needs

12. Given the ovemuns on maintenance forthe past 5 years, if you were to continue to spend just the money you needed to spend to keep open the 51 pools we have, there's no way we would get a new pool or lovely facilities?

- We could not have kept the system operating if we did not have the bonds

13. The way Friends of Deep Eddy have offset their costs, is there a possibility that every neighborhood gets sp onsors for their neighborhood pool?

- Always looking for altemative funding
- Friends of Deep Eddy - a great partner, a good example
- The dollaramounts needed are very large

JodiJay of the PARD Aquatic Staff responded: "We would tread lightly with something like that because it could create inequity."
What if you have a failing pool and there is community effort to raise funds, is this just throwing good money after bad? Would you be able to advise against throwing that money down the drain?

- Biggerdecisions have to be made

14. Is there a realistic timeline on each individual pool and how each assessment comes into play?

- Givens and Shipe - repairs have been made because of the bond

15. Considering bond issue?

- We are.

16. Have you prionitized what you might request?

- Bond team is working on it, thoughts have been submitted.

Meeting Pictures

FactSheet

* kapy pred Cobisos num eve alpridie
o meved Mon mog hin nen

 Awylobed Aal
 sanes propars

Set surpily L

$\xrightarrow{\mathrm{N}} \mathrm{H}$

 Bo fovivatiol I yes Gvan le

vell Esilt Silk tir mat

vat of dualc halit cassixime

кент Mul heppanin?

fiak Felons selel! 10bersatesiger

Anai wincladmalniwasen

 in mins

 ofevols xember

LutES:IFWD

 A,Nop do lockens havor

A
8024
No y H 人

 rnawle gu ine m vocinelle wit rquewlin

 Naplavika

 splowideldivis.

$\begin{aligned} & \text { hasent } \end{aligned}$	ners	Trosenas	Memblay		Shatrons	
2						
ถी\%	[\|大51]	M15	IFEM	20	VEM	MTE
	Ifict	655	ठ1\%	V1	ถग!	110 ही?

1-vi winice molalensev

Invitation

SWIM 512 AOUATIC MASTEE PLAN DEYELOPMENT UPDATE
Findingr, Opportuntias, \& Futare Recorwnondations
 Sewien and Cacuswnt

SATURLAY.JULE $10 @ 10.50 \mathrm{IM}$ Pan An Rec Cemer 2100 t . Jrd 5 t
Assin Texas $78 J 0 L$
TUESOAY. JME TGes30 PM spakenood Spengs Library 3637 Sokewocd Spings fid
 AT 7.00 PM

HELP CREATE THE FUTUF OF UISTIKS PUERIC PJOL FROLITKS

Stha us on emer wivsigo asstinheamger

人11)] 18

 minvion4-5-5in \square

SWIM 512 PLAN MAESTRO ACUAATICO ACTUALLZACLION UE DESARBOLLO

Oetewnhachisner, Oportanidsoier, 4 Seccomendaclones

Fuburas Pera Rovlaw y Camender

 F jtan

Pen 2 m fec Center
2100 E. 3rd $5 t$
Auntis, Texes 78702
Gonder y y ion dicarnibe/

Sploewood spings Lidrery
E537 Spicewocd Soringe Rd
Auntin, Texas 78TS?
Mionilial y ellou Sinatinity?
 : Mexnolis comes ALAS 7:BOPM

Suty19 PMosin

Please share your thoughts on the Draft Aquatic Master Plan! Please leave this comment card at the registration table.

Are there any parts of the Aquatic Master Plan that need clarifying?

What does the future of Austin's aquatic systems and pools look like to you?

Please share additional comments or questions here.

Porfavor, comparta su opinión sobre el Plan Maestro Acuático. Porfavor, deje su ta jeta de comentarios en la mesa de registro.

Cuáles aspectos del Plan Maestro Acuá ctico necesitan mas cla rific ación?

En su opinión, cómo vesel futuro de losinstalaciones de piscina en Austin?

Favor de compartir sus comenta rios a dic ionales.

APPENDIX D - PUBUC INVOLVEMENTPLAN (PIP)

CITY OF AUSTIN AQUATICS MASTER PLAN PUBLC INVOLVEMENTPLAN (PIP)

Submitted By
Brandstetter Carroll Inc . And Adisa Communic ations

This page intentionally blank.

The City of Austin Parks and Recreation Department (PARD), and the consultants with whom it haspartnered for an Aquatics Master Plan to be conducted in 2015 are committed to an open, inclusive, proactive and transparent program of public engagement. This Public Involvement Plan (PIP) formsthe basisfora common a pproach to communic ations and outreach. It includes goals and objectives to be achieved and strategies and tactics to be deployed by City staff, members of the consultant teams, and other communication partners as appropriate.

D. 1 Goals and Objectives

Goal 1

To provide users, neighbors, and other direct stakeholders served by each existing pool facility with sufficient opportunity to contribute their input to the City of Austin and its consultants to inform and help shape the results of the Master Plan:

Objective 1-A

Utilize and expand upon the extensive community engagement gained through the SWIM 512 process and utilize the stakeholder contacts from this process in further engagement strategies.

Objective 1-B

Informing stakeholders about the Master Plan; the processes and timelines; the goals, objectives and anticipated outcomes; and their ongoing progress.

Objective 1-C

Collecting stakeholder input that aids in assessing and defining current characteristics, conditions and needs of each district.

Objective 1-D

Collecting stakeholder input that aids in developing a vision that defines the desired physical, functional, aesthetic and cultural character of each district.

Objective 1-E

Collecting stakeholder input to aid in identifying enhancement needs, including recommendations for policy measures, capital investments, and opportunities for collaboration with both public and private partners.

Objective 1-F

Presenting recommendations for public comment, review and feedback.

Goal 2

To ensure that traditionally underrepresented and hard-to-reach populations and groups have sufficient opportunity to engage in the Master Plan process. This goal will involve using targeted and customized outreach strategies to ensure opportunities to partic ipate for populations and groupsincluding the following:

Objective 2-A

Environmental justice (EJ) populations.

Objective 2-B

Non-profit, faith-based and other community-serving organizations and their clients.

Objective 2-C

School communities (students, parents and staff) for campuses served by each facility. Utilize AISD and PTA contacts established in the SWIM 512 Process.

Goal 3

To ma intain communic ationsand outreach between the City a nd itsconsultantsa nd otheraquaticsproviders, govemment agencies, and key public and private partners, including:

Objective 3-A

Targeted outreach to public officials and key decision-makers to inform them of Aquatics Master Plan goals, objectives, antic ipated outcomes, process and timeline.

Objective 3-B

Coordination and collaboration between the City a nd otheragencies, providersand partnersto leverage the use of the various available communic ations channels and outreach opportunities.

Goal 4

To communicate and enable opportunities for input for interested citizens throughout the City through a ppropriate engagement and outreach strategies, including:

Objective 4-A

Informing the public of the purpose and need, process and outcomes for the Aquatics Master Plan and their relationship to the Needs Assessment and the City'soverall mobility polic ies and programs.

Objective 4-B

Providing information and opportunities forengagement for recreational/a quaticsadvocates and other communities of interest that align with the pupose and need of the Master Plan.

Goal 5

Utilize and expand upon the extensive community engagement and contacts gained through the SWIM 512 Community Conversations, Neighborhood Talks, Community Focus Groups, and Community Survey, and utilize the stakeholder contacts from this process in further enga gement strategies.

Objective 5-A

Analyze and utilize the results of the Community Conversations and Neighborhood Talks in the identification of community preferences and identification of alternative scenarios

Objective 5-B

Utilize the Community Preference Survey developed by Dr. Cortez to identify community preferencesand prionties.

Objective 5-C

Incorporate the stakeholder lists and AISD contacts in further public engagement.

Objective 5-D

Utilize the findings of the Service-Learning Project in the establishment of scenarios to serve Austin.

D. 2 Aquatics Master Plan Stakeholder Groups and Resources

The Technical Advisory Group* (TAG) is primarily City staff a nd would include representatives from the following groups/agencies/departments:

- Watershed Protection to address water quality issues and City of Austin existing conditions, such as regulatory and ordinances and emptying to creeks. The person may be Liz Johnson from this group. She is also involved in the Govalle and Shipe projects.
- The Land Development Group is part of Public Works and is involved in the City of Austin permitting. They will identify some of the ramifications of any new or re-developed areas.
- Imagine Austin and Code Next is a big picture organization with emphasis on codes and zoning.
- The Austin Office of Sustainability with a role of environmental awareness. The person representing this group will be Angela Hanson.
- University ofTexasAquatic sa nd CharlesLogan will provide theirtechnic al expertise on pool operations and would be a possible renter of facilities.
- AISD is a potential partner in the use of the pools.
- A pool a quatics specialist from the construction industry is a nother potential partner.

The Aquatic Advisory Board* (AAB) is an existing committee of intemal sta keholders with a thorough understanding and history of engagement with the pools and programs. There are seven members.

Technical Team* (TI) is primarily the PARD Aquatics Division staff which will review the details and operations of maintenance part of the planning as well as designs. This will include Rey Hemandez, Cheryl Bolin, Wa yne Simmons, Pedro Patlin, the Aquatics Supervisor, Paul Slutesof Ma intenance, George Molda na do from Facility Services, and Mr. Elbert who leads maintenance.

District Representatives Group (DRG) - There will be one representative from each of the Council Districts.

BCI Consultant Team - The contracted consulting team consisting of Brandstetter Carroll Inc., Arc hitecture Plus, Adisa Communications, J ப Enterprises, and Chan \& Partners LC.

SMM 512 Process - PARD contracted with Dr. Laura Cortez of C ortez C onsulting Servic es prior to the Master Plan contract being a warded. The purpose of herteam's engagement was to start the process while the 2015 summer swim season was still open and to engage users. The SWIM 512 process also included: facilitation of focus groups, community conversations, neighborhood talks, assistance in establishing the District Representatives Group, AISD presentations, a service leaming project to identify national trends in aquatics, and development of a survey instrument which could be used by the Consultant Team as part of the public engagement process.

Austin Public Information Office (COA-PIO) will assist with promotion of the public engagement process and development of a video of the existing conditions.

PARD Public Information Office (PARD PIO) will work with the Consultants and Master Plan Team in the promotion of the public engagement process and logistics for public engagement meetings.

Master Plan Team* - The MasterPlan Team is comprised of the Aquatic Advisory Board, Aquatic Division Tec hnic al Team, and the Technic al Advisory Group.

D. 3 Strategies and Tactics

Stakeholder Outreach

This strategy includes all activities that are specifically targeted to defined individual stakeholders and groups of stakeholders, such as neighborhood groups, business groups, adjacent property owners, elected officials and the groupsserving them, etc. Thisoutreach will be a vital component of the overall engagement strategy for the Master Plan and is intended to complement and enhance engagement opportunities designed for broad public participation (see Strategy 2 below). Tactics to be deployed include:

1. Developing stakeholder databases and contact lists. Initial lists of identified stakeholders for each District will be developed by the PARD and Consultation teams with input from the City. These lists should include sufficient coding to identify particular stakeholder groups, allowing for multiple codes for individual records. All persons who would receive standard notification of a City land-use action (e.g., adjoining property owners, identified registered neighborhood groups) should be included and appropriately coded in stakeholderdatabases. Members of the public who sign up to participate online or in person should, where possible, be appropriately coded as stakeholders. Partic ipants in the SWIM 512 process from the Community Conversations, Neighborhood Talks, and Community Focus Groups will be included in further engagement. Sta keholder lists and databases should be maintained using tools and systems that allow for interchange of data as necessary between City and Consultant teams.
2. Individual and small-group meetings with identified stakeholders. These include meetings hosted by the City and consultant teams to which identified stakeholders are invited, or those (e.g., neighborhood association meetings) held by stakeholders to which the Aquatics Master Plan team is invited. In either case, a presentation and disc ussion guide should be developed to a llow forconsistent, structured input by all participating stakeholders. Detailed notesfrom these meetings should be prepared aswork product for internal use by the City and consultant teams; input received should be summarized for public use. These meetings can include efforts to reach traditionally underrepresented and hard-to-reach populations as described in Goal 2 above.
3. Targeted information pieces. Both print and electronic should be developed as needed to supplement general project communications and address issues of specific relevance to defined stakeholder groups. These pieces should be developed to be consistent in look, feel, and tone with general project communications.
4. Technic al Advisory Group meetings. This group will serve asa working group to provide input in the details of the Aquatics Master Plan.

Public Outreach

This strategy includes activities that are intended to be accessible to all interested citizens, even if those activities are programmed to emphasize the needs and interests of specific groups. Tactics include:

1. Initial Public Meeting to be Held City-Wide

This meeting should use an open-house format to communicate the purpose and process of the Master Plan, allow partic ipants to sign in and sign up to receive ongoing project updates, and collect feedback and input using standardized techniques (e.g., comment forms). Meeting notices (including print and electronic mailings, flyers, posters and push cards for distribution in the study area); letters to public officials; and media release announcements to publicize these meetings should be distributed with sufficient notice to maximize participation. All records of participation and comments received should be documented and made available for intemal use and summarized for public use. The primary purpose of this meeting will be part of the process to identify community values and priorities.

2. Participation in other Public Meetings

Opportunities for outreach provided by other public meetings and events in the Aquatics Master Plan areasshould be leveraged where appropriate. These could include meetings being held aspart of other City or partner a gency initiatives or other types of community events. Exhibits developed for open-house
meetings, comment forms, and other such tools should be used. Participation should be documented and summarized as is feasible.

3. Public Workshops on the Aquatic s Master Plan

A series of public workshops will be held to assist the City with planning for the Master Plan by engaging stakeholders and users of the system. These widely publicized meetings can be held in the quadrants of the City in order to encourage participation. Topicscan include:

- Community Values
- Aquatics System Needs Assessment Results
- Altemative Aquatics Service Delivery Scenarios

4. Final Public Meeting (Draft Plan presentation)

A final public meeting of the Aquatics Master Plan will be held to present draft recommendations and allow for public feedback and comment. The format of this final public meeting, including the techniques used to collect feedback, should be determined as appropriate for the Master Plan, aslong as this feedback is adequately collected, documented, and summarized. Notification and outreach to encourage participation should be conducted asoutlined above.

5. Presentation to City Boards, Commissions, and City Council

The City Aquatics staff and consultant teams will conduct outreach as needed to support public awareness as well astake advantage of opportunities to engage City boards and commissions through briefings and presentations.

Print and Electronic Communic ations Materials

The City and consulta nttea mswilldevelop necessary printa nd elec tronic materia lsforongoing communic ation and education about the Master Plan to both general and specific audiences. Tactics include:

1. General interest list

Interest liststo be used fordistribution of print a nd electronic materials should be maintained in conjunction with stakeholder databases asdescribed in Strategy 1.

2. Fact sheet

Update the existing fact sheet template with consistent branding and messaging.

3. Website

Information for Master Plan will be hosted, maintained and made available at PARD website.

4. Initial Paper Survey

To be administered at community meetings in a face-to-face environment throughout the first 2-3 months of outreach. For the paper survey, the process would use the questions from the SWIM 512 Community Preference Survey. Dr. Cortez will be responsible for providing a final version of the Community Preference Survey in both English and Spanish based on the input provided from PARD and the BCI Master Plan ConsultantTeam. Adisa would be responsible foradministering the survey. The City would be responsible for compiling the results. Resultsfrom the papersurvey are intended to bolsterminority and underrepresented populations' participation, partic ularly in East and South Austin.

5. Online/Electronic Survey

To be administered as part of the Master Plan during the Scenario Selection phase of the project. Adisa would work with the City of Austin to develop, administer, a nd compile results from the online survey.

D. 4 Roles and Responsibilities

Generally, responsibility for activities to implement this PIP will be allocated between the City and the consultant team as outlined below.

City of Austin Staff

- Stakeholder identification, including provision of customary City notification lists
- Coordination of dates and locations for public meetings
- Preparing questionnaires, discussion guides, sign-in-sheets, comment forms, etc. for use in public meetings
- Distribution of meeting notices, letters to public officials, media releases
- Maintenance of web presence

Consultant Team

- Public involvement plan
- Stakeholder identification and database development / ma intenance
- Interest list (mailing list) development and maintenance
- Exhibits for public and stakeholder meetings
- Staffing and logistics for public and stakeholder meetings
- Development of meeting notices, letters to public officials, media releases
- Documenting participation and input received at public meetings
- Development of print and electronic communications materials and Web content

D. 5 Anticipated Public Involvement Timeline

November - December 2015	- PIP development - Materials/Web development - Initial stakeholder database and interest list development - Planning/logistics for first public workshop - Initial sta keholdermeeting - Kick off with Aquatic sAdvisory C ommittee and Master Plan Team - Focus Groups (by Dr. Cortez)
J a nuary 2016	- Process Plan presentation and approval
February 2016	- Promotion of Workshop and Stakeholder Meetings - Distribution of Community Preference Surveys - Launch SpeakUp Austin Questions

March 2016	- Public Workshop \#1 - Plan Overview and Community Values - Distribution of print/electronic information materials - Additional stakeholder data base and interest list development - Additional stakeholder/public meetings as needed
April - J une 2016	- Meetings with Technical and Council Advisory Groups, Master Plan Team - Print/electronic project updates - Web content - Illustrate Altemative Scenarios (May) - 4 Regional Public Workshops - Altemative Scenarios (J une) - Launch online survey regarding scenarios
J uly - August 2016	- Preliminary Recommendations - Meetings with Technical and Council Advisory Groups, Master Plan Team - Draft Action Plan (August) - Public Workshop \#6 - Draft Master Plan (August)
September - October 2016	- Goals, Objectives and Strategies - Action Plan - Print and electronic project updates - Review by Master Plan Team and Input Groups - MasterPlan presentation to City boards, commissions, and City Council

This page intentionally blank.

Figure D-5: Project Schedule

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Phase / Task \& October \& November \& ber \& January \& February \& March \& pri \& Ma \& June \& July \& August \\
\hline \multicolumn{12}{|l|}{Process Development Phase} \\
\hline \begin{tabular}{l}
Prepare a Process Plan / Schedule and review with PARD Staff; Refine Scope of Services \\
Review current directions, policies, goals, objectives and reactions to the Needs Assessment with PARD Staff and Master Plan Team \\
Prepare a Preliminary Public Engagement Plan in cooperation with the COA-PIO \\
Aquatics Advisory Board Approval of PIP (12/1/2015) \\
Park Board and Land, Facilities \& Programming Sub-Committee Meetings \\
Technical Memorandum No. 1 to summarize previous steps. \\
PARD Aquatics Master Plan Team review meeting
\end{tabular} \& \& \(\square\) \& \[
\square
\] \& \(\circ\)

\square \& \& \& \& \& \& \&

\hline \multicolumn{12}{|l|}{Planning Context Phase}

\hline | Review AquaticsNeedsAssessment |
| :--- |
| Review of demographic changes, neighborhood conditions, interests, and prionities |
| Disc ussions with PARD Staff to assist in the following: |
| Faciitate a SWOC Analysis with PARD Staff |
| Review Aquatic Programs attendance, costs, locations, etc. |
| Review operations and maintenance practices |
| Identify health, safety and welfare issues |
| Identify existing environmental concems and susta inability BMP's |
| Analysis of current use agreements and partnerships |
| Stakeholder Gropus Orientation Meeting (orientation \& identify HSW, environmental, and sustainab Technical Memorandum No. 2 to summarize previous steps. |
| PARD Aquatics Master Plan Team review meeting | \& bility conc \& \& \& \square \& \square \& \& \& \& \& \&

\hline \multicolumn{12}{|l|}{Stategic Vision, Goals and Objectives Phase}

\hline | Initial City-wide Public Workshop |
| :--- |
| Implement SWIM 512 Survey |
| SpeakUp Austin, Web Engagement, |
| Communty Stakeholder Groups |
| Prepare a Draft Vision, Goals, and Objectives |
| Technical Memorandum No. 3 to summarize previous steps. |
| PARD Aquatics Master Plan Team review meetings |
| PARD Park Board and Land, Facilities \& Progra mming Sub-Committee Meeting | \& \& \& \& \& \& $\stackrel{\pi}{*}$ \& \& \& \& \&

\hline \multicolumn{12}{|l|}{Preliminary Analysis and Recommendations Phase}

\hline | Identify altemative scenarios for the overall Aquatic system |
| :--- |
| Review with PARD Aquatics Master Plan Team |
| Identify and refine stakeholder/usergroups and neighborhood groups based upon impacts |
| Conduct second round of Stakeholder Meetings (Estimated ten meetings) |
| Review meetings with AAB, DRG, TAG |
| Regional Public Workshops (4 meetings) |
| Prepare a Draft Preliminary Recommendations Report (Technical Memorandum No. 4) |
| Review meetings with the PARD Master Plan Team, AAB, DRG, Tech Team |
| Public presentation of Preliminary Recommendations |
| Public review of Preliminary Recommendations |
| AAB, TAG, DRG, and Master Plan Team review |
| PARD Park Board and Land, Facilities \& Programming Sub-Committee Meeting | \& \& \& \& \& \& \& \& \square \& \& \square \& $\stackrel{\rightharpoonup}{*}$

\hline \multicolumn{12}{|l|}{Action Plan Phase}

\hline | Refine recommendations based upon review process |
| :--- |
| Prepare a Draft Action Plan (Phased Implementation Plan) |
| Prepare long term goals, objectives, and priorities |
| Prepare an Action Plan organized by Goals, Objectives, and Strategies, |
| Submit Draft Action Plan (Technic al Memorandum No. 5) |
| Review Draft Action Plan with PARD Aquatics Master Plan Team, AAB, DRG, Tech Team, TAG |
| PARD Park Board and Land, Facilities \& Programming Sub-Committee Meeting | \& \& \& \& \& \& \& \& \& \& \&

\hline \multicolumn{12}{|l|}{Final Master Plan Phase}

\hline | Refine Action Plan based upon review comments |
| :--- |
| Identify potential funding scenarios and mechanisms |
| Identify probable cost projections of recommendations (capital, revenues, and operations) |
| Prepare a Draft Master Plan to summarize all of the previous phases |
| Review of Draft Master Plan with PARD Aquatics Master Plan Team |
| Refinements based upon PARD Master Plan Team review |
| Land, Facilities \& Programming Sub-Committee and Park Board Presentation |
| Public Presentations | \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& and Facilities Abbreviations ard tives Group \& | mmittee; or |
| :--- |
| $\pi=A q u a$ TAG |
| TAG =Te | \& | rk Board P |
| :--- |
| Division Te |
| al Advisory | \& \& PARB

LF\&P \& Recreation lities and P \& ming Sub- \& nittee of PA \&

\hline
\end{tabular}

This page intentionally blank.

APPENDIX E - INDIVIDUAL POOL RECOMMENDATIONS AND COSTS

E. 1 Introduction

Appendix E provides more detailed information on the recommendations at each pool and serves as a supplement to Table 8.1 in the main report. The following are recommendations for improvements at each curently operating pool to keep them in operation forthe next ten to twenty yearsand beyond. This appendix provides a detailed summary of the recommended improvements to each of Austin's Neighborhood and Municipal Pools. General notes regarding pool and site recommendations are provided below before the more detailed recommendation by pool.

The criteria for each improvement are based on the pool classifications as described in Chapter 5 or regulatory requirements as described in Chapter 2 . As such, the costs are subject to change as a result of follow-up community input for each site. Recommendations are provided for the pool and deck (inside the fence), architecture (bathhouse and pump house), and for site (outside the fence - parking, access, utilities, environmental conditions, etc.). Architecture costs were prepared by Architecture Plus; site costs were prepared by Chan \& Partners Civil Engineering (see Appendix F for greater detail); and pool costs were prepared by BCI . Total costs for each site (bottom line of table) include an additional 30% to cover design and engineering, art, permitting, contract management,CIP inspections, PARD project management, etc.

The recommendations are presented in alphabetical order by the recommended pool classification. Because Bartholomew and Westenfield were recently redeveloped, their recommendations are more limited and have a slightly different format. Similarly, Govalle, Rosewood, and Shipe, which are currently undergoing redevelopment, are summa rize with projected costs at the beginning of the Neighborhood Pool section.

Each site discussion begins with a summary of the pool, site, and architectural recommendations, which is followed by a more detailed four-part discussion of site recommendations that includes specific recommendations for parking, access/connectivity, drainage, and water service. These four items represent the primary categories of site improvements related to the development of aquatic facilities outside of the
fence. This order represent the order in which a visitor will likely interact with or view the site.

E.1.1 Pool General Notes

1. All pool renovations will include replacement of the pool deck and addition of equipotential bonding to meet electrical code.
2. All wading pools will inc lude zero-depth entry.
3. All new or renovated pools should include water aeration systems that are easily accessed to cool the water.
4. All gravity filter systems will be replaced with high rate sand filters or regenerative media (reduced water usage).
5. Wi-Fi will be installed at each pool to allow for use in pool administration and communication, cash management, maintenance work orders, monitoring of chemical and water level controllers, and ideally for public use.
6. Plan forthe plumbing and electric al installation of UV systems in the future asthey may become required.
7. Utilize variable frequency drive (VFD) pumps for energy efficiency
8. PARD should continue to evaluate pool shell construction methods and options to meet their specific needs, as well as most preferred coatings.

E.1.2 Site General Notes

The site recommendations and coststypic ally include the following:

1. Bringing the number of parking spaces up to the minimum for the classification of recommended pool
2. Bicycle racks required
3. Parking improvements to paving, curbs, accessible spaces, a nd lighting
4. Driveway improvements
5. Sidewalks from the parking lot to the bathhouse entrance
6. Wayfinding signage
7. Stormwater detention and quality treatment required
8. Site grading and drainage
9. 4" water service for domestic and pool use
10. $2^{\prime \prime}$ water service for imigation
11. Fire hydrants near the bathhouse with 8 " water service
12. 8" sanitary wastewater service

Access/Connectivity

1. Relocated or rebuilt pools or bathhouses may trigger Access/C onnectivity Criteria: COA Sub-C ha pter E ordinance may require improved facilities to be required to be asclose to the street as possible and a shaded path provided between site elements.

- Accessible pedestrian and bicycle connections from adjacent street right-of-way to bathhouse entrance
- Sidewalks with shading from the street night-of-way to the bathhouse entrance

2. General Access/Connectivity Improvements: Install new door and wayfinding signage.

Buildings General Notes

1. If the existing pool size remains the same, the existing number of plumbing fixtures can by code remain the same.
2. If the existing pool is modified or enlarged, calculations for new plumbing fixtures required are based on 1 person per 50ft2 of water which has been acceptable to the Local Authority Having J urisdiction (AHJ) recently in other COA pool replacements.
3. The required number of plumbing fixtures is calculated per the Texas Department of State Health Services (DSHS) 25 TAC, 265.201(f)(1).
4. While it is not noted on each pool bathhouse, the existing plumbing fixtures on the whole do not meet current ADA requirements.

E. 2 Regional Aquatic Centers

Two types of Regiona I facilities are recommended, which will vary greatly based upon the capabilities of the site and the desired features of the region of the City. The primary difference between the type types will be the presence of 50 -meter length for the larger facilities, which lends to more fitness, exercise, and
competition uses. Both typeswould include a room for party rentals, training, and meetings. More details can be found in Chapter 5.

Typic al Regional Aquatic Center Features

- Group Pavilion
- Shade
- Training
- Party Room
- Concessions
- Offices/space
- Storage
- Bathhouse/Fa mily Restroom
- Water play features per community input

E.2.1 Bartholomew

New construction, not a part of this report.
Final project cost including all Change Orders, General Conditions, Bonds, Fee, etc.
\$5,766,121.11

Site Recommendations (1800 E. 51st Street)

1. SPC-2011-0320C

- Bartholomew Pool was recently renovated under City of Austin Site Development Permit SPC-20110320C and reopened in June of 2014. According to the SPC-2011-0320C permit drawings:
- Parking: 153 standard spaces +6 accessible spaces +18 bic ycle spaces

2. Access/Connectivity

- Sidewalk along north side of East 51st Street, tree shaded adjacent to pool facility imp rovements
- Sidewalk along main entrance driveway connecting 51st Street ROW
- Pedestrian and bic ycle connection from adjacent parkland
- Limited curb cuts

3. Drainage

- Existing stormwater detention pond
- New water quality treatment pond for 40.89% impervious cover at minimum required capture depth of 0.71 ". Required Water Quality Volume (WQV) $=3840.2$ cf; provided WQV $=5287.0$ cf.

4. Water Senvice

- 4" tap into existing water main along East 51st Street, 4" water line, 4" domestic water meter with backflow preventer
- 2" tap into existing 6" reclaimed water service off the reclaimed water main along East 51st Street, 2" irrigation meter with backflow preventer
- Existing 2 fire hydrants off water mains along East 51 st Street, on south side of roadway, directly across street from pool facility

5. Other Recommendations

No site civil improvements outside the pool perimeter fence are required, unless new/redeveloped impervious cover is created associated with pool improvements. If there is new/redeveloped impervious cover associated with pool improvements, then:

- Construct flow splitter structure, _ cf detention volume structure, _ cf water quality treatment structure, and outfall structure for _ sf of new/redeveloped impervious cover
- Construct area inlets and 18 " stom drain collector piping to collect runoff from the pool improvements
- Construct site grading to drain runoff to storm drain inlets

E2.2 Balcones

Pool Recommendations

- Upgrade and expand the poolto serve asa Regional 25 Meter Aquatic Center
- Completely reconfigure the pool to develop a Regional Family Aquatic Center similar to the model provided in Chapter 5

Site Recommendations

- Expand parking to 150 spaces
- Provide accessible pedestrian and bicycle access from right-of-way
- Provide new utility connections (domestic water, irrigation water, sanitary, fire line and hydrants)
- New driveway
- Install stormwater system and detention

Existing Architectural Features

- Group Pavilion: None
- Shade Structure: No built structures, a few large trees.
- Training/ Party Room: None
- Concessions: None, used by staff for storage
- Office: None
- Storage: Approx. 40sf (former guard/ admission counter) Space is inadequate for staff work
- Bathhouse/Family Restroom: No ADA or fa mily restroom
- Pump House: Separate building

Building Repair Rec ommendations

- Roof in need of immediate replacement.
- Paint all exterior trim.
- Stall partitions in need of replacing
- Recommend installing stainless steel plumbing fixtures
- Shower fixtures in need of replacing
- Accessories in need of replacing
- Lights in need of replacing
- Doorand frames in need of replacing
- Building in need of refurbishing
- Add Training/ Party Room
- Add Concessions
- Add Offices
- Add ADA and family restrooms
- Pump house in need of immediate roof replacement
- Pump house needs exterior trim painted immediately and light fixtures replaced

Building Recommendations

- Total pool replacement recommended. Major refurbishment of existing building. Construct new building to provide missing features.

	Existing (SF)	Proposed (sf)	Renovation/ Addifion Est, Cost
Deck	3,501	14,000	$\$ 210,000$
Pool	4,583	9,000	$\$ 1,800,000$
Pool House (to include a training/ party room, concessions, office and 2 new family restrooms)	1,240	4,500	$\$ 600,000$
Pump House	580	2,500	$\$ 250,000$
Total Impervious Cover	9,904	30,000	$\mathrm{~N} / \mathrm{A}$
Total Site Costs			$\$ 2,850,000$
Construction Cost Totals			$\$ 5,710,000$
Total with Owner Costs (add 30\%)			$\$ 7,423,000$

Bathhouse Plumbing Fixture Requirements (Verify with Health Department)

	Approximate sF	Toilet	Uinal	Lavatory	Shower
Existing					
Men	900	1	2	2	2
Women		3	0	2	2
Required per existing pool configuration (92 Occupants)					
Men	-	1	1	1	1
Women		1	0	1	1
Required when pool is replaced (180 Occupants)					
Men		1	1	1	1
Women		2	0	1	1

Site Recommendations (12017 Amherts Drive)

1. Parking

a. Existing Parking

- 69 standard spaces
- 3 accessible spaces with 1 access aisle space
- 4 bicycle racks
b. Parking Criteria: $\mathbf{1 5 0}$ spaces minimum (existing $\mathbf{6 9 + 3}$)
- 150 parking spaces requires 5 accessible parking spaces
- 150 parking spaces requires 8 bicycle parking spaces ($5 \% \times 150$ spaces) +1 for Sub-Chapter E (additional 10\%) $=9$ total

c. Parking Recommendations

- Expand curbed parking from 73 spaces (69 standard spaces +3 accessible spaces +1 access a isle space) to 153 spaces (145 standard spaces +5 accessible spaces +3 access aisle spaces) $=$ a pprox. 33,120 sf (80 spaces $\times 414 \mathrm{sf} /$ space) expansion to the west of the existing parking lot.
- Construct 2 new accessible parking spaces + access aisles adjacent to the existing accessible space in front of the ma in entrance. Restripe existing accessible parking space with added access a isle. Add new signage to 3 accessible parking spaces.
- Remove the existing bicycle rack blocking sidewalk and install 2 new bicycle racks for total 9 bicycle spaces.
- Install wheel stopsto 3 accessible spaces.
- Install 7 (80 spaces $\times 0.08$ lights/space) new parking lot lights.

2. Access/Connectivity

a. Access/Connectivity Criteria: Sub-C hapter E

- Accessible pedestrian connection from Amherst Drive ROW to front entrance
- Accessible bicycle connection from Amherst Drive ROW to front entrance
- Accessible pedestrian connection from accessible parking to front entrance
- Accessible pedestrian and bic ycle connection from front entrance to existing site trails
- Accessible pedestrian and bic ycle connection from front entrance to adjacent properties (Duval Road, Scribe Drive, and Stony Drive)

b. Access/Connectivity Rec ommendations

- Construct new 40^{\prime} wide two-way driveway (reinforced concrete within Amherst Drive ROW and asphalt outside the ROW), with curb and gutter, from Amherst Drive to parking lot, including 8' wide bike lane.
- Construct new 5^{\prime} wide accessible sidewalk from accessible parking spacesto front entrance.
- Construct new 5' side sidewalk from Amherst Drive ROW sidewalk to front entrance along main entrance drive with tree shading.
- Construct new 10^{\prime} wide granite gravel connections from front entrance to existing hike \& bike trails.
- Construct new 10^{\prime} wide granite gravel pedestrian and bicycle accessconnection to Duval Road sidewalk, to Scribe Road sidewalk, and to Stony Drive sidewalk.
- Install wayfinding signage

3. Drainage

a. Drainage Criteria

- Provide stormwater detention for increased Q2 - Q100 peak flows created by runoff from new imperviouscover
- Provide stormwater quality treatment for runoff from new impervious cover
- Provide site grading, stormwater curb inlets in the parking lot expansion, storm drain piping to stormwater detention/water quality treatment flow splitter structure and discharge piping and outfall struc ture
b. Drainage Recommendations
- New/Redeveloped Impervious Cover.

Parking Expansion	33,100	sf
Exterior Sidewa lks/ Flatwork	3,800	sf
Pool Decks	14,000	sf
Build ing Roofs	7,000	sf
Total IC for Detention and WQ	57,900	sf
Pool	9,000	sf

- Construct flow splitter structure, $11,580 \mathrm{cf}(0.20 \mathrm{cf} / \mathrm{sf}$ of IC) detention volume structure, 6,280 cf (IC x 1.3") water quality treatment structure, and outfall structure for 57,900 sf of new/redeveloped imperviouscover
- Construct 10^{\prime} curb inlets and 18 " storm drain collector piping within the parking lot expansion
- Construct site grading to drain runoff to storm drain inlets

4. Water Service

a. Water Senvice C riteria

- Provide 4" water line/meter for domestic water service
- Provide 2" water line/meter for imigation water service
- Provide 2 fire hydrants close to the building and 8 " fire line
- Provide 8" wastewater line for wastewater service

b. Water Senvice Recommendations

- Construct new 4" tap into new 8 " fire hydrant lead that taps into water main along Amherst Drive, install 4" domestic water meter with backflow preventer within Amherst Drive ROW, install 4" domestic waterpipe to pool site.
- Construct new 2 " tap into new 8 " fire hydrant lead that taps into water main along Amherst Drive, install $2^{\prime \prime}$ irrigation meter with backflow preventer within Amherst Drive ROW, connect to site imigation system.
- Construct new 8" tap into water main along Amherst Drive, install 8" backflow preventer within Amherst Drive ROW, install 8 " fire hydrant lead pipe, install 2 fire hydrants near the pool site.
- Construct new 8 " wastewater pipe from pool site to wastewater main within Amherst Drive, install new 48" manhole at connection to wastewatermain.

E.2.3 Ganison

Pool Recommendations

- Upgrade and expand the poolto serve asa Regional 50 MeterAquatic Center
- Replace the main pool tank but maintain its general configuration
- Add a slide and climbing wall (or selected amenities percommunity input) to the main pool
- Replace the wading pool with a more fa mily-oriented ac tivity pool with interactive waterplay features
- Replace the pool deck

Site Recommendations

- Expand parking to 150 spaces
- Provide accessible pedestrian and bicycle access from right-of-way
- Provide new utility connections (domestic water, irrigation water, sanitary, fire line and hydrants)
- New driveway
- Install stormwater system and detention

Existing Architectural Features

- Group Pavilion: None
- Shade Structure: None, other than some perimeter trees
- Training/ Party Room: None
- Concessions: None, One soda machine in an enclosed building which can be closed off with a garage style door
- Office: None, Existing admission/ ticket area: Approx. 400 sf
- Storage: Existing vending/ storage: Approx. 300 sf
- Bathhouse/Family Restroom: No ADA or fa mily restroom
- Pump house: Below the pool

Building Repair Recommendations

- Roof and soffit in need of replacing
- Tile finish is in need of replacing
- Toilet partitions in need of replacing
- Stainless steel toilet and lavatory plumbing fixtures could be re-used
- Shower fixtures in need of replacing
- Accessories in need of replacing
- Lights in need of replacing
- Doorand frames in need of replacing
- Building in need of painting and refurbishing
- Add Group Pavilion
- Add Shade Structure
- Add Training/ Party Room
- Add Office
- Add ADA and Family Restrooms
- Pump house needs extensive envelope and roof maintenance and repair
- Doors and wall louvers of pump house need replacing

Building Recommendations

Major renovation of existing facility, gut all non-structural interior walls, fixtures and furnishings. Construct an addition as required to provide ADA compliance and family toilet, existing open area dressing areas to be roofed, buildings to repainted and refurbished.

	Existing (S7)	Proposed (sf)	Renovation/ Addlition Est, Cost
Deck	8,118	14,000	$\$ 210,000$
Pool	14,486	14,000	$\$ 2,800,000$
Pool House (to include a training/ party room, concessions, office and 2 new family restrooms)	1,250	4,500	$\$ 800,000$
Pump House	575	3,000	$\$ 250,000$
Total Impervious Cover	24,429	35,500	
Total Site Costs			$\$ 3,480,000$
Construction Cost Totals			$\$ 7,540,000$
Total with Owner Costs (add 30\%)			$\$ 9,802,000$

Bathhouse plumbing fixture requirements (Verify with Health Department)

	Approximate $\mathrm{SF}^{\text {F }}$	Toilet	Uhinal	Lavatory	Shower
Existing					
Men	550	1	2	2	1
Women		3	0	2	1
Required per existing pool configuration (290 Occupants)					
Men	-	1	2	2	2
Women		3	0	2	2
Required when pool is replaced (280 Occupants)					
Men	-	1	2	2	2
Women		3	0	2	2

Site Recommendations - If not used for an indoor facility (6001 Manchaca Road)

1. Parking

a. Existing Parking

- 36 standard spaces
- 3 accessible spaces with 2 access aisle spaces
- 0 bicycle racks
b. Parking Criteria: $\mathbf{1 5 0}$ spaces minimum (existing $\mathbf{3 6}+3$)
- 150 parking spaces requires 5 accessible parking spaces
- 150 parking spaces requires 8 bicycle parking spaces ($5 \% \times 150$ spaces) +1 for Sub-Chapter E (additional 10\%) $=9$ total
c. Parking Recommendations
- Expand parking from 41 spaces(36 standard spaces+3accessible spaces + 2 accessa isle spaces) to 153 spaces (145 standard spaces +5 accessible spaces +3 access aisle spaces) $=$ approx. 46,368 sf (112 spaces $\times 414$ sf/space) expansion to the north of the existing parking lot.
- Construct 2 new accessible parking spaces + access aisles adjacent to the existing 3 accessible
spaces. Restripe existing 3 accessible parking spaces. Add new signage to existing 3 accessible parking spaces.
- Install 5 bicycle racksfor 9 bicycle spaces
- Install wheel stopsto 5 accessible spaces
- Construct 2,600 If (153 spaces $\times 17 \mathrm{lf} /$ space) of new curbs a round perimeter of parking lot
- Install 9 (112 spaces $\times 0.08$ lights/space) new parking lot lights

2. Access/Connectivity

a. Access/Connectivity Criteria: Sub-C hapter E

- Accessible pedestrian connection from Manchaca Road ROW to front entrance.
- Accessible bicycle connection from Manchaca Road ROW to front entrance
- Accessible pedestrian connection from accessible parking to front entrance
- Accessible pedestrian and bic ycle connection from front entrance to existing site trails
- Accessible pedestrian and bicycle connection from front entrance to adjacent properties (Parkside Lane)

b. Access/Connectivity Recommendations

- Constructnew 40' wide two-way driveway (reinforced concrete within Manchaca Road ROW and asphalt outside the ROW), with curb and gutter, from Manchaca Road to parking lot, including 8' wide bike lane
- Construct new 5' wide accessible sidewalk from accessible parking spacesto front entrance
- Construct new 10^{\prime} wide granite gravel connectionsfrom front entrance to existing hike $\&$ bike tra ils
- Reconstruct 10^{\prime} wide pedestrian and bicycle sidewalk access from front entrance to Parkside Lane
- Install wayfinding signage

3. Drainage

a. Drainage Criteria

- Provide stormwater detention for increased Q2 - Q100 peak flows created by runoff from new imperviouscover
- Provide stormwater quality treatment for runoff from new impervious cover
- Provide site grading, stormwater curb inlets in the parking lot expansion, storm drain piping to stormwater detention/water quality treatment flow splitter structure and discharge piping and outfall struc ture.

b. Drainage Recommendations

- New/Redeveloped Impervious Cover

Parking Expansion	59,200	sf
Exterior Sidewalks/ Flatwork	3,500	sf
Pool Decks	14,000	sf
Build ing Roofs	7,500	sf
Total IC forDetention and WQ	84,200	sf
Pool	14,000	sf

- Construct flow splitter structure, $16,840 \mathrm{cf}(0.2 \mathrm{cf} / \mathrm{sf}$ of IC) detention volume structure, 9,130 cf (IC x $1.3^{\prime \prime}$) water quality treatment structure, and outfall structure for 84,200 sf of new/redeveloped
impervious cover
- Construct 10^{\prime} curb inlets and 18 " storm drain collectorpiping within the parking lot expansion
- Construct site grading to drain runoff to stom drain inlets

4. Water Senvice

a. Water Senvice Criteria

- Provide 4" water line/meter for domestic water service
- Provide 2" water line/meter for inigation water service
- Provide 2 fire hydrants close to the building and 8 " fire line
- Provide 8" wastewater line for wastewater service
b. Water Senvice Recommendations
- Construct new 4" tap into new $8^{\prime \prime}$ fire hydrant lead that taps into water main along Manchaca Road, install 4" domestic water meter with backflow preventer within Manchaca Road ROW, install 4" domestic water pipe to pool site.
- Construct new 2" tap into new 8" fire hydrant lead that taps into water main along Manchaca Road, install 2" irrigation meter with backflow preventer within Manchaca Road ROW, connect to site ingation system.
- Construct new 8" tap into water main along Manchaca Road, install 8" backflow preventer within Manchaca Road ROW, install $8^{\prime \prime}$ fire hydrant lead pipe, install 2 fire hydrants near the pool site.
- There isalready an 8" wastewater pipe from pool site to wastewatermain within Manchaca Road.

E.2.4 Northwest

Pool Recommendations

- Upgrade and expand the poolto serve asa Regional 50 Meter Aquatic Center
- Replace the main pool tank, but maintain its general configuration
- Add a slide and climbing wall to the main pool
- Replace the wading pool with a more family-oriented activity pool with interactive waterplay features
- Replace the pool deck
- Replace the filtration system

Site Recommendations

- Provide accessible pedestrian and bicycle access from right-of-way
- Provide new utility connections (domestic water, irrigation water, sanitary, fire line and hydrants)
- New driveway
- Install stormwater system and detention

Existing Architectural Features

- Group Pavilion: None
- Shade Structure: 4 areas with bleachers or pic nic tables that have a comugated tin roof structure for shade
- Training/ Party Room: None
- Concessions: None, Vending machines under one shade structure
- Office: None
- Storage: Misc. Storage area behind the tic ket counter, approx. 60 sf
- Bathhouse/Fa mily Restroom: No ADA or fa mily restroom
- Pump House: Stand alone building with a storage room addition
- Existing admission/ ticket counter. Approx. 300sf

Building Repair Recommendations

- Tile finish is in need of replacing
- Stall partitions in need of replacing
- Lights in need of replacement/upgrade
- Shower fixtures in need of replacing
- Accessories in need of replacing
- All shade structure roof need replacing
- All shade structures need painting
- Add Training/Party a rea
- Add Concessionsarea
- Add Office
- Add Storage
- Add ADA and family restrooms
- Remove and rebuild pump house addition
- Pump house doors, wall louvers a nd trim need painting

Building Recommendations

- Major renovation of existing facility, gut all fixtures and furnishings, total renovation of Men's and Women's restrooms, existing open area dressing areas to be roofed. Construct new building for training/ party, concessions, office and ADA and family restrooms.

	Existing (S7)	Proposed (si)	Renovation/ Addflition Est Cost
Deck	10,512	14,000	$\$ 210,000$
Pool	13,392	14,000	$\$ 2,800,000$
Pool House (to include a training/ party room, concessions, office and 2 new family restrooms)	2,610	4,500	$\$ 800,000$
Pump House	580	3,000	$\$ 250,000$
Total Impervious Cover	27,094	35,500	
Total Site Costs			$\$ 2,620,000$
Construction Cost Totals			$\$ 6,680,000$
Total with Owner Costs (add 30\%)			$\$ 8,684,000$

Bathhouse Plumbing Fixture Requirements (Verify with Health Department)

	Approximate SF	Toilet	Uinal	Lavatory	Shower
Existing					
Men	800	2	2	2	3
Women		5	0	2	2
Unisex	0	1	0	1	0
Required per existing pool configuration (268 Occupants)					
Men	-	1	1	2	2
Women		3	0	2	2
Required when pool is replaced (280 Occupants)					
Men	-	1	2	2	2
Women		3	0	2	2

Site Recommendations (7000 Ardath Street)

1. Parking

a. Existing Parking

- 186 standard spaces
- 5 accessible spaces
- 4 bicycle racks(7 bicyclesper rack)

b. Parking Criteria:

- No parking lot expansion (150 standard spaces minimum; 186 spaces existing)
- No accessible parking expansion (5 accessible spaces minimum; 5 spaces existing)
- No bicycle parking expansion (9 bicycle spaces minimum; 28 spaces existing)

c. Parking Recommendations:

- Restripe parking spaces
- Install wheel stops for 5 ac cessible parking spaces

2. Access/Connectivity

a. Access/Connectivity Criteria (Sub-Chapter E)

- Accessible pedestrian connection from Ardath Street/Albata Avenue ROW to front entrance
- Accessible bicycle connection from Ardath Street/Albata Avenue ROW to front entrance
- Accessible sidewalk along Ardath Street/Albata Avenue ROW frontage with pool site
- Accessible pedestrian and bicycle connection from front entrance to existing park trails
- Accessible pedestrian and bicycle connection from front entrance to adjacent properties (to Pegram Avenue and to Ellise Avenue)

b. Access/Connectivity Recommendations:

- Construct new 5^{\prime} wide sidewalk within Ardath Street/Albata Avenue ROW frontage with pool site.
- Construct new 5' wide sidewalks from new Ardath Street/Albata Avenue ROW sidewalk to front entrance
- Construct new 10 ' wide granite gravel trail connections front entrance to existing park trails
- Construct new 5' wide sidewalk connections from Ardath Street/Albata Avenue ROW fronting pool site to Pegram Avenue and to Ellise Avenue
- Reconstruct the main entrance ramp and its handrails to be ADA-compliant
- Reconstruct the exits to be ADA compliant
- Construct wayfinding signage

3. Drainage

a. Drainage Criteria:

- Site located in 100-year floodplain of Shoal Creek
- Provide stormwater detention for increased Q2 - Q100 peak flows created by runoff from new imperviouscover
- Provide stormwater quality treatment for runoff from new impervious cover
- Provide site grading, stormwater curb inlets in the parking lot expansion, storm drain piping to stormwater detention/water quality treatment flow splitter structure, discharge piping, and outfall struc ture

b. Drainage Recommendations

- New/Redeveloped Impervious Cover:

Parking Expansion	0
Exterior Sidewalks/ Fla twork	3,000
Pool Decks	14,000
Building Roofs	7,500
TotallC forDetention and WQ	24,500
Pool	600

- Construct flow splitter structure, $4,900 \mathrm{cf}(0.20 \mathrm{cf} / \mathrm{sf}$ of IC) detention volume structure, 2,660 cf (IC x $1.3^{\prime \prime}$) water quality treatment structure, and outfall structure for 24,500 sf of new/redeveloped impervious cover.
- Construct new storm drain inlets and 18" piping to convey runoff to new flow splitter structure.
- Construct site grading to drain runoff to storm drain inlets.

4. Water Senvice

a. Water Service C riteria

- Provide 4" water line/meter for domestic water service
- Provide 2" water line/meter for imigation water service
- Provide 2 fire hydrants close to the building and 8 " fire line
- Provide 8" wastewater line for wastewater service

b. Water Senvice Recommendations

- Construct new 4" tap into new 8" fire hydrant lead that taps into water main along Ardath Street, install 4" domestic water meter with backflow preventer within Ardath Street ROW, install 4" domestic waterpipe to pool site
- Construct new 2" tap into new $8^{\prime \prime}$ fire hydrant lead that taps into water main along Ardath Street, install 2" irrigation meter with backflow preventer within Ardath Street ROW, connect to site imigation system
- Construct new 8" tap into water main along Ardath Street, install 8" backflow preventer within Ardath Street ROW, install $8^{\prime \prime}$ fire hydrant lead pipe, install 2 fire hydrants near the pool site
- Construct new 8" wastewater pipe from pool site to wastewater main within Ardath Street, install new 48" manhole at connection to wastewater main

E. 3 Indoor facilities

A community Indoor Pool would be the smaller of two potential indoor facilities, provided on the opposite side of Austin from the Premier Indoor Aquatic Center in order to provide equity and easy access for all Austin residents. This facility would be geared to local uses such as lifeguard training, swim lessons, rental use, recreational lap swimming, swim team practices, and much more. The main pool would be 25 yards by 8 or more lap lanes. See Chapter 5 formore details.

Typical Community Indoor Aquatic Center Features

- Spectatorarea
- Training
- Party Room
- Office
- Storage
- Bathhouse/Fa mily Restroom

E3.1 Mabel Davis Community Indoor Pool

Pool Recommendations

- Develop a Community Indoor Pool facility to serve the southem portion of Austin. Main features will include a 25 yard by 8 lane lap pool, possibly a 30^{\prime} by 40^{\prime} warm water pool, diving boards, training/ party room, office, and outdoor patio area.

Site Recommendations

- Expand parking to 100 spaces
- Provide accessible pedestrian and bicycle access from right-of-way
- Provide new utility connections (domestic water, irrigation water, sanitary, fire line and hydrants)
- New driveway
- Install stormwater system and detention
- Parking lot lighting

Existing Architectural Features

- SpectatorArea: None
- Existing pump house: None
- Training/ Party Room: None
- Office: None
- Storage: Approx. 120sf One room at the entry which can be closed off by a garage style coiling door
- Bathhouse/Family Restrooms: No ADA or family restroom
- Pump House: None
- Existing admission/ ticket area: Approx. 210sf includes storage closet off of main admission room

Building Repairs Identified

- Roof and soffit in need of immediate replacement
- Toilet partitions in need of replacing
- Restrooms need total renovation
- Accessories in need of replacing
- Lights in need of replacing
- Doorand frames in need of replacing
- Building in need of painting and refurbishing
- Add SpectatorArea
- Add Training/ Party Room
- Add Office
- Add ADA and Family Restrooms

Building Recommendations

- Recommend replacing with newer, smaller indoor facility.

	Existing (S7)	Proposed (sf)	Renovation/ Addifion Est Cost
Deck	7,830	10,000	$\$ 150,000$
Pool	11,717	6,150	$\$ 1,230,000$
Natatorium to Inc lude bathhouse facilities, a tra ining/party room, office and 2 new family restrooms)	2,185	3,000	$\$ 7,800,000$
Pump House	0	1,500	Included above
Total Impervious Cover	21,732	20,650	
Total Site Costs			$\$ 2,490,000$
Construction Cost Totals			$\$ 7,800,000$
Total with OwnerCosts (add 30\%)			$\$ 10,140,000 \mathrm{t}$

Bathhouse Plumbing Fixture Requirements (Verify with Health Department)

	Approximate SF	Toilet	Uinal	Lavatory	Shower
Existing					
Men	490	2	1	2	1
Women		3	0	2	1
Required per existing pool configuration (268 Occupants)					
Men		1	2	2	2
Women		3	0	2	2
Required when pool is replaced (280 Occupants)					
Men	-	1	1	1	1
Women		2	0	1	1

Site Recommendations (3427 Parker Lane)

1. Parking

a. Existing Parking

- 88 standard spaces
- 5 accessible spaces
- 3 bike racks
b. Parking C riteria: $\mathbf{1 0 0}$ spaces minimum (existing $\mathbf{8 8}+\mathbf{3}$)
- 100 parking spaces requires 4 accessible parking spaces
- 100 parking spaces requires 5 bicycle parking spaces ($5 \% \times 100$) +1 for Sub-Chapter E (additional $10 \%)=6$ tota
c. Parking Recommendations:
- Expand parking from 96 spaces(88 standard spaces +5 accessible spaces+3accessaisle spaces) to 102 spaces (96 standard spaces +4 accessible spaces +2 access a isle spaces) $=$ approx. 2,484 sf (6 spaces $\times 414$ sf/space) expansion to the south of the existing parking lot.
- Construct 1 new accessible parking space adjac ent to the existing 3 accessible spaces. Add new signage to existing 5 accessible parking spaces.
- No additional bicycle racks are needed. Relocate existing bicycle racksto not block accessible route.
- Install wheel stopsto 6 accessible spaces.
- Construct 102 If (6 spaces $\times 17 \mathrm{If} /$ space) of new curbs around perimeter of parking lot.
- Install 9 (102 spaces $\times 0.08$ lights/space) new parking lot lights.

2. Access/Connectivity

a. Access/Connectivity Criteria: Sub-C hapter E

- Accessible pedestrian connection from Parker La ne ROW to front entrance.
- Accessible bicycle connection from Parker Lane ROW to front entrance.
- Accessible pedestrian connection from accessible parking to front entrance.
- Accessible pedestrian and bicycle connection from front entrance to existing site trails.
- Accessible pedestrian and bicycle connection from front entrance to adjacent properties(E. Ben White Boulevard and Parker Lane).
b. Access/Connectivity Recommendations
- Construct new 40' wide two-way driveway (reinforced concrete within Parker Lane ROW and a sphalt outside the ROW), with curb and gutter, from Parker La ne to parking lot, including 8' wide bike lane.
- Construct new 5^{\prime} wide accessible sidewalk from accessible parking spacesto front entrance.
- Construct new 10 wide granite gravel connections from existing park trails to E. Ben White Boulevard and to Parker Lane.
- Construct 5' wide pedestrian sidewalk from Parker Lane ROW sidewalk to main entrance.
- Install new handrails along front entrance steps.
- Install wayfinding signage.

3. Drainage

a. Drainage Criteria

- Provide stormwater detention for increased Q2 - Q100 peak flows created by runoff from new impervious cover.
- Provide stormwater quality treatment for runoff from new impervious cover.
- Provide site grading, stormwater curb inlets in the parking lot expansion, storm drain piping to stormwater detention/water quality treatment flow splitter structure and discharge piping and outfall struc ture.

b. Drainage Recommendations

- New/Redeveloped Impervious Cover

Parking Expansion 13,340 sf
Exterior Sidewalks/Flatwork 2,500 sf
Building Roofs* 20,700 sf
TotalIC forDetention and WQ 36,540 sf
*Note: Indoor Pool

- Construct flow splitter structure, $7,130 \mathrm{cf}(0.2 \mathrm{cf} / \mathrm{sf} \mathrm{of} \mathrm{IC)} \mathrm{detention} \mathrm{volume} \mathrm{structure}, \mathrm{3,960} \mathrm{cf} \mathrm{(IC}$ x $1.3^{\prime \prime}$) water quality treatment structure, and outfall structure for 36,540 sf of new/redeveloped impervious cover.
- Construct 10^{\prime} curb inlets a nd 18 " storm dra in collectorpiping within the parking lot expansion.
- Construct site grading to drain runoff to storm drain inlets.

4. Water Senvice

a. Water Senvice C riteria

- Provide 4" water line/meter for domestic water service
- Provide 2" water line/meter for imigation water service
- Provide 2 fire hydrants close to the building and 8 " fire line
- Provide 8" wastewater line for wastewater service
b. Water Senvice Recommendations
- Construct new 4" tap into new 8" fire hydrant lead that taps into water main along Parker Lane, install 4" domestic water meter with backflow preventer within Parker Lane ROW, install 4" domestic waterpipe to pool site.
- Construct new 2" tap into new 8" fire hydrant lead that taps into water main along parker Lane, install 2" irrigation meter with backflow preventer within Parker Lane ROW, connect to site irrigation system.
- Construct new 8" tap into water main along Parker Lane, install 8" backflow preventer within Parker Lane ROW, install 8 " fire hydrant lead pipe, install 2 fire hydrants near the pool site.
- Construct new 8" wastewater pipe from pool site to wastewater main within Parker Lane, install new 48 " manhole at connection to wastewater main.

E. 4 Community Pools

Community Pools will be somewhat larger than Neighborhood Pools and have additional a menities to serve a larger market area or roughly a ten-minute drive. These facilities may charge a fee and will be designed to better host programs and swim tea ms. See Chapter 5 for additional details.

Typical Community Pool Architectural Features

- Shade
- Training/ Party Room
- Office
- Storage
- Bathhouse/ Fa mily Restroom

E.4.1 Dick Nichols

Pool Recommendations

- This pool is currently larger in size than the typic al characteristic s of a Community Pool
- Add a water amenity per community input
- Add zero-depth access to the wading pool
- Add shade structures
- Replace pooldeck when warranted
- Long term replace the pool tank
- Pool heaterswere installed in the past. Analyze potential to start using them if wa ranted foroff-sea son use.

Site Recommendations

- No additional parking required
- Provide accessible pedestrian and bicycle access from right-of-way
- Provide new utility connections (domestic water, irrigation water, sanitary, fire line and hydrants)
- Install stormwater system and detention
- Existing Architectural Features
- Shade Structure: (2) larger steel frame with comgated steel roof struc tures for 2-3 pic nic tables and (1) smaller shading a bench.
- Training/ Party Room: None
- Office: None
- Storage: Approx. 120sf (included in pool house SF) lifeguard storage. Additional vending/ storage of 120sf (included in pool house SF).
- Bathhouse/Family Restroom: No ADA or family restroom
- Pump House: Separate building

Building Repa ir Rec ommendations

- Roof in need of replacing within 3 years
- Repair/ replacement of the wood structure for the restroom roof
- Some of the lights need replacing
- Accessories in need of replacing
- Doorhardware in need of replacing
- Sinks in need of replacing
- Building in need of minorrepair
- Building in need of painting and refurbishing
- Add Training/ Party Room
- Add Office
- Add ADA and family restrooms
- Pump house roof in need of replacing in the nearfuture
- Pump house in need of moderate maintenance to structure and building

Building Recommendations

- Minor changes. Construct new building for office, family restrooms and training/ party room

	Existing $(\mathbf{S F})$	Proposed (si)	Renovation/ Addifion Est Cost
Deck	8,775	8,775	$\$ 75,000$
Pool	10,463	10,463	$\$ 1,980,000$
Pool House (to include a training/ party room, office and 2 new fa mily restrooms)	2,600	3,000	$\$ 250,000$
Pump House	480	3,500	$\$ 25,000$
Total Impervious Cover	22,318	18,400	
Total Site Costs			$\$ 1,390,000$
Construction Cost Tota ls			$\$ 3,720,000$
Total with Owner Costs (add 30\%)			$\$ 4,836,000$

Bathhouse Plumbing Fixture Requirements (Verify with Health Department)

	Approximate $\mathrm{SF}^{\text {F }}$	Toilet	Uinal	Lavatory	Shower
Existing					
Men	1,500	2	3	2	5
Women		4	0	2	5
Required per existing pool configuration (210 Occupants)					
Men	-	1	2	2	2
Women		3	0	2	2
Required when pool is replaced (198 Occupants)					
Men	-	1	1	1	1
Women		2	0	1	1

Site Recommendations (8011 Beckett Road)

1. Parking

a. Existing Parking

- 52 standard spaces
- 5 accessible spaces with _ access aisle spaces
- 2 bicycle racks

b. Parking Criteria: $\mathbf{5 0}$ spaces minimum (existing $\mathbf{5 2 + 5)}$

- 57 parking spaces requires 3 accessible parking spaces
- 57 parking spaces requires 3 bicycle parking spaces $(5 \% \times 57)+1$ for Sub-Chapter E (additional $10 \%)=4$ total

c. Parking Recommendations

- No additional standard parking spaces are required
- No additional accessible parking spacesare required
- No additional bicycle racks are required
- Restripe existing parking lot

2. Access/Connectivity

a. Access/Connectivity Criteria: Sub-C hapter E

- Accessible pedestrian connection from Beckett Road ROW to front entrance.
- Accessible bicycle connection from Beckett Road ROW to front entrance
- Accessible pedestrian connection from accessible parking to front entrance
- Accessible pedestrian and bic yc le connection from front entrance to existing site trails
- Accessible pedestrian and bicycle connection from front entrance to adjacent properties (Davis Lane, Beckett Road, Vail Valley Drive, Convict Hill Road)

b. Access/Connectivity Recommendations:

- Construct new 5' wide accessible sidewalk along main entrance drive from Beckett Road to front entrance
- Construct new 10 ' wide gra nite gravel connections from front entrance to existing hike \& bike tra ils
- Construct 10^{\prime} wide pedestrian and bicycle granite gravel connections to Davis Lane, Beckett Road, Vail Valley Drive, Convict Hill Road
- Install new handrails at main entrance steps
- Install wayfinding signage

3. Drainage

a. Drainage Criteria

- Provide stormwater detention for increased Q2 - Q100 peak flows created by runoff from new imperviouscover
- Provide stormwater qua lity treatment for runoff from new impervious cover
- Provide site grading, stormwater curb inlets in the parking lot expansion, storm drain piping to stormwater detention/water quality treatment flow splitter structure and discharge piping and outfall struc ture
b. Drainage Recommendations:
- New/Redeveloped Impervious Cover

Parking Expansion	0	sf
Exterior Sidewalks/Flatwork	2,500	sf
Pool Decks	5,000	sf
Build ing Roofs	500	sf
IC for Detention and WQ	8,000	sf
Pool	0	sf

- Construct flow splitter structure, 1,600 cf ($0.2 \mathrm{cf} / \mathrm{sf}$ of IC) detention volume structure, 870 cf (IC x $1.3^{\prime \prime}$) water quality treatment structure, a nd outfall structure for 8,000 sf of new/redeveloped impervious cover.
- Construct 10' curb inlets and 18 " storm drain collector piping within the entrance driveway expansion
- Construct site grading to drain runoff to stom drain inlets

4. Water Service

a. Water Service C Interia

- Provide 4" water line/meter for domestic water service
- Provide 2" water line/meter for imigation water service
- Provide 2 fire hydrants close to the building and 8" fire line
- Provide 8" wastewater line for wastewater service
b. Water Senvice Recommendations
- Construct new 4" tap into new 8" fire hydrant lead that taps into water main along Beckett Road, install 4" domestic water meter with backflow preventer within Beckett Road ROW, install 4" domestic waterpipe to poolsite
- Construct new 2" tap into new 8" fire hydrant lead that taps into water main along Beckett Road, install 2 " irrigation meter with backflow preventer within Beckett Road ROW, connect to site imiga tion system
- Construct new 8" tap into water main along Beckett Road, install 8" backflow preventer within Beckett Road ROW, install 8" fire hydrant lead pipe, install 2 fire hydrants near the pool site
- Construct new 8" wastewater pipe from pool site to wastewater main within Beckett Road, install new 48" manhole at connection to wastewater main

E.4.2 Dittmar

Pool Recommendations

- Upgrade to a Community Pool. The current size is slightly smallerthan the range of a Community Pool
- Replace the pool with the model Community Pool
- Replace filtration system

Site Recommendations

- No additional parking required
- Provide accessible pedestrian and bicycle access from right-of-way
- Provide new utility connections (domestic water, irrigation water, sanitary, fire line and hydrants)
- Install stormwater system and detention

Existing Architectural Features

- Shade Struc ture: (2) fa bric shade structures over sha llower end of pool and an additional (3) over the grass a round the pool perimeter.
- Tra ining/ Party Room: None
- Office: Appears to be a former ticket/admission area which could be repurposed as an office but is curently used forstorage. Attached to the pool house and located at the entry to the pool.
- Storage: None
- Bathhouse/Family Restroom: No ADA or fa mily restroom
- Pump House: Separate building

Building Repair Rec ommendations

- Roof and soffit in need of replacing within the next 5-10 years
- Doors needed for toilet stalls
- Doorand frames in need of replacing
- Build ing in need of painting and refurbishing
- Add Training/ Party Room
- Add Office
- Add Storage
- Add ADA and family restrooms
- Pump house roof in need of replacing in next 10 years
- Pump house in need of minor maintenance/repair/new door

Building Recommendations

- Tota ! pool replacement recommended, refurbish existing building. Construct new build ing to provide missing features.

	Existing (S7)	Proposed (sf)	Renovation/ Addifion Est Cost
Deck	5,130	9,000	$\$ 135,000$
Pool	6,531	7,000	$\$ 1,400,000$
Pool House (to include a training/ party room, office and 2 new family restrooms)	1,210	3,000	$\$ 400,000$

	Sxisting (S.)	Proposed (Si)	Renovation/ Addition Est, Cost
Pump Ho use	176	800	$\$ 25,000$
Total Impervious Cover	13,047	19,800	
Total Site Costs			$\$ 1,820,000$
Construction Cost Tota Is			$\$ 3,780,000$
Total with Owner Costs (add 30\%)			$\$ 4,914,000$

Bathhouse Plumbing Fixture Requirements (Verify with Health Department)

	Approximate SF	Toilet	Urinal	Lavatory	Shower
Existing					
Men	1,210 *	1	2	2	2
Women		3	0	2	2
* SF includes 1 person restrooms which serve the adjacent park					
Required per existing pool configuration (131 Occupants)					
Men		1	1	1	1
Women		2	0	1	1
Required when pool is replaced (140 Occupants)					
Men	-	1	1	1	1
Women		2	0	1	1

Site Recommendations (1009 W. Dittmar Road)

1. Parking

a. Existing Parking

- 108 standard spaces
- 2 accessible spaces with _ access aisle spaces
- 6 bicycle racks
b. Parking Criteria: $\mathbf{5 0}$ spaces minimum (existing $\mathbf{1 0 8 + 2)}$
- 110 parking spaces requires 5 accessible parking spaces
- 110 parking spaces requires 6 bicycle parking spaces $(5 \% \times 110)+1$ for Sub-Chapter E (additional $10 \%)=7$ total
C. Parking Rec ommendations
- Reconstruct existing parking to provide 5 new accessible parking spaces with 3 access aisles

2. Access/Connectivity

a. Access/Connectivity Criteria: Sub-Chapter E

- Accessible pedestrian connection from Dittmar Road ROW to front entrance.
- Accessible bicycle connection from Dittmar Road ROW to front entrance.
- Accessible pedestrian connection from accessible parking to front entrance.
- Accessible pedestrian and bicycle connection from front entrance to existing site tra ils.
- Accessible pedestrian and bicycle connection from front entrance to adjacent properties.

b. Access/Connectivity Recommendations

- Reconstruct flatwork and handrails at main entrance to be TAS-compliant
- Construct new 5^{\prime} wide accessible sidewalk from accessible parking spacesto main entrance
- Construct new 10' wide granite gravel connections along fire lane from parking lot to existing hike \& bike trail at end of fire lane
- Install wayfinding signage

3. Drainage

a. Drainage Criteria

- Provide stormwater detention for increased Q2 - Q100 peak flows created by runoff from new imperviouscover
- Provide stormwater quality treatment for runoff from new impervious cover
- Provide site grading, stomwater curb inlets, stom drain piping to stomwater detention/water quality treatment flow splitter structure and discharge piping and outfall structure

b. Drainage Recommendations

- New/Redeveloped Impervious Cover

Parking Expansion	0	sf
Exterior Sidewa lks/ Flatwork	5,200	sf
Pool Decks	9,000	sf
Building Roofs	3,800	sf
IC for Detention and WQ	18,000	sf
Pool	7,000	sf

- Construct flow splitter structure, $3,600 \mathrm{cf}(0.2 \mathrm{cf} / \mathrm{sf}$ of IC) detention volume structure, $1,950 \mathrm{cf}$ (IC x $1.3^{\prime \prime}$) water quality treatment structure, and outfall structure for 18,000 sf of new/redeveloped imperviouscover.
- Construct area drain inlets and 18 " stom drain collectorpiping a round the pool improvements to convey runoff from new impervious cover to the new stormwater flow splitter structure.
- Construct site grading to drain runoff to storm drain inlets

4. Water Service

a. Water Senvice Criteria

- Provide 4" water line/meter for domestic water service
- Provide 2" water line/meter for imigation water service
- Provide 2 fire hydrants close to the building and 8 " fire line
- Provide 8" wastewater line for wastewater service
b. Water Service Recommendations
- Construct new 4" tap into new 8" fire hydrant lead that taps into water main along Dittmar Road, install 4" domestic water meter with backflow preventer within Dittmar Road ROW, install 4" domestic waterpipe to pool site.
- Construct new 2" tap into new 8" fire hydrant lead that taps into water main along Dittmar Road, install 2" irrigation meter with backflow preventer within Dittmar Road ROW, connect to site inigation system.
- Construct new 8" tap into water main along Manchaca Road, install 8" backflow preventer within Manchaca Road ROW, install 8 " fire hydrant lead pipe, install 2 fire hydrants near the pool site.
- Construct new 8 " wastewater pipe from pool site to wastewater main on south side of creek to south of site, install new $72^{\prime \prime}$ manhole at connection to wastewater main.

E4.3 Dove Springs

Pool Recommendations

- Upgrade to a Community Pool. The current size is larger than the range of a Community Pool
- Replace the pool with the model Community Pool, but with a configuration the same size as the existing
- Provide zero depth accessto the wading pool
- Replace filtration system
- Replace pooldeck

Site Recommendations

- No additional parking required
- Provide accessible pedestrian and bicycle access from right-of-way
- Provide new utility connections (domestic water, irrigation water, sanitary, fire line and hydrants)
- Install stormwater system and detention

Existing Architectural Features

- Shade structure: (1) fabric shade structure over the grass on the east side of the large pool and (1) comugated steel roof structure at the south end of the wading pool.
- Training/ Party Room: None
- Office: None
- Storage: Approx. 120sf (included in pool house SF) in Women's pool house. No vending machines currently and is being used forstorage.
- Bathhouse/Fa mily Restroom: No ADA or fa mily restroom
- Pump House: Separate building

Building Repair Recommendations

- Roof and soffit in need of immediate replacing
- Repair/ replacement to the wood structure for the restroom roof
- Shower fixtures in need of replacing
- Some of the lights need replacing
- Accessories in need of replacing
- Toilet stall doors need replacing
- Door and frames in need of replacing
- Building in need of painting and refurbishing
- Add Training/ Party Room
- Add Office
- Add ADA and family restrooms
- Pump house roof in need of immediate replacement
- Pump house in need of moderate maintenance to structure and building

Building Recommendations

- Minor addition to pool, refurbish existing building. Construct new building for family restrooms, office and training/ party room.

	Exising $(\mathbf{S F})$	Proposed (si)	Renovation/ Addition Est Cost
Deck	7,335	8,000	$\$ 120,000$
Pool	11,365	10,600	$\$ 2,120,000$
Pool House (to include a training/ party room, office and 2 new fa mily restrooms)	1,716	1,716	$\$ 350,000$
Pump House	165	800	$\$ 25,000$
Total Impervious Cover	20,581	21,116	
Total Site Costs			$\$ 1,790,000$
Construction Cost Totals			$\$ 4,405,000$
Total with Owner Costs (add 30\%)		$\$ 5,726,500$	

Bathhouse Plumbing Fixture Requirements (Verify with Health Department)

	Approximate SF	Toilet	Uinal	Lavatory	Shower
Existing					
Men	1,716	2	3	2	6
Women		4	0	2	6
Required per existing pool configuration (228 Occupants)					
Men	-	1	2	2	2
Women		3	2	2	2
Required when pool is replaced (212 Occ upants)					
Men	-	1	2	2	2
Women		3	0	2	2

Site Recommendations (8501 Ainez Drive)

1. Parking

a. Existing Parking

- 58 sta ndard spaces
- 4 accessible spaces with 3 access a isle spaces
- 2 bicycle racks
b. Parking Criteria: 50 spaces minimum (existing 58 +4)
- 62 parking spaces requires 3 a ccessible parking spaces
- 62 parking spaces requires 4 bic ycle parking spaces $(5 \% \times 62)+1$ for Sub-Chapter E (additional $10 \%)=5$ total

C. Parking Recommendations:

- Install 5 (62 spaces x 0.08 lights/space) new parking lot light
- No additional sta ndard parking spaces a re required
- No additional accessible parking spaces are required
- No additional bicycle racks are required

2. Access/Connectivity

a. Access/Connec tivity Criteria: Sub-Chapter E

- Accessible pedestrian connection from Ainez Drive ROW to front entrance
- Accessible bicycle connection from Ainez Drive ROW to front entrance
- Accessible pedestrian connection from accessible parking to front entrance
- Accessible pedestrian and bicycle connection from front entrance to existing site trails
- Accessible pedestrian and bicycle connection from front entrance to adjacent properties and adjacent parkland (Ainez Drive, Hic kory Drive)

b. Access/Connectivity Recommendations

- Reconstruct existing 5' wide sidewalk to be TAS-compliant from main driveway to front entrance
- Reconstruct existing 5^{\prime} wide sidewalk to be TAS-compliant from accessible parking to front entrance
- Construct new 10' wide granite gravel connections from front entrance to existing park trails
- Construct 10^{\prime} wide pedestrian and bicycle granite gravel connections to Ainez Drive, Hickory Drive
- Reconstruct flatwork at front entrance to be TAS-compliant
- Install wayfinding signage

3. Drainage

a. Drainage Criteria

- Provide stormwater detention for increased Q2 - Q100 peak flows created by runoff from new imperviouscover
- Provide stormwater quality treatment for runoff from new impervious cover
- Provide site grading, stormwater curb inlets in the parking lot expansion, storm drain piping to stormwater detention/water quality treatment flow splitter structure and discharge piping and outfall struc ture

b. Drainage Recommendations

- New/Redeveloped Impervious Cover.

Parking Expansion	0	sf
Exterior Sidewalks/ Flatwork	3,000	sf
Pool Decks	8,000	sf
Building Roofs	2,500	sf
IC for Detention and WQ	13,500	sf
Pool	0	sf

- Construct flow splitter structure, $2,700 \mathrm{cf}(0.2 \mathrm{cf} / \mathrm{sf}$ of IC) detention volume structure, 1,470 cf (IC x 1.3 ") water quality treatment structure, and outfall structure for 13,500 sf of new/redeveloped impervious cover
- Construct area inlets and 18" storm drain collectorpiping a round the new impervious cover of the pool improvements to drain to the new stormwater flow splitter structure
- Construct site grading to drain runoff to storm drain inlets

4. Water Service

a. Water Senvice Criteria

- Provide 4" water line/meter for domestic water service
- Provide 2" water line/meter for imigation water service
- Provide 2 fire hydrants close to the building and 8" fire line
- Provide 8" wastewater line for wastewater service

b. Water Service Recommendations

- Construct new 4" tap into existing $8^{\prime \prime}$ water main on site, install 4" domestic water meter with backflow preventer to replace existing water meter at the pool site, install 4" domestic water pipe to pool site
- Construct new 2" tap into existing 8 " water main on site, install 2 " irrigation meter with backflow preventer at the pool site, connect to site imigation system
- Construct new 8" tap into existing water main on site, install 8" backflow preventer at the pool site, install $8^{\prime \prime}$ fire hydrant lead pipe, install 2 fire hydrants near the pool site.
- Pool already has an 8" wastewater line that disc harges to the existing in-park private wastewater collector

E4.4 Givens

Pool Recommendations

- Replace the pool with the model Community Pool
- Replace filtration system
- Replace pooldeck

Site Recommendations

- No additional parking required
- Provide accessible pedestrian and bicycle access from right-of-way
- Provide new utility connections (domestic water, irrigation water, sanitary, fire line and hydrants)
- Install stormwa ter system and detention

Existing Architectural Features

- Shade structure: No shade except fora few trees a round the pool perimeter and about 20 linearft. of corrugated metal steel roofing structure near the diving area
- Training/ Party Room: None
- Office: None
- Storage: None
- Bathhouse/Fa mily Restroom: No ADA or family restroom
- Pump House: Below the pool
- Maintenance Room: Former single toilet room

Building Repair Recommendations

- Repurpose unused information counter area to possibly an office and the former restroom off this area to storage.
- Roof and soffit in need of replacing
- Tile finish is in need of replacing
- Toilet partitions in need of replacing
- Shower stalls in need of complete renovation
- All sinks need replacing
- Stainless steel toilets could be reused
- Accessories in need of replacing
- Lights in need of replacing
- Doorand frames in need of replacing
- Building in need of painting and refurbishing
- Add Shade Structure
- Add Training/ Party Room
- Add Office
- Add Storage
- Add ADA and family restrooms
- Pump house doors and frames in need of replacing

Building Recommendations

- Total pool replacement recommended. Existing bathhouse may be considered historic and may not be feasible to remove. In that event, recommend major renovation of existing facility, gut all non-structural interior walls, fixtures and furnishings. Construct an addition as required to provide ADA compliance and family toilet, existing open a rea dressing a reas to be roofed, buildings to be refurbished

	Existing $(\mathbf{S F})$	Proposed $(s i)$	Renovation/ Addition Est. Cost
Deck	3,200	9,000	$\$ 135,000$
Pool	10,700	7,000	$\$ 1,400,000$
Pool House (to include a training/ party room, office and 2 new fa mily restrooms)	2,500	3,000	$\$ 550,000$
Pump House	1,525	800	$\$ 5,000$
Total Impervious Cover	17,925	19,800	
Total Site Costs			$\$ 2,340,000$
Construction Cost Totals			$\$ 4,430,000$
Total with Owner Costs (add 30\%)		$\$ 5,759,000$	

Bathhouse Plumbing Fixture Requirements (Verify with Health Department)

	Approximate SF	Toilet	Uhinal	Lavatory	Shower
Existing					
Men	2,000	2	1	3	1
Women		3	0	3	2
Required per existing pool configuration (214 occupants)					
Men	-	1	2	2	2
Women		3	0	2	2
Required when pool is replaced (140 occ upants)					
Men	-	1	1	1	1
Women		2	0	1	1

Site Recommendations (3811 E. 12th Street)

1. Parking

a. Existing Parking

- 135 standard spaces
- 5 accessible spaces with _ access aisle spaces
- 3 bicycle racks
b. Parking Criteria: $\mathbf{5 0}$ spaces minimum (existing $\mathbf{1 3 5}+\mathbf{5}$)
- 140 parking spaces requires 5 accessible parking spaces
- 140 parking spaces requires 7 bicycle parking spaces ($5 \% \times 140$) +1 for Sub-C hapter E (additional $10 \%)=8$ total
c. Parking Recommendations
- Expansion of standard parking spaces is not needed
- Reconstruct the 5 accessible parking spaces and access aisles to be TAS-compliant. Add new signage and wheel stops to the reconstructed accessible parking spaces
- Additional bicycle racks are not needed

2. Access/Connectivity

a. Access/Connectivity Criteria: Sub-C hapter E

- Accessible pedestrian connection from E. 12th Street ROW to front entrance
- Accessible bicycle connection from E. 12th Street ROW to front entrance
- Accessible pedestrian connection from accessible parking to front entrance
- Accessible pedestrian and bicycle connection from front entrance to existing park trails
- Accessible pedestrian and bic ycle connection from front entrance to adjacent properties(E. 12th Street, Springdale Road, Park Road, Oak Springs Drive, Grant Street, Pennsylvania Avenue)
b. Access/Connectivity Recommendations
- Construct 10^{\prime} wide pedestrian and bicycle sidewalk from E. 12th Street ROW sidewalk to front entrance
- Construct new 5^{\prime} wide accessible sidewalk from accessible parking spaces to front entrance
- Construct new 10^{\prime} wide granite gravel connectionsfrom front entrance to existing hike \& bike trails
- Construct 10 ' wide pedestrian and bicycle sidewalk access from front entrance to Springdale Road, Park Road, Oak Springs Drive, Grant Street, Pennsylva nia Avenue.
- Install wayfinding signage

3. Drainage

a. Drainage Criteria

- Provide stormwater detention for increased Q2 - Q100 peak flows created by runoff from new imperviouscover
- Provide stormwater quality treatment for runoff from new impervious cover
- Provide site grading, stormwater area inlets around the pool improvements, storm drain piping to stormwater detention/water quality treatment flow splitter structure and discharge piping and outfall struc ture
b. Drainage Recommendations
- New/Redeveloped ImperviousCover

Parking Expansion	0	sf
Exterior Sidewa lks/ Fla twork	22,800	sf
Pool Decks	9,000	sf
Build ing Roofs	3,800	sf
IC for Detention and WQ	35,600	sf
Pool	7,000	sf

- Construct flow splitter structure, $7,120 \mathrm{cf}(0.2 \mathrm{cf} / \mathrm{sf}$ of IC) detention volume structure, 23,620 cf (IC x $1.3^{\prime \prime}$) water quality treatment structure, and outfall structure for 3,860 sf of new/redeveloped imperviouscover
- Construct area inlets and 18 " storm drain collectorpiping a round the pool improvements
- Construct site grading to drain runoff to storm drain inlets

4. Water Senvice

a. Water Service Criteria

- Provide 4" water line/meter for domestic water service
- Provide 2" water line/meter for imigation water service
- Provide 2 fire hydrants close to the building and 8 " fire line
- Provide 8" wastewater line for wastewater service

b. Water Senvice Recommendations

- Construct new 4" tap into new 8" fire hydrant lead that taps into water main along E. 12th Street, install 4" domestic water meter with backflow preventer within E. 12th Street ROW, install 4" domestic waterpipe to pool site
- Construct new 2 " tap into new 8 " fire hydrant lead that taps into water main along E. 12th Street, install $2^{\prime \prime}$ irrigation meter with backflow preventer within E. 12th Street ROW, connect to site irrigation system
- Construct new 8" tap into water main along E. 12th Street, install 8" backflow preventer within E. 12th Street ROW, install 8 " fire hydrant lead pipe, install 2 fire hydrants near the pool site
- Construct new 8 " wastewater pipe from pool site to the wastewater main on traversing the park site, install new 60" manhole at connection to wastewater ma in

E.4.5 Montopolis

Pool Recommendations

- Replace the pool with the model Community Pool
- Replace filtration system
- Replace pooldeck and fence

Site Recommendations

- Expand parking to a minimum of 50 spaces
- Provide accessible pedestrian and bicycle access from right-of-way
- Provide new utility connections (domestic water, irrigation water, sanitary, fire line and hydrants)
- Install stormwater system and detention

Existing Architectural Features

- Shade structure: (1) fabric shade structure over shallow end, (1) shade structure over the grass and one small metal roof shade structure over a pic nic table
- Training/Party Room: None
- Office: None
- Storage: First room in pump room area iscurrently being used forstorage, not an advisable use
- Bathhouse/Fa mily Restroom: No ADA or fa mily restroom
- Pump House: Integrated into bathhouse building

Building Repair Recommendations

- Renovate toilet stalls to comply with ADA
- Lights in need of replacing
- Doorand frames in need of replacing
- Building in need of painting and refurbishing
- Add Tra ining/ Party Room
- Add Office
- Add Storage
- Add ADA and fa mily restrooms

Building Recommendations

- Total pool replacement recommended. Minor refurbishment of existing building. Construct new building to provide formissing features

	Exising (S:)	Proposed (si)	Renovation/ Addition Est Cost
Deck	5,823	9,000	$\$ 135,000$
Pool	4,880	7,000	$\$ 1,400,000$
Pool House (to include a training/ party room, office and 2 new family restrooms)	1,350	3,000	$\$ 350,000$
Pump House	Included in pool house	800	Included above
Total Impervious Cover	12,053	19,800	

	Existing (S7)	Proposed (sf)	Renovation/ Addition Est: Cost
Total Site Costs			$\$ 2,160,000$
Construction Cost Totals			$\$ 4,045,000$
Total with Owner Costs (add 30\%)			$\$ 5,258,500$

Bathhouse Plumbing Fixture Requirements (Verify with Health Department)

	Approximate SF	Toilet	Uinal	Lavatory	Shower
Existing					
Men	1,000	1	1	1	0*
Women		2	0	1	0*
* 1 shower provided out in the public area, not ADA complia nt.					
Required per existing pool configuration (98 occupants)					
Men	-	1	1	1	1
Women		1	0	1	1
Required when pool is replaced (140 occ upants)					
Men	-	1	1	1	1
Women		2	0	1	1

Site Recommendations (1200 Montopolis Drive)

1. Parking

a. Existing Parking

- 30 standard spaces
- 2 accessible spaces with 1 access aisle
- 2 bicycle racks
b. Parking Criteria: $\mathbf{5 0}$ spaces minimum (existing $\mathbf{3 0 + 2}$)
- 50 parking spaces requires 2 accessible parking spaces
- 50 parking spaces requires 3 bicycle parking spaces ($5 \% \times 50$) + 1 for Sub-Chapter E (additional $10 \%)=4$ total

c. Parking Recommendations:

- Expand parking from 33 spaces(30 standard spaces+2 accessible spaces+1 accessaisle space) to 51 spaces (48 standard spaces +2 accessible spaces +1 accessaisle space) $=$ approx. 7,452 sf (18 spaces $\times 414$ sf/space) expansion to the south of the existing parking lot
- Reconstruct the 2 accessible parking spaces and access aisle. Add new signage and wheel stops to the reconstructed accessible parking spaces
- Additional bicycle racks are not required
- Construct 306 If (18 spaces $\times 17$ If/space) of new curbs a round perimeter of parking lot
- Install 2 (18 spaces $\times 0.08$ lights/space) new parking lot lights

2. Access/Connectivity

a. Access/Connectivity Criteria: Sub-Chapter E

- Accessible pedestrian connection from Montopolis Drive ROW to front entrance
- Accessible bicycle connection from Montopolis Drive ROW to front entrance
- Accessible pedestrian connection from accessible parking to front entrance
- Accessible pedestrian and bicycle connection from front entrance to existing park tra ils
- Accessible pedestrian and bicycle connection from front entrance to adjacent properties (Montopolis Drive, Begonia Circle, Camation Terrace, Larch Terrace)
b. Access/Connectivity Recommendations
- Construct 10' wide pedestrian and bicycle sidewalk from Montopolis Drive ROW sidewalk to front entrance
- Construct new 5^{\prime} wide accessible sidewalk from accessible parking spaces to front entrance
- Construct new 10^{\prime} wide granite gravel connectionsfrom front entrance to existing hike \& bike trails
- Construct 10^{\prime} wide pedestrian and bicycle sidewalk access from front entrance to Montopolis Drive, Begonia Circle, Camation Terrace, Larch Terrace
- Install wayfinding signage

3. Drainage

a. Drainage Criteria

- Provide stormwater detention for increased Q2 - Q100 peak flows created by runoff from new imperviouscover
- Provide stormwater quality treatment for runoff from new impervious cover
- Provide site grading, stormwater area inlets around the pool improvements, storm drain piping to stormwater detention/water quality treatment flow splitter structure and discharge piping and outfall struc ture

b. Drainage Recommendations

- New/Redeveloped Impervious Cover

| Parking Expansion | 0 | sf |
| :--- | ---: | :--- | :--- |
| Exterior Sidewalks/ Flatwork | 14,000 | sf |
| Pool Decks | 9,000 | sf |
| Building Roofs | 3,800 | sf |
| IC for Detention and WQ | 26,800 | sf |
| Pool | 7,000 | sf |

- Construct flow splitter structure, $5,360 \mathrm{cf}(0.2 \mathrm{cy} / \mathrm{sf}$ of IC) detention volume structure, $2,910 \mathrm{cf}$ (IC x 1.3") water quality treatment structure, and outfall structure for 26,800 sf of new/redeveloped imperviouscover
- Construct area inlets and 18" storm drain collectorpiping around the pool improvements
- Construct curb inlets and 18 " storm drain collectorpiping in parking lot expansion
- Construct site grading to drain runoff to storm drain inlets.

4. Water Service

a. Water Senvice Criteria

- Provide 4" water line/meter for domestic water service
- Provide 2" water line/meter for inigation water service
- Provide 2 fire hydrants close to the building and 8 " fire line
- Provide 8" wastewater line for wastewater service

b. Water Senvice Recommendations

- Construct new 4" tap into new 8" fire hydrant lead that taps into water main along Montopolis Drive, install 4" domestic water meter with backflow preventer within Montopolis Drive ROW, install 4" domestic waterpipe to pool site
- Construct new 2" tap into new 8" fire hydrant lead that taps into water main along Montopolis Drive, install 2" irrigation meter with backflow preventer within Montopolis Drive ROW, connect to site ingigation system
- Construct new 8" tap into water main along Montopolis Drive, install 8" backflow preventer within Montopolis Drive ROW, install $8^{\prime \prime}$ fire hydrant lead pipe, install 2 fire hydrants near the pool site
- Construct new 8 " wastewater pipe from pool site to the wastewater main in Montopolis Drive ROW, install new 48" manhole at connection to wastewater main

E4.6 Springwood

Pool Recommendations

- The pool isslightly sma llerthan the minimumfora Community Pool, butno enlargementisrec ommend ed
- Provide a backwash holding tank Replace pooldeck and fence
- Replace pooldeck where needed

Site Recommendations

- Ideal to expand parking to a minimum of 50 spaces from the current 21 , but limited room is a vailable
- Provide accessible pedestrian and bicycle access from right-of-way
- Provide new utility connections (domestic water, irrigation water, sanitary, fire line and hydrants) if pool is upgraded in the future
- Install stormwater system and detention

Existing Architectural Features

- Shade struc ture: (2) la rge fabric shade structures provided at perimeter of pool and one small pergola
- Training/Party Room: Large concessions area, vending machine and covered picnic area which could be used fora party area
- Office: Provided as well as a lifeguard break area and storage.
- Storage: Storage/mechanical/elec trical room. Approx. 200sf
- Bathhouse/Fa mily Restroom: No ADA or family restroom
- Pump House: Separate building

Building Repair Recommendations

- Restrooms need refurbishing in the next 5 years
- Accessories in need of replacing
- Lights in need of replacing
- Building in need of painting and refurbishing (trim, walls, doors, struc ture and underside of roof)
- Shade Structure need to be repaired orreplaced (ripped)
- Add ADA and family restrooms
- Pump house in need of painting (structure, trim and underside of roof)

Building Recommendations

- Minorchanges and upgrades to the existing bathhouse. Construct new build ing to provide for missing features

	Existing $($ SF $)$	Proposed (si)	Renovation/ Addilion Est Cost
Deck	5,000	5,000	$\$ 75,000$
Pool	4,400	4,400	$\$ 880,000$
Pool House (to include a training/ party room, office and 2 new family restrooms)	865	865	$\$ 300,000$
Pump House	400	400	$\$ 10,000$
Total Impervious Cover	10,665	10,665	
Total Site Costs			$\$ 1,550,000$

	Existing (S7)	Proposed (Si)	Renovation/ Addilion Est, Cost
Construction Cost Totals			$\$ 2,815,000$
Total with O wner Costs (add 30\%)			$\$ 3,659,500$

Bathhouse Plumbing Fixture Requirements (Verify with Health Department)

	Approximate SF	Toilet	Uinal	Lavatory	Shower
Existing					
Men	865	1	1	1	0*
Women		2	0	1	0*
* 4 showers provided in the public area					
Required per existing pool configuration (88 occupants)					
Men	-	1	1	1	1
Women		1	0	1	1
Required when pool is replaced (88 oc cupants)					
Men	-	1	1	1	1
Women		1	0	1	1

Site Recommendations (13320 Lyndhurst Street)

1. Parking

a. Existing Parking

- 18 standard spaces
- 2 accessible spaces with 1 access a isle
- 1 bicycle rack
b. Parking Criteria: $\mathbf{5 0}$ spaces minimum (existing $\mathbf{1 8 + 2)}$
- 50 parking spaces requires 2 accessible parking spaces
- 50 parking spaces requires 3 bic ycle parking spaces ($5 \% \times 50$) +1 for Sub-Chapter E (additional $10 \%)=4$ total

c. Parking Recommendations

- Expand parking from 21 spaces(18 standard spaces +2 accessible spaces +1 accessaisle space) to 51 spaces (48 standard spaces +2 accessible spaces +1 access aisle space) $=$ approx. 12,420 sf (30 spaces $\times 414 \mathrm{sf} /$ space) expansion to the northwest of the existing parking lot
- Add wheel stopsto the accessible parking spaces
- Additional bicycle racks are not required
- Construct 510 If (30 spaces $\times 17$ If/space) of new curbs around perimeter of parking lot
- Install 4 (50 spaces $\times 0.08$ lights/space) new parking lot lights.

2. Access/Connectivity

a. Access/Connectivity Criteria: Sub-Chapter E

- Accessible pedestrian connection from Lyndhurst Street ROW to front entrance
- Accessible bicycle connection from Lyndhurst Street ROW to front entrance
- Accessible pedestrian connection from accessible parking to front entrance
- Accessible pedestrian and bicycle connection from front entrance to adjacent properties (Lyndhurst Street, Parliament House Road)
b. Access/Connectivity Recommendations
- Construct 10 ' wide pedestrian and bicycle sidewalk from Lyndhurst Street ROW sidewalk to front entrance
- Reconstruct new 5' wide accessible sidewalk from accessible parking spaces to front entrance
- Construct 10^{\prime} wide pedestrian and bicycle sidewalk access from front entrance to Lyndhurst Street, Parliament House Road
- Install wayfinding signage

3. Drainage

a. Drainage Criteria

- Provide stormwater detention for increased Q2 - Q100 peak flows created by runoff from new imperviouscover
- Provide stormwater quality treatment for runoff from new impervious cover
- Provide site grading, stomwater area inlets around the pool improvements and parking lot expansion, storm drain piping to stormwater detention/water quality treatment flow splitter structure and discharge piping and outfall structure

b. Drainage Recommendations

- New/Redeveloped ImperviousCover

Parking Expansion	0	sf
Exterior Sidewa lks/Flatwork	4,000	sf
Pool Decks	0	sf
Build ing Roofs	0	sf
IC for Detention and WQ	4,000	sf
Pool	0	sf

- Construct flow splitter structure, $800 \mathrm{cf}\left(0.2 \mathrm{cf} / \mathrm{sf}\right.$ of IC) detention volume structure, 440 cf (IC $\times 1.3^{\prime \prime}$) water quality treatment struc ture, a nd outfall structure for 4,000 sf of new/redeveloped impervious cover
- Construct area inlets and 18 " storm drain collectorpiping a round the pool improvements
- Construct curb inlets and 18 " storm drain collector piping in parking lot expansion
- Construct site grading to drain runoff to storm drain inlets

4. Water Senvice

a. Water Senvice Criteria

- Provide 4" water line/meter for domestic water service
- Provide 2" water line/meter for inigation water service
- Provide 2 fire hydrants close to the building and 8 " fire line
- Provide 8" wastewater line for wastewater service
b. Water Senvice Recommendations
- Construct new 4" tap into new 8" fire hydrant lead that taps into water main along Lyndhurst Street, install 4" domestic water meter with backflow preventer within Lyndhurst Street ROW, install
$4 "$ domestic water pipe to pool site
- Construct new 2" tap into new 8" fire hydrant lead that taps into water main along Lyndhurst Street, install 2" irrigation meter with backflow preventer within Lyndhurst Street ROW, connect to site inigation system
- Construct new 8" tap into water main along Lyndhurst Street, install 8" backflow preventer within Lyndhurst Street ROW, install 8 " fire hydrant lead pipe, install 2 fire hydrants near the pool site
- Construct new 8" wastewaterpipe from pool site to the wastewater ma in in Lynd hurst Street ROW, install new 48" manhole at connection to wastewater main

E4.7 Walnut Creek

Pool Recommendations

- Long term - Replace the pool with the model Community Pool of a size smaller than the existing pool
- Replace filtration system
- Replace pooldeck

Site Recommendations

- No additional parking required
- Provide accessible pedestrian and bicycle access from right-of-way
- Provide new utility connections (domestic water, irrigation water, sanitary, fire line and hydrants)
- Install stormwater system and detention

Existing Architectural Features

- Shade structure: None, a few trees around the pool perimeter
- Training/Party Room: None
- Office: None
- Storage: None
- Bathhouse/Fa mily Restroom: No family restroom
- Pump House: Separate building

Building Repair Recommendations

- Roof and soffit in need of replacing
- Lights in need of replacing
- Door and frames in need of replacing
- Building in need of painting and refurbishing
- Add Shade Structure
- Add Training/ Party Room
- Add Office
- Add Storage
- Add ADA and family restrooms
- Investigate moisture infiltration into walls of pump house prior to painting whole building

Building Recommendations

- Major renovations and addition to add missing features. Bathhouse building may be possible to renovate and expand asthe interior is in moderately good condition

	Existing (Si)	Proposed (si)	Penovation/ Addifition Est Cost
Deck	7,083	9,000	$\$ 135,000$
Pool	11,219	7,000	$\$ 1,400,000$
Pool House (to include a training/ party room, office and 2 new family restrooms)	2,460	3,000	$\$ 350,000$
Pump House	1,345	800	Included above
Total Impervious Cover	19,647	19,800	
Total Site Costs			$\$ 2,300,000$

	Existing (S.)	Proposed (Si)	Renovation/ Addition Est. Cost
Construction Cost Tota Is			$\$ 4,185,000$
Total with Owner Costs (add 30\%)			$\$ 5,440,500$

Bathhouse Plumbing Fixture Requirements (Verify with Health Department)

	Approximate sF	Toilet	U'inal	Lavatory	Shower
Existing					
Men	1640	1	2	2	2
Women		3	0	2	2
Required per existing pool configuration (225 occupants)					
Men	-	1	2	2	2
Women		3	0	2	2
Required when pool is replaced (140 occ upants)					
Men	-	1	1	1	1
Women		2	0	1	1

Site Recommendations (12138 N. Lamar Boulevard)

1. Parking

a. Existing Parking

- 68 standard spaces
- 8 accessible spaces with 4 access aisles
- 3 bicycle racks
b. Parking Criteria: $\mathbf{5 0}$ spaces minimum (existing $\mathbf{6 8 + 8}$)
- 76 parking spaces requires 4 accessible parking spaces
- 76 parking spaces requires 4 bic ycle parking spaces $(5 \% \times 76)+1$ for Sub-Chapter E (additional $10 \%)=5$ total

c. Parking Recommendations

- No additional parking is required
- Install signage at 1 accessible parking space
- Additional bicycle racks are not required
- Install 7 (76 spaces $\times 0.08$ lights/space) new parking lot lights (photos indic ate possibly only one parking lot light)

2. Access/Connectivity

a. Access/Connectivity Criteria: Sub-Chapter E

- Accessible pedestrian connection from N. Lamar Boulevard ROW to front entrance.
- Accessible bicycle connection from N. Lamar Boulevard ROW to front entrance
- Accessible pedestrian connection from accessible parking to front entrance
- Accessible pedestrian and bicycle connection from front entrance to park trails
- Accessible pedestrian and bicycle connection from front entrance to adjacent properties (N. Lamar Boulevard, Yager Lane, Walnut Creek Park Road, Old Cedar Lane, Shady Springs Road, Lincolnshire Drive, Gracywoods Neighborhood Park, Tanglewood Drive, Cedar Bend Drive,

Scofield Farms Drive)
b. Access/Connectivity Recommendations

- Construct 10^{\prime} wide pedestrian and bicycle sidewalk from N. Lamar Boulevard ROW sidewalk to front entrance
- Construct 10 ' wide pedestrian and bicycle sidewalk access from front entrance to N. Lamar Boulevard, YagerLane, Walnut Creek ParkRoad, Old CedarLane, Shady SpringsRoad, Lincolnshire Drive, Gracywoods Neighborhood Park, Tanglewood Drive, Cedar Bend Drive, Scofield Farms Drive
- Install wayfinding signage

3. Drainage

a. Drainage Criteria

- Provide stormwater detention for increased Q2 - Q100 peak flows created by runoff from new imperviouscover
- Provide stormwater quality treatment for runoff from new impervious cover
- Provide site grading, stormwater area inlets around the pool improvements, storm drain piping to stormwater detention/water quality treatment flow splitter structure and discharge piping and outfall struc ture
b. Drainage Recommendations
- New/Redeveloped Impervious Cover

Parking Expansion	0	sf
Exterior Sidewalks/ Flatwork	6,000	sf
Pool Decks	9,000	sf
Build ing Roofs	3,800	sf
IC for Detention and WQ	18,800	sf
Pool	7,000	sf

- Construct flow splitter structure, 3,760 cf ($0.2 \mathrm{cf} / \mathrm{sf}$ of IC) detention volume structure, 2,040 cf (IC x $1.3^{\prime \prime}$) water quality treatment structure, and outfall struc ture for 18,800 of of new impervious cover
- Construct area inlets and 18 " storm drain collectorpiping around the pool improvements
- Construct site grading to drain runoff to storm drain inlets

4. Water Senvice

a. Water Senvice Criteria

- Provide 4" water line/meter for domestic water service
- Provide 2" water line/meter for imigation water service
- Provide 2 fire hydrants close to the building and 8 " fire line
- Provide 8" wastewater line for wastewater service
b. Water Senvice Recommendations
- Construct new 4" tap into new 8 " fire hydrant lead that taps into water main along N. Lamar Boulevard, install 4" domestic water meter with backflow preventer within N. Lamar Boulevard ROW, install 4" domestic water pipe to pool site
- Construct new 2" tap into new $8^{\prime \prime}$ fire hydrant lead that taps into water main along N. Lamar Boulevard, install 2" irrigation meter with backflow preventer within N. Lamar Boulevard ROW, connect to site ingation system
- Construct new 8 " tap into water main along N. Lamar Boulevard, install 8 " backflow preventer within N. Lamar Boulevard ROW, install 8" fire hydrant lead pipe, install 2 fire hydrants near the pool site
- Construct new 8" wastewater pipe from pool site to the wastewater main along Wells Branch on the park site, install new 60" manhole at connection to wastewater ma in

E. 5 Neighborhood Pools

Neighborhood Pools will continue to serve areas within a 20-minute walk or about one mile. These fac ilities will remain free to the public and provide basic services. Westenfield is a good example of a new Neighborhood Pool. See Chapter 5 for more information.

Typical Neighborhood Pool Features

- Water surface of between 3,000 and 5,000 square feet with a lap pool and an activity pool with zero depth entry
- Bathhouse/ Fa mily Restroom
- Shade

Pools Improved or Authorized Prior to the Completion of this Master Plan

Govalle

Currently in design under a separate project.
Opinion of Probable Construction Cost (OPCC)(still in design stage) provided by COA:

Arc hitectural	346,881
MEP	235,510
Pool and Amenities	$1,023,863$
Civil/Site	522,396
Total (incl. GC, Bonds, etc.)	$\mathbf{\$ 2 , 6 6 7 , 3 6 6}$

Rosewood

Currently in design undera separate project.
OPCC (still in design stage) provided by COA:

Architectural	400,270
MEP	120,160
Pool and Amenities	52,000
Civil/Site	220,960
Total (incl. GC, Bonds, etc.)	$\$ \mathbf{7 9 3}, \mathbf{3 9 0}$

Shipe

Currently in design undera separate project.
OPCC (still in design stage) provided by COA:
Architectural 405,088
MEP
Pool and Amenities 956,115
Civil/Site (includes MEP) 609,598
Total (incl. GC, Bonds, etc.) \$2,623,164

Westenfield

Completed total replacement in the last 5 years.
Final project cost including all C hange Orders, General Conditions, Bonds, Fee, etc. was $\$ 2,536,125.90$

E.5.1 Big Stacy

Pool Recommendations

- Big Stacy is unique in that it is a year-round warm water pool that is popular to many. But it was origina lly constructed in the 1930's.
- Replace pool tank and gutter
- Replace pool deck
- Replace filtration system

Site Recommendations

- Site is located in the 100 year flood plain of Blunn Creek
- Provide accessible pedestrian and bicycle access from right-of-way
- Provide new utility connections (domestic water, irrigation water, sanitary, fire line and hydrants)
- Install sto mwater system and detention
- Reconstruct parking lot with 3 accessible spaces
- Add parking lot lighting

Existing Architec tural Features

- Shade structure: No shade structures, a few trees on the west side of the pool.
- Office: None, but lifeguard room is located above the existing pump house and could possibly accommodate the office. Approx. 860 sf
- Storage: None
- Bathhouse/Fa mily Restroom: New building acts as family restroom as well as norma I ADA compliant restroom.

Building Repair Recommendations

- Doorhardware on new bathhouse in need of replacing
- Add Shade Structure
- Add Training/Party Room
- Add Storage
- Add ADA and fa mily restrooms
- Office building in need of new lighting and interior painting
- Office building (pump room below) in need of underside of soffit painted
- Wood storage building in NE comer of property should be removed and new storage are built
- Historic pump house (now MEP room) in need of repointing all joints and replacing door and frame

The below items relate to the historic bathhouse

- Exterior brick joints in need of repointing, joints way too deep
- Building in need of painting and refurbishing
- Added storage room needs to be removed and rebuilt, currently rotting
- Roof fascia in need of replacing, rotted
- Lights in need of replacing

Building Recommendations

- Total pool replacement of pool and deck with same size and configuration as existing. Minimal work to the existing pre-fabricated bathhouse, extensive work to the historic bathhouse and pump house. Construct a new building for missing features. Demolition of existing storage building.

	Existing (SF)	Proposed (sf)	Renovation/ Addition Est Cost
Deck	2,700	2,700	$\$ 40,500$
Pool	4,000	4,000	$\$ 800,000$
Pool House (to include 2 new family restrooms)	1,200 (SF includes historic bathhouse)	1,200	$\$ 250,000$
Pump House	945 (SF includes historic pump house)	994	$\$ 10,000$
Total Impervious Cover	8,845	8,845	
Total Site Costs			$\$ 1,400,000$
Construction Cost Totals			$\$ 2,500,500$
Total with Owner Costs (add 30\%)			$\$ 3,250,650$

Bathhouse Plumbing Fixture Requirements (Verify with Health Department)

	Approximate SF	Toilet	Uinal	Iavatory	Shower
Existing					
Men **	300	2	1	1	1
Women **		2	0	1	1
Family - Men	900	1	0	1	1
Fa mily - Women		1	0	1	1
** Historic building, notaccessible or ADA compliant					
Required per existing pool configuration (80 occupants)					
Men	-	1	1	1	1
Women		1	0	1	1
Required when pool is replaced (80 occupants)					
Men	-	1	1	1	1
Women		1	0	1	1

Site Rec ommendations (700 E Live Oak Street)

1. Parking

a. Existing Parking

- 19 standard spaces(26 spaces measured from aerial view)
- 0 accessible spaces
- 2 bicycle racks
b. Parking Criteria: Accessible spaces minimum (existing $\mathbf{2 6 + 0}$)
- 26 parking spaces requires 2 accessible parking spaces
- 26 parking spaces requires 2 bicycle parking spaces $(5 \% \times 26)+1$ for Sub-Chapter E (additional $10 \%)=3$ total
c. Parking Recommendations
- Reconstruct 3 existing parking spaces into 2 accessible parking spaces +1 access aisle
- Add wheel stops and signage to the accessible parking spaces
- Additional bicycle racks are not required
- Reconstruct 442 If (26 spaces $\times 17$ If/space) of new curbs a round perimeter of parking lot
- Install 3 (26 spaces $x 0.08$ lights/space) new parking lot lights

2. Access/Connectivity

a. Access/Connectivity Criteria: Sub-Chapter E

- Accessible pedestrian connection from E. Live Oak Street ROW to front entrance.
- Accessible bicycle connection from E. Live Oak Street ROW to front entrance
- Accessible pedestrian connection from new accessible parking to front entrance
- Accessible pedestrian and bicycle connection from front entrance to adjacent properties (Ala meda Drive, E. Live Oak Street, East Side Drive)

b. Access/Connectivity Recommendations

- Construct 10' wide pedestrian and bicycle sidewalk from E. Live Oak Street ROW sidewalk to front entrance
- Reconstruct new 5' wide accessible sidewalk from new accessible parking spaces to front entrance
- Construct 10' wide pedestrian and bicycle sidewalk access from front entrance to Alameda Drive, E. Live Oak Street, East Side Drive
- Install wayfinding signage

3. Drainage

a. Drainage Criteria

- Site located in 100-year floodplain of Blunn Creek
- Provide stormwater detention for increased Q2 - Q100 peak flows created by runoff from new impervious cover
- Provide stormwater quality trea tment for runoff from new impervious cover
- Provide site grading, stormwaterarea inlets around the pool improvements a nd parking lot, storm drain piping to stormwater detention/water quality treatment flow splitter structure and discharge piping and outfall structure.

b. Drainage Recommendations

- New/Redeveloped Impervious Cover:

Parking Expansion	0	sf
Exterior Sidewalks/Flatwork	6,000	sf
Pool Decks	0	sf
Building Roofs	0	sf
IC for Detention and WQ	6,000	sf
Pool	0	sf

- Construct flow splitter structure, 1,200 cf (0.2cf/sf of IC) detention volume structure, 650 cf (IC x . $3^{\prime \prime}$) waterqua lity trea tment struc ture, a nd outfall struc ture for 6,000 sf of new/redeveloped impervious cover
- Construct area inlets and 18 " storm drain collector piping around the pool improvements.
- Construct curb inlets and 18 " storm drain collector piping in parking lot
- Construct site grading to drain runoff to storm drain inlets

4. Water Service

a. Water Senvice Criteria

- Provide 4" water line/meter for domestic water service
- Provide 2" water line/meter for imigation water service
- Provide 2 fire hydrants close to the building and 8 " fire line
- Provide 8" wastewater line for wastewater service
b. WaterSenvice Recommendations
- Construct new 4" tap into new 8" fire hydrant lead that taps into water main along E. Live Oak Street, install 4" domestic water meter with backflow preventer within E. Live Oak Street ROW, install 4" domestic water pipe to pool site
- Construct new 2 " tap into new $8^{\prime \prime}$ fire hydrant lead that taps into water main along E. Live Oak Street, install 2" irrigation meter with backflow preventer within E. Live Oak Street ROW, connect to site ingation system
- Construct new 8" tap into water main along E. Live Oak Street, install 8" backflow preventer within E. Live Oak Street ROW, install 8" fire hydrant lead pipe, install 2 fire hydrants near the pool site
- Construct new $8^{\prime \prime}$ wastewater pipe from pool site to the wastewater main in E. Live Oak Street ROW, install new 48" manhole at connection to wastewater main

E.5.2 Brentwood

Pool Recommendations

- Reconstruct as a Neighborhood Pool according to the model, including all pool deck and filtration system

Site Recommendations

- Provide at least one accessible parking space
- Provide accessible pedestrian and bicycle access from right-of-way
- Provide new utility connections (domestic water, irrigation water, sanitary, fire line and hydrants)
- Install stormwa ter system and detention

Existing Architec tural Features

- Shade structure: A wooden pergola, which is not ADA accessible
- Office: None
- Storage: In area between men's and women's park restroom structure
- Bathhouse/Fa mily Restroom: None, uses park restroom located directly outside pool fence
- Pump House: Separate building

Building Repair Recommendations

- Pergola structure is exhibiting possible structure instability, replace wood as needed
- Add Office
- Add Storage
- Add Bathhouse
- Add ADA and fa mily restrooms
- Pump house doors and frames in need of replacing

Building Recommendations

- Total pool replacement recommended. Repurpose existing building as a storage and staff office. Constructa new pool bathhouse. Replace pergola structure

	Existing (SF)	Proposed (si)	Renovation/ Addifion Est Cost
Deck	2,700	4,700	$\$ 70,500$
Pool	2,731	4,100	$\$ 820,000$
Pool House (to include 2 new fa mily restrooms)	28 (Sf is sto rage room only)	1,300	$\$ 525,000$
Pump House	245	470	$\$ 5,000$
Total Impervious Cover	5,704	10,570	
Total Site Costs			$\$ 1,390,000$
Construction Cost Totals			$\$ 2,810,500$
Total with Owner Costs (add 30\%)			$\$ 3,653,650$

Bathhouse Plumbing Fixture Requirements (Verify with Health Department)

	Approximate SF	Toilet	Uinal	Lavatory	Shower
Existing					
Men*	0	0	0	0	0**
Women*		0	0	0	0**
Family/ ADA	0	0	0	0	0**
* Nearest existing restrooms are on the other side of the pool fence and serve the park. ** A public shower is located adjacent to the pool deck.					
Required per existing pool configuration (55 occupants)					
Men	-	1	1	1	1
Women		1	0	1	1
Required when pool is replaced (82 occ upants)					
Men	-	1	1	1	1
Women		1	0	1	1

Site Recommendations (6710 Arroyo Seca)

1. Parking
a. Existing Parking

- 0 standard spaces
- 1 accessible space (parallel parking space on Arroyo Seco)
- 0 bicycle racks
b. Parking Criteria: Acc essible spaces minimum (existing $0+1$)
- Assume at least 1 accessible drop-off is required
- Assume minimum 2 bic ycle parking space $(5 \% \times 36)+1$ for Sub-C hapterE (additional $10 \%)=3$ total
c. Parking Recommendations
- Reconstruct existing 1 parallel accessible parking space on Arroyo Seco to be TAS compliant accessible drop-off space. Install striping and signage for accessible drop-off space
- Additional parking is not required
- Install 2 bicycle racks
- Install 2 new street lights along Arroyo Seco curb parking

2. Access/Connectivity

a. Access/Connectivity Criteria: Sub-Chapter E

- Accessible pedestrian connection from Arroyo Seco ROW to front entrance
- Accessible bicycle connection from Yates Avenue ROW to front entrance
- Accessible pedestrian connection from accessible drop-off space to front entrance
b. Access/Connectivity Recommendations
- Construct 10^{\prime} wide pedestrian and bicycle sidewalk from Arroyo Seco ROW sidewalk to front entrance
- Construct 10^{\prime} wide pedestrian and bicycle sidewalk from Yates Avenue ROW sidewalk to front entrance
- Construct new 5^{\prime} wide accessible sidewalk from accessible drop-off space to front entrance
- Install wayfinding signage

3. Drainage

a. Drainage Criteria

- Provide stormwater detention for increased Q2 - Q100 peak flows created by runoff from new impervious cover
- Provide stormwater quality trea tment for runoff from new impervious cover
- Provide site grading, stormwater area inlets around the pool improvements, storm drain piping to stormwater detention/water quality treatment flow splitter structure and discharge piping and outfall structure

b. Drainage Recommendations

- New/Redeveloped Impervious Cover:

Parking Expansion	400	sf
Exterior Sidewalks/Flatwork	6,900	sf
Pool Decks	4,700	sf
Building Roofs	1,800	sf
Total IC for Detention and	13,800	sf
WQ		
Pool	4,100	sf

- Construct flow splitter structure, 2,760 cf ($0.20 \mathrm{cf} / \mathrm{sf}$ of IC) detention volume structure, $1,500 \mathrm{cf}$ (IC $\times 1.3^{\prime \prime}$) water quality treatment structure, and outfall structure for 13,800 sf of new/redeveloped impervious cover
- Construct area inlets and 18 " storm drain collectorpiping around the pool improvements
- Construct site grading to drain runoff to storm drain inlets

4. Water Senvice

a. Water Senvice C riteria

- Provide 4" water line/meter for domestic water service
- Provide 2" water line/meter for inigation water service
- New fire hydrants are not needed. There is an existing fire hydrant at the intersection of Arroyo Seco and Ruth Avenue and an existing fire hydrant at the intersection of Arroyo Seco and Choquette Drive
- Provide 8" wastewater line for wastewater service
b. Water Senvice Recommendations
- Construct new 4" tap into water main along Arroyo Seco, install 4" domestic water meter with backflow preventer within Arroyo Seco ROW, install 4" domestic water pipe to pool site
- Construct new 2" tap into new $8^{\prime \prime}$ fire hydrant lead that taps into water main along Arroyo Seco, install 2" irrigation meter with backflow preventer within Arroyo Seco, connect to site irrigation system
- Construct new 8" wastewater pipe from pool site to the wastewater main in Arroyo Seco, install new 48" manhole at connection to wastewater main

E.5.3 Canyon Vista

Pool Recommendations

- Pool is leased from the Round Rock ISD forten years. Keep pool in operation aslong aspossible. Long term it may need to be moved due to school expansion. Therefore, plan to relocate the pool at a more suitable location in the general vic inity as this is the only pool in the area
- A new location will allow a more family-friendly experience with a bathhouse and restroom nearby. Currently restrooms are at the adjacent football field
- Replace guttergrating
- Other improvements as identified in the Needs Assessment

Site Recommendations

- Parking is prima rily for the school. Reconstruct ad restripe 5 parking spacesfor accessible spaces
- Provide accessible pedestrian and bicycle access from right-of-way

Existing Architectural Features

- Shade structure: A wood pergola covers about half of the non-pool deck area
- Office: None
- Storage: Concessions area currently being used forstorage, approx. 200sf
- Bathhouse/Family Restroom: None
- Pump House: Separate outdoorfenced in area

Building Repair Rec ommendations

- Roof in need of replacing
- Lights in need of replacing
- Door and frames in need of replacing (including coiling)
- Building in need of painting and refurbishing
- Add Office
- Add ADA and fa mily restrooms
- Add Bathhouse

Building Rec ommendations

- Construct a bathhouse, long tem the pool will be relocated

	Exising (SF)	Proposed (si)	Renovation/ Addifion Est: Cost
Deck	5,400	5,400 (existing)	$\$ 81,000$
Pool	3,280	3,280 (existing)	$\$ 656,000$
Pool House (to include 2 new fa mily restrooms)	145 (SF is storage room only)	1,300	$\$ 450,000$
Pump House	80	80 (existing)	Included above
Total Impervious Cover	8,905	10,060	
Total Site Costs			$\$ 1,280,000$
Construction Cost Totals			$\$ 2,467,000$
Total with Owner Costs (add 30\%)			$\$ 3,207,100$

Bathhouse Plumbing Fixture Requirements (Verify with Health Department)

	Approximate SF	Toilet	Uinal	Lavatory	Shower
Existing					
Men	0	0	0	0	0
Women		0	0	0	0
Required per existing pool configuration (55 occupants)					
Men	-	1	1	1	1
Women		1	0	1	1

Site Recommendations (8455 Spicewood Springs Road)

1. Parking

a. Existing Parking

- 128 standard spaces
- 2 accessible spaces
- 0 bicycle racks
b. Parking Criteria: Accessible spaces minimum (existing $\mathbf{1 2 8 + 2)}$
- 130 parking spaces requires 5 accessible parking spaces
- 130 parking spaces requires 7 bic ycle parking space ($5 \% \times 130$) +1 for Sub-Chapter E (additional $10 \%)=8$ total

c. Parking Recommendations:

- Reconstruct and restripe existing 5 standard parking spaces to be 3 accessible parking spaces plus 2 associated access aisles
- Install new signage and wheel stops for all accessible parking spaces
- Install 4 bicycle racks
- Additional parking is not required

2. Access/Connectivity

a. Access/Connectivity Criteria: Sub-Chapter E

- Accessible pedestrian connection from Spicewood Springs Road ROW to front entrance
- Accessible bicycle connection from Spic ewood Springs Road ROW to front entrance
- Accessible pedestrian connection from accessible parking to front entrance
- Accessible pedestrian and bicycle connection from front entrance to adjacent properties (Spicewood Springs Road, Calla nish Park Drive, Cedarcliffe Drive)
- Accessible pedestrian and bicycle connection from front entrance to intemal trail system

b. Access/Connectivity Recommendations

- Construct 10 ' wide pedestrian and bicycle connection from Spicewood Springs Road ROW sidewalk to front entrance
- Reconstruct accessible sidewalk and parking lot crossing from accessible parking spaces to front entrance
- Construct 10 ' wide pedestrian and bicycle connections to Spicewood Springs Road, Callanish Park Drive, and Cedarcliffe Drive
- Construct 10^{\prime} wide pedestrian and bicycle connection to intemal trails
- Install wayfinding signage

3. Drainage

a. Drainage Criteria:

- Provide stormwater detention for increased Q2 - Q100 peak flows created by runoff from new imperviouscover
- Provide stormwater quality treatment for runoff from new impervious cover
- Provide site grading, stormwater area inlets around the pool improvements, storm drain piping to stormwater detention/water quality treatment flow splitter structure and discharge piping and outfall struc ture
b. Drainage Recommendations:
- New/redeveloped imperviouscover.

Parking Expansion	0	sf
Exterior Sidewalks/ Flatwork	5,000	sf
Pool Decks	4,700	sf
Building Roofs	1,800	sf
IC for Detention and WQ	11,500	sf
Pool	4,100	sf

- Construct flow splitter structure, $2,300 \mathrm{cf}(0.2 \mathrm{cf} / \mathrm{sf}$ of IC) detention volume structure, $1,250 \mathrm{cf}$ (IC x 1.3") water quality treatment structure, and outfall structure for 11,500 sf of new/redeveloped imperviouscover
- Construct area inlets and 18 " storm drain collectorpiping around the pool improvements
- Construct site grading to drain runoff to storm drain inlets

4. Water Senvice

a. Water Senvice Criteria

- Provide 4" water line/meter for domestic water service
- Provide 2" water line/meter for inigation water service
- There are 2 existing fire hydrants close to the pool along Spicewood Springs Road also providing fire flow for Canyon Vista Middle School
- Provide 8" wastewater line for wastewater service
b. Water Senvice Rec ommendations
- Construct new 4" tap into water main along Spicewood Springs Road, install 4" domestic water meter with backflow preventer within Spicewood Springs Road ROW, install 4" domestic water pipe to pool site
- Construct new 2" tap into water main along Spicewood Springs Road, install 2" inigation meter with backflow preventer within Spicewood Springs Road ROW, connect to site irrigation system
- Construct new 8" wastewater pipe from pool site to the wastewater main along Yaupon Drive (a lift station might be required), install new 48" manhole at connection to wastewater ma in

E.5.4 Civitan

Pool Recommendations

- This pool is in poor condition and not well attended. It is also close to Montopolis, which per this Aquatic Master Plan, is recommended to be upgraded to a Community Pool. Long-tem this pool would ideally be decommissioned after Montopolis is redeveloped.
- If thisfacility is to stay at this location, it will need to be completely replaced with a new Neighborhood Pool with a bathhouse. The below recommendations are based upon the premise that it will be replaced.

Site Recommendations

- Provide one TAScompliant parallel drop-off space on Vargas Road
- Provide accessible pedestrian and bicycle access from right-of-way
- New utility connections (domestic water, reclaimed water, fire line, fire hydrants, and sanitary sewer)
- Install stormwater detention

Existing Architectural Features

- Shade structure: There appears to one have been a wooden canopy shading the concrete area between the two pools but is no longer there. No other shade structures exist
- Office: None
- Storage: None
- Bathhouse/Fa mily Restroom: None, uses park restroom located directly outside pool fence

Building Repair Recommendations

- Roof and soffit in need of replacing
- Add Shade Struc ture or reconstruct existing
- Add Office
- Add ADA and family restrooms
- Add bathhouse
- Pump house cyclone fencing in need of replacement
- Minormaintenance and repairs needed in the pump house

Building Recommendations

- Recommend adding a bathhouse and associated spacescurently not provided

	Exising (SF)	Proposed (sf)	Penovation/ Addfition Est Cost
Deck	4,050	4,700	\$70,500
Pool	3,515	4,100	\$820,000
Pool House (to include 2 new family restrooms)	0	1,300	\$450,000
Pump House	250	470	Inc luded above
Total Impervious Cover	7,815	10,570	
Total Site Costs			\$1,510,000
Construction Cost Totals			\$2,850,500
Total with Owner Costs (add 30\%)			\$3,705,650

Bathhouse Plumbing Fixture Requirements (Verify with Health Department)

	Approximate SF	Toilet	Uinal	Lavatory	Shower
Existing					
Men*	0	0	0	0	0**
Women*		0	0	0	0**
* Nearest existing restrooms are just outside of the pool fence and serve the park. ** A public shower is located adjacent to the pool deck.					
Required per existing pool configuration (81 occupants)					
Men		1	1	1	1
Women		1	0	1	1
Required when pool is replaced (94 occupants)					
Men	- -	1	1	1	1
Women		1	0	1	1

Site Rec ommendations (513 Vargas Road)

1. Parking

a. Existing Parking

- 0 standard spaces
- 0accessible spaces
- 2 bicycle racks
b. Parking Criteria: Accessible spaces minimum (existing $\mathbf{0}+\mathbf{0}$)
- Assume at least 1 accessible drop-off is required
- Assume minimum 2 bic ycle parking space $(5 \% \times 36)+1$ for Sub-C hapterE (additional $10 \%)=3$ total

c. Parking Recommendations

- Construct 1 parallel TAS compliant accessible drop-off space on Vargas Road. Install striping a nd signage foraccessible drop-off space
- Additional parking is not required
- Install 1 bicycle rack
- Install 2 new street lights along Vargas Road curb parking

2. Access/Connectivity

a. Access/Connectivity Criteria: Sub-Chapter E

- Accessible pedestrian connection from Vargas Road ROW to front entrance
- Accessible bicycle connection from Vargas Road ROW to front entrance
- Accessible pedestrian connection from accessible drop-off space to front entrance
- Accessible pedestrian a nd bic yc le connection from front entrance to adjac ent properties(Vargas Road, Ponca Street)
b. Access/Connectivity Rec ommendations:
- Construct 10^{\prime} wide pedestrian and bicycle sidewalk from Vargas Road ROW sidewalk to front entrance
- Construct 10^{\prime} wide pedestrian and bicycle sidewalk from Ponca Street ROW sidewalk to front entrance
- Construct new 5' wide accessible sidewalk from accessible drop-off space to front entrance
- Install wayfinding signage

3. Drainage

a. Drainage Criteria

- Provide stormwater detention for increased Q2 - Q100 peak flows created by runoff from new imperviouscover
- Provide stormwater quality treatment for runoff from new impervious cover
- Provide site grading, stormwater area inlets around the pool improvements, stom drain piping to stormwater detention/water quality treatment flow splitter structure and discharge piping and outfall structure

b. Drainage Recommendations

- New/redeveloped imperviouscover:

| Parking Expansion | 300 sf | sf |
| :--- | ---: | :--- | :--- |
| Exterior Sidewalks/ Flatwork | 7,100 | sf |
| Pool Decks | 4,700 | sf |
| Build ing Roofs | 1,800 | sf |
| IC for Detention and WQ | 13,900 | sf |
| Pool | 4,100 | sf |

- Construct flow splitter structure, $2,780 \mathrm{cf}(0.2 \mathrm{cf} / \mathrm{sf}$ of IC) detention volume structure, $1,510 \mathrm{cf}$ (IC x 1.3") water quality treatment structure, and outfall structure for 13,900 sf of new/redeveloped impervious cover.
- Construct area inlets and 18" storm drain collectorpiping around the pool improvements
- Construct site grading to drain runoff to stom drain inlets

4. Water Senvice

a. Water Senvice Criteria

- Provide 4" water line/meter for domestic water service
- Provide 2" water line/meter for imigation water service
- New fire hydrants are not needed. There are 2 existing fire hydrants along Vargas Street near the pool site
- Provide 8" wastewater line for wastewater service
b. Water Senvice Recommendations
- Construct new 4" tap into water main along Vargas Street, install 4" domestic water meter with backflow preventer within Vargas Street ROW, install 4" domestic water pipe to pool site
- Construct new 2" tap into new 8" fire hydrant lead that taps into water main along Vargas Street, install 2" irrigation meter with backflow preventer within Vargas Street, connect to site irrigation system
- Construct new 8" wastewater pipe from pool site to the wastewater main in Vargas Street, install new 48" manhole at connection to wastewater main

E.5.5 Dottie Jordan

Pool Recommendations

- Completely reconstruct the pool as a Neighborhood Pool as defined in Chapter 5

Site Recommendations

- The site is located in the 100 year floodplain of Little Walnut Creek
- Parking is provided at the adjacent Recreation Center
- Provide accessible pedestrian and bicycle access from right-of-way
- New utility connections (domestic water, reclaimed water, fire line, fire hydrants, and sanitary sewer)
- Install stormwater detention

Existing Architectural Features

- Shade structure: None
- Office: Approx. 150sf
- Storage: None
- Bathhouse/Fa mily Restroom: No ADA or fa mily restroom
- Pump house: Integrated into bathhouse building

Building Repair Recommendations

- Accessories in need of replacing
- Lights in need of replacing
- Door and frames in need of replacing
- Building in need of painting and refurbishing
- Add Shade Structure
- Add Office
- Add ADA and family restrooms

Building Recommendations

- Construct a replacement bathhouse. Refurbish the existing building as shade, storage and staff office

	Existing (SF)	Proposed (sf)	Renovation/ Addition Est Cost
Deck	5,346	4,700	\$70,500
Pool	4,550	4,100	\$820,000
Pool House (to include 2 new family restrooms)	900	1,300	\$450,000
Pump House	Included in the pool house	470	\$50,000
Total Impervious C over	10,796	10,570	
Total Site Costs			\$1,700,000
Construction Cost Totals			\$3,090,500
Total with Owner C osts (add 30\%)			\$4,017,650

Bathhouse Plumbing Fixture Requirements (Verify with Health Department)

	Approximate SF	Toilet	Urinal	Lavatory	Shower
Existing					
Men	450	1	1	1	0
Women		2	0	1	0
Required per existing pool configuration (91 occupants)					
Men	-	1	1	1	1
Women		1	0	1	1
Required when pool is replaced (82 oc c upants)					
Men	-	1	1	1	1
Women		1	0	1	1

Site Recommendations (2803 Loyola Lane)

1. Parking

a. Existing Parking

- 25 standard spaces
- 2 accessible spaces
- 2 bicycle racks
b. Parking Criteria: Accessible spaces minimum (existing $\mathbf{2 5}+\mathbf{2}$)
- 27 parking spaces requires 2 accessible parking spaces
- 27 parking spaces requires 2 bic ycle parking spaces $(5 \% \times 27)+1$ for Sub-Chapter E (additional $10 \%)=3$ total

c. Parking Recommendations

- Restripe existing parking spaces.
- Additional parking is not required
- Additional bicycle racks are not required
- Install 3 (27 spaces $x 0.08$ lights/space) new parking lot lights

2. Access/Connectivity

a. Access/Connectivity Criteria: Sub-Chapter E

- Accessible pedestrian connection from Loyola Lane ROW to front entrance.
- Accessible bicycle connection from Loyola Lane ROW to front entrance
- Accessible pedestrian connection from accessible parking to front entrance
- Accessible pedestrian and bicycle connection from front entrance to adjacent properties(Loyola Lane, Aubumdale Street, Lakeside Drive, Willia mette Drive, Northeast Drive)

b. Access/Connectivity Recommendations

- Construct 10^{\prime} wide pedestrian and bicycle sidewalk from Loyola Lane ROW sidewalk to front entrance
- Reconstruct new 5^{\prime} wide accessible sidewalk from accessible parking spaces to front entrance
- Construct 10^{\prime} wide pedestrian and bicycle sidewalk access from front entrance to Loyola Lane, Aubumdale Street, Lakeside Drive, Williamette Drive, Northeast Drive
- Install wayfinding signage

3. Drainage

a. Drainage Criteria

- Site located in 100-year floodplain of Little Walnut Creek
- Provide stormwater detention for increased Q2 - Q100 peak flows created by runoff from new imperviouscover
- Provide stormwater quality treatment for runoff from new impervious cover
- Provide site grading, stormwater area inlets a round the pool improvements, storm drain piping to stormwater detention/water quality treatment flow splitter structure and discharge piping and outfall struc ture

b. Drainage Recommendations

- New/redeveloped imperviouscover.

| Parking Expansion | 0 | sf |
| :--- | ---: | :--- | :--- |
| Exterior Sidewalks/ Fla twork | 10,000 | sf |
| Pool Decks | 4,700 | sf |
| Build ing Roofs | 1,800 | sf |
| IC for Detention and WQ | 16,500 | sf |
| Pool | 4,100 | sf |

- Construct flow splitter structure, 3,300 cf ($0.2 \mathrm{cf} / \mathrm{sf}$ of IC) detention volume structure, $1,790 \mathrm{cf}$ (IC $\times 1.3^{\prime \prime}$) water quality treatment structure, and outfall structure for 16,500 sf of new/redeveloped impervious cover.
- Construct area inlets and 18 " storm drain collector piping around the pool improvements
- Construct site grading to drain runoff to storm drain inlets

4. Water Service

a. Water Service Criteria

- Provide 4" water line/meter for domestic water service
- Provide 2" water line/meter for inigation water service
- Provide 2 fire hydrants close to the building and 8 " fire line
- Provide 8" wastewater line for wastewater service
b. Water Senvice Recommendations
- Construct new 4" tap into new 8 " fire hydrant lead that taps into water main along Loyola Lane, install 4" domestic water meter with backflow preventer within Loyola Lane ROW, install 4" domestic water pipe to pool site
- Construct new 2" tap into new 8" fire hydrant lead that taps into water main along Loyola Lane, install 2" irrigation meter with backflow preventer within Loyola Lane, connect to site irrigation system
- Construct new 8" tap into water main along Loyola Lane, install 8" backflow preventer within Loyola Lane ROW, install $8^{\prime \prime}$ fire hydrant lead pipe, install 2 fire hydrants near the pool site
- Construct new 8" wastewater pipe from pool site to the wastewater main in Loyola Lane ROW, install new 48" manhole at connection to wastewater main

E.5.6 Gillis

Pool Recommendations

- Gillis is one of the "Critical Pools" as identified in the Aquatic Assessment. Completely reconstruct the pool as a Neighborhood Pool as defined in Chapter 5. A new location within the park may be better so the pool iscloser to parking.

Site Rec ommendations

- Reconstruct 3 parking spaces to serve as 2 TAS compliant accessible spaces.
- Provide accessible pedestrian and bicycle access from right-of-way
- New utility connections (domestic water, reclaimed water, fire line, fire hydrants, and sanitary sewer)
- Install stormwater detention

Existing Architectural Features

- Shade structure: None
- Office: None
- Storage: None
- Bathhouse/Fa mily Restroom: None
- Pump House: None

Building Repair Recommendations

- Add Shade Structure
- Add Office
- Add Storage
- Add ADA and fa mily restrooms
- Add Bathhouse

Building Recommendations

- Constructa bathhouse

	Exising (S.)	Proposed (Si)	Renovation/ Addifion Est: Cost
Deck	603	4,700	$\$ 70,500$
Pool	2,550	4,100	$\$ 820,000$
Pool House (to include 2 new family restrooms)	0	1,300	$\$ 450,000$
Pump House	0	470	Included above
Total Impervious Cover	3,153	10,570	
Total Site Costs			$\$ 1,410,000$
Construction Cost Totals			$\$ 2,750,500$
Total with Owner Costs (add 30\%)			$\$ 3,575,650$

Bathhouse Plumbing Fixture Requirements (Verify with Health Department)

	Approximate sF	Toilet	Uinal	Lavatory	Shower
Existing					
Men*	0	0	0	0	0**
Women*		0	0	0	0**
* Nearest existing restrooms are in the park and very remote. ** A public shower is located adjacent to the pool deck (appears to possibly be a shower).					
Required per existing pool configuration (51 occupants)					
Men		1	1	1	1
Women		1	0	1	1
Required when pool is replaced (82 occupants)					
Men	-	1	1	1	1
Women		1	0	1	1

Site Recommendations (2504 Durwood Avenue)

1. Parking

a. Existing Parking

- 50 standard spaces
- 1 accessible space (near baseball field)
- 1 bicycle rack (near basketball court)
b. Parking C riteria: Accessible spaces minimum (existing 50 + 1)
- 51 parking spaces requires at least 3 accessible parking spaces
- Assume minimum 3 bic ycle parking space $(5 \% \times 51)+1$ forSub-ChapterE (additional $10 \%)=4$ total

c. Parking Recommendations

- Reconstruct 3 existing sta nda rd parking spacesto be 2 new accessible parking spacesand access aisle. Install striping, signage and wheel stops for all 3 accessible parking spaces
- Additional parking is not required
- Install 2 bicycle racks
- Install 2 new street lights along Vargas Road curb parking

2. Access/Connectivity

a. Access/Connectivity Criteria: Sub-C hapter E

- Accessible pedestrian connection from Vargas Road ROW to front entrance
- Accessible bicycle connection from Vargas Road ROW to front entrance
- Accessible pedestrian connection from accessible drop-off space to front entrance
- Accessible pedestrian a nd bic yc le connec tion from front entrance to adjacent properties(Vargas Road, Ponca Street)
b. Access/Connectivity Recommendations
- Construct 10 ' wide pedestrian and bicycle sidewalk from Vargas Road ROW sidewalk to front entrance
- Construct 10^{\prime} wide pedestrian and bicycle sidewalk from Ponca Street ROW sidewalk to front entrance.
- Construct new 5' wide accessible sidewalk from accessible drop-off space to front entrance
- Install wayfinding signage

3. Drainage

a. Drainage Criteria:

- Provide stormwater detention for increased Q2 - Q100 peak flows created by runoff from new imperviouscover
- Provide stormwater quality treatment for runoff from new impervious cover
- Provide site grading, stormwater area inlets around the pool improvements, stom drain piping to stormwater detention/water quality treatment flow splitter structure and discharge piping and outfall structure

b. Drainage Recommendations:

- New/redeveloped imperviouscover:

Parking Expansion	0	sf
Exterior Sidewalks/Flatwork	5,500	sf
Pool Decks	4,700	sf
Building Roofs	1,800	sf
IC for Detention and WQ	12,000	sf
Pool	4,100	sf

- Construct flow splitter structure, $2,400 \mathrm{cf}(0.2 \mathrm{cf} / \mathrm{sf}$ of IC) detention volume structure, $1,300 \mathrm{cf}$ (IC x $1.3^{\prime \prime}$) water quality treatment structure, and outfall structure for 12,000 sf of new/redeveloped impervious cover.
- Construct area inlets and 18 " storm drain collectorpiping around the pool improvements
- Construct site grading to drain runoff to storm drain inlets.

4. Water Senvice

a. Water Senvice Criteria

- Provide 4" water line/meter for domestic water service
- Provide 2" water line/meter for imigation water service
- New fire hydrants are not needed. There are 2 existing fire hydrants along Vargas Street near the pool sit
- Provide 8" wastewater line for wastewater service
b. Water Senvice Recommendations
- Construct new 4" tap into water main along Vargas Street, install 4" domestic water meter with backflow preventer within Vargas Street ROW, install 4" domestic water pipe to pool site
- Construct new 2" tap into new 8" fire hydrant lead that taps into water main along Vargas Street, install 2" irrigation meter with backflow preventer within Vargas Street, connect to site irrigation system
- Construct new 8" wastewater pipe from pool site to the wastewater main in Vargas Street, install new 48 " manhole at connection to wastewater main

E5.7 Kennemer

Pool Recommendations

- Completely reconstruct the pool as a Neighborhood Pool as defined in Chapter 5.

Site Recommendations

- Reconstruct 3 parking spaces to serve as 2 TAS compliant accessible spaces.
- Provide accessible pedestrian and bicycle access from right-of-way
- New utility connections (domestic water, reclaimed water, fire line, fire hydrants, and sanitary sewer)
- Install stormwater detention

Existing Arc hitectural Features

- Shade structure: One wooden pergola over one pic nic table. Trees are around the perimeter of the pool.
- Office: None
- Storage: None
- Bathhouse/Family Restroom: No ADA or fa mily restroom
- Pump House: Integrated into bathhouse building.

Building Repairs Recommendations

- Door and frames in need of replacing
- Building in need of painting and refurbishing
- Pergola will need replacing in the next 5 years
- Add Office
- Add Storage
- Add ADA and family restrooms

Building Recommendations

- Total pool replacement recommended. Refurbish the existing bathhouse. Construct a new building for missing features. Replace pergola.

	Existing (SF)	Proposed (sf)	Renovation/ Addition Est Cost
Deck	4,833	4,700	\$70,500
Pool	4,224	4,100	\$820,000
Pool House (to include 2 new family restrooms)	850	1,300	\$250,000
Pump House	Included in the pool house	470	Included above
Total Impervious C over	9,907	10,570	
Total Site Costs			\$1,250,000
Construction Cost Totals			\$2,390,500
Total with Owner Costs (add 30\%)			\$3,107,650

Bathhouse Plumbing Fixture Requirements (Verify with Health Department)

	Approximate SF	Toilet	Urinal	Lavatory	Shower
Existing					
Men	650	1	2	2	0
Women		3	0	2	0
Required per existing pool configuration (85 occupants)					
Men	-	1	1	1	1
Women		1	0	1	1
Required when pool is replaced (82 occupants)					
Men	-	1	1	1	1
Women		1	0	1	1

Site Recommendations (1031 Peyton Gin Road)

1. Parking

a. Existing Parking

- 32 standard spaces
- 0 accessible spaces
- 2 bicycle racks
b. Parking Criteria: Accessible spaces minimum (existing $32+0$)
- 32 parking spaces requires 2 accessible parking spaces
- 32 parking spaces requires 2 bicycle parking spaces ($5 \% \times 32$) + 1 for Sub-Chapter E (additional $10 \%)=3$ total

c. Parking Recommendations

- Reconstruct existing 3 parking spaces and restripe for 2 ac cessible spaces a nd access a isle. Install wheel stops and signage for accessible parking spaces
- Additional parking is not required
- Additional bicycle racks not required
- Install 3 (28 spaces $\times 0.08$ lights/space) new parking lot lights

2. Access/Connectivity

a. Access/Connectivity Criteria: Sub-Chapter E

- Accessible pedestrian connection from Peyton Gin Road ROW to front entrance
- Accessible bicycle connection from Peyton Gin Road ROW to front entrance
- Accessible pedestrian connection from accessible parking to front entrance
b. Access/Connectivity Recommendations
- Construct 10^{\prime} wide pedestrian and bicycle sidewalk from Peyton G in Road ROW sidewalk to fro nt entrance
- Construct new 5' wide accessible sidewalk from accessible parking spaces to front entrance
- Install wayfinding signage

3. Drainage

a. Drainage Criteria

- Provide stormwater detention for increased Q2 - Q100 peak flows created by runoff from new impervious cover
- Provide stormwater quality treatment for runoff from new impervious cover
- Provide site grading, stomwater area inlets a round the pool improvements, stom drain piping to stormwater detention/water quality treatment flow splitter structure and discharge piping and outfa ll struc ture
b. Drainage Recommendations
- New/redeveloped imperviouscover:

Pa rking Expansion	1,300	sf
Exterior Sidewa lks/ Fla twork	4,700	sf
Pool Decks	1,800	sf
Building Roofs	7,800	sf
IC for Detention and WQ	4,100	sf
Pool	4,100	sf

- Construct flow splitter structure, 1,560 cf (0.2cf/sf of IC) detention volume structure, 845 cf (IC x 1.3") water quality treatment structure, and outfall structure for 7,800 sf of new/redeveloped impervious cover.
- Construct area inlets and 18" stom drain collector piping a round the pool improvements
- Construct site grading to drain runoff to stom drain inlets

4. Water Servic e

a. Water Service Criteria

- Provide 4" water line/meter for domestic water service
- Provide 2" water line/meter for imigation water service
- Provide 2 fire hydrants close to the building and 8" fire line
- Provide 8" wastewater line for wastewater service

b. Water Senvice Rec ommendations

- Construct new 4" tap into new 8" fire hydrant lead that taps into water main along Peyton Gin Road, install 4" domestic water meter with backflow preventer within Peyton Gin Road ROW, install 4" domestic water pipe to pool site.
- Construct new 2" tap into new 8" fire hydrant lead that taps into water main along Peyton Gin Road, install 2" irrigation meter with backflow preventer within Peyton Gin Road, connect to site irngation system.
- Construct new 8" tap into water main along Peyton Gin Road, install 8" backflow preventer within Peyton Gin Road ROW, install 8" fire hydrant lead pipe, install 2 fire hydrants near the pool site.
- Construct new 8" wastewater pipe from pool site to the wastewater main in Collinfield Drive (at its intersection with Peyton Gin Road), install new 48" ma nhole at connection to wastewater main.

E.5.8 Little Stacy

Pool Recommendations

- If this facility is to remain open, redevelop the pool to include a zero-depth entry
- Replace the pool walls

Site Recommendations

- Develop at least one TAS compliant accessible spaces
- Provide accessible pedestrian and bicycle access from right-of-way
- New utility connections (domestic water, reclaimed water, fire line, fire hydrants, and sanitary sewer)
- Install stormwater detention

Existing Architec tural Features

- Shade structure: None but the majority of the pool and area surrounding it are covered by tree canopy
- Office: None
- Storage: None
- Bathhouse/Family Restroom: None
- Pump House: Adjacent to the pool

Building Repairs Recommendations

- Add Shade Structure
- Add Office
- Add Storage
- Add ADA and family restrooms
- Add Bathhouse

Building Recommendations

- Recommend adding restrooms and replacing pool for a zero depth entry

	Exising (SF)	Proposed (si)	Renovation/ Addifion Est: Cost
Deck	960	960	$\$ 14,400$
Pool	1,500	1,500	$\$ 14,400$
Pool House (to inc lude 2 new family restrooms)	-		$\$ 450,000$
Pump House	100	100	-
Total Impervious Cover	2560		
Total Site Costs			$\$ 1,570,000$
Construction Cost Totals			$\$ 2,334,400$
Total with Owner Costs (add 30\%)			$\$ 3,034,720$

Bathhouse Plumbing Fixture Requirements (Verify with Health Department)

	Approximate S $=$	Toilet	Uinal	Lavator	Shower
Existing					
Men	0	0	0	0	0
Women		0	0	0	0
Required per existing pool configuration (30 occupants)					
Men	-	1	1	1	1
Women		1	0	1	1
Required when pool is replaced (30 occupants)					
Men	-	1	1	1	1
Women		1	0	1	1

Site Recommendations (1500 Alameda Drive)

1. Parking

a. Existing Parking

- 0 standard spaces
- 0 accessible spaces
- 2 bicycle racks
b. Parking Criteria: Accessible spaces minimum (existing $0+0$)
- Assume at least 1 accessible drop-off is required
- Assume minimum 2 bicycle parking space +1 for Sub-C hapter E (additional 10%) $=3$ total

c. Parking Recommendations

- Construct 1 paralleI TAS complia nt accessible drop-off space on East Side Drive. Install striping and signage for accessible drop-off space
- Additional parking is not required
- Install 1 bic ycle rack
- Install 1 new street light at proposed East Side Drive accessible drop-off and 4 new street lights along Sunset Lane shoulder parking

2. Access/Connectivity

a. Access/Connectivity Criteria: Sub-C hapter E

- Accessible pedestrian connection from East Side Drive ROW to front entrance
- Accessible bicycle connection from East Side Drive ROW to front entrance
- Accessible pedestrian connection from accessible drop-off space on East Side Drive to front entrance
- Accessible pedestrian and bic ycle connection from front entrance to adjacent properties (East Side Drive, Sunset Lane, Alameda Drive, Blunn Creek Road)
b. Access/Connectivity Recommendations
- Construct 5' wide sidewalk along East Side Drive
- Construct 10' wide pedestrian and bicycle sidewalk from East Side Drive ROW sidewalk to front entrance
- Construct 10' wide pedestrian and bic yc le sidewalk from front entrance to East Side Drive, Sunset Lane, Alameda Drive, Blunn Creek Road)
- Construct new 5' wide accessible sidewalk from accessible drop-off space on East Side Drive to front entrance
- Install wayfinding signage

3. Drainage

a. Drainage Criteria

- Provide stormwater detention for increased Q2 - Q100 peak flows created by runoff from new imperviouscover
- Provide stormwater quality treatment for runoff from new impervious cover
- Provide site grading, stormwater area inlets around the pool improvements, stom drain piping to stormwater detention/water quality treatment flow splitter structure and discharge piping and outfall structure

b. Drainage Recommendations

- New/Redeveloped Impervious Cover:

Parking Expansion	0	sf
Exterior Sidewa lks/Flatwork	5,500	sf
Pool Decks	0	sf
Building Roofs	300	sf
IC for Detention and WQ	5,800	sf
Pool	0	sf

- Construct flow splitter structure, $1,160 \mathrm{cf}(0.20 \mathrm{cf} / \mathrm{sf}$ of IC) detention volume structure, 630 cf (IC x $1.3^{\prime \prime}$) water quality treatment structure, and outfall structure for 5,800 sf of new/redeveloped impervious cover.
- Construct area inlets and 18" storm drain collectorpiping around the pool improvements
- Construct site grading to drain runoff to stom drain inlets

4. Water Senvice

a. Water Senvice Criteria

- Provide 4" water line/meter for domestic water service
- Provide 2" water line/meter for imigation water service
- Provide 2 fire hydrants close to the pool pump room and bathroom facilities
- Provide 8" wastewater line for wastewater service

b. Water Senvice Recommendations

- Construct new 4" tap into new 8 " fire hydrant lead that taps into water main along Alameda Drive, install 4" domestic water meter with backflow preventer within East Side Drive ROW, install $4 "$ domestic water pipe to pool site.
- Construct new $2^{\prime \prime}$ tap into new $8^{\prime \prime}$ fire hydrant lead that taps into water main along Alameda Drive, install 2" irrigation meter with backflow preventer within East Side Drive ROW, connect to site ingation system.
- Construct new 8" tap into water main along Alameda Drive, install 8" backflow preventer within Alameda Drive ROW, install $8^{\prime \prime}$ fire hydrant lead pipe, install 2 fire hydrants near the pool site.
- Construct new 8" wastewaterpipe from pool site to the wastewater ma in in East Side Drive, install new 48" manhole at connection to wastewatermain.

E.5.9 Martin

Pool Recommendations

- Completely reconstruct the pool as a Neighborhood Pool as defined in Chapter 5.
- Work at Martin should be completed before Metz

Site Recommendations

- Restripe accessible parking spacesto be TAS compliant accessible spaces.
- Provide accessible pedestrian and bicycle access from right-of-way
- New utility connections (domestic water, reclaimed water, fire line, fire hydrants, and sanitary sewer)
- Install stomwater detention
- New parking lights

Existing Arc hitectural Features

- Shade structure: None
- Office: None
- Storage: Doublesasthe guard room and is an anteroom to the pool equipment, not an advisable situation.
- Bathhouse/Fa mily Restroom: No ADA or fa mily restroom
- Pump House: Integrated into bathhouse building.

Building Repair Rec ommendations

- Accessories in need of replacing
- Lights in need of replacing
- Building in need of painting and moderate refurbishing
- Add Shade Structure
- Add Office
- Add Storage
- Add ADA and family restrooms

Building Recommendations

- Total pool replacement recommended. Major refurbishment of existing building and addition of missing features.

	Existing (SF)	Proposed (Si)	Renovation/ Addition Est Cost
Deck	5,967	4,700	$\$ 70,500$
Pool	4,880	4,100	$\$ 820,000$
Pool House (to include 2 new family restrooms)	1,350	1,300	$\$ 225,000$
Pump House	Included in pool house	470	
Total Impervious Cover	12,197	10,570	
Total Site Costs			$\$ 1,950,000$
Construction Cost Totals			$\$ 3,065,500$
Total with Owner Costs (add 30\%)			$\$ 3,985,150$

Bathhouse Plumbing Fixture Requirements (Verify with Health Department)

	Approximate SF	Toilet	Uinal	Lavatory	Shower
Existing					
Men	800	1	1	2	0
Women		2	0	1	0
Family/ ADA	0	0	0	0	0
Required per existing pool configuration (98 occupants)					
Men	-	1	1	1	1
Women		1	0	1	1
Required when pool is replaced (82 oc c upants)					
Men	-	1	1	1	1
Women		1	0	1	1

Site Recommendations (1626 Nash Hemandez Sr. Drive)

1. Parking

a. Existing Parking

- 16 standard spaces
- 3 accessible spaces
- 2 bicycle racks
b. Parking Criteria: Accessible spaces minimum (existing $\mathbf{1 6}+\mathbf{3}$)
- 19 parking spaces requires 1 accessible parking space
- 19 parking spaces requires 1 bic ycle parking space ($5 \% \times 19$) +1 forSub-ChapterE (additional 10%) $=2$ total
c. Parking Recommendations
- Restripe accessible parking spaces due to one of access a isles width does not comply with TAS
- Install new signage for accessible parking spaces
- Additional parking is not required
- Install 2 (19 spaces $\times 0.08$ lights/space) new parking lot lights

2. Access/Connectivity

a. Access/Connectivity Criteria: Sub-Chapter E

- Accessible pedestrian connection from Nash Hemandez Sr. Road ROW to front entrance
- Accessible bicycle connection from Nash Hemandez Sr. Road ROW to front entrance
- Accessible pedestrian connection from accessible parking to front entrance
- Accessible pedestrian and bicycle connection from front entrance to adjacent properties (Nash Hemandez Sr. Road, Chic on Street, Salina Street, Chalmers Avenue)
b. Access/Connectivity Recommendations
- Reconstruct 10^{\prime} wide pedestrian and bicycle sidewalk from Nash Hemandez Sr. Drive ROW sidewalk to front entrance. Construct 5^{\prime} wide sidewalk along Nash Hemandez Sr. Drive along frontage with pool site
- Reconstruct new 5' wide accessible sidewalk from accessible parking spaces to front entrance
- Construct 10^{\prime} wide pedestrian a nd bicycle sidewalkaccessfrom frontentrance to Nash Hemandez Sr. Road, Chic on Street, Sa lina Street, Chalmers Avenue
- Install wayfinding signage

3. Drainage

a. Drainage Criteria

- Provide stormwater detention for increased Q2 - Q100 peak flows created by runoff from new imperviouscover
- Provide stormwater quality treatment for runoff from new impervious cover
- Provide site grading, stormwater area inlets around the pool improvements, storm drain piping to stormwater detention/water quality treatment flow splitter structure and discharge piping and outfall struc ture.
b. Drainage Recommendations
- New/redeveloped imperviouscover.

Parking Expansion	0	sf
Exterior Sidewalks/Flatwork	17,400	sf
Pool Decks	4,700	sf
Building Roofs	1,800	sf
IC for Detention and WQ	23,900	sf
Pool	4,100	sf

- Construct flow splitter structure, $4,780 \mathrm{cf}(0.2 \mathrm{cf} / \mathrm{sf}$ of IC) detention volume structure, $2,590 \mathrm{cf}$ (IC x 1.3") water quality treatment structure, and outfall structure for 23,900 sf of new/redeveloped imperviouscover.
- Construct area inlets and 18" storm drain collectorpiping a round the pool improvements
- Construct site grading to drain runoff to storm drain inlets

4. Water Senvice

a. Water Senvice Criteria

- Provide 4" water line/meter for domestic water service
- Provide 2" water line/meter for inigation water service
- Provide 2 fire hydrants close to the building and 8 " fire line
- Provide 8" wastewater line for wastewater service
b. Water Service Recommendations
- Construct new 4" tap into new 8" fire hydrant lead that taps into water main along Nash Hernandez Sr. Drive, install 4" domestic water meter with backflow preventer within Nash Hernandez Sr. Drive ROW, install 4" domestic water pipe to pool site.
- Construct new 2" tap into new 8" fire hydrant lead that taps into water main along Nash Hernandez Sr. Drive, install 2" irrigation meter with backflow preventer within Nash Hernandez Sr. Drive, connect to site ingation system.
- Construct new 8" tap into water main along Nash Hernandez Sr. Drive, install 8" backflow preventer within Nash Hernandez Sr. Drive ROW, install 8 " fire hydrant lead pipe, install 2 fire hydrants near the pool site.
- Construct new 8" wastewaterpipe from pool site to the wastewater main from Chalmers Avenue to Nash Hemandez Sr. Drive, install new 48" manhole at connection to wastewater main.

E.5.10 Metz

Pool Recommendations

- Completely reconstruct the pool as a Neighborhood Pool as defined in Chapter 5.
- Consider decommissioning this one as it is close to Martin

Site Recommendations

- Additional parking is not required
- Restripe accessible parking spacesto be TAScompliant accessible spaces.
- Provide accessible pedestrian and bicycle access from right-of-way
- New utility connections (domestic water, reclaimed water, fire line, fire hydrants, and sanitary sewer)
- Install stormwater detention
- New parking lights

Existing Architectural Features

- Shade struc ture: None but the majority of the a rea surrounding the pool iscovered by tree canopy.
- Office: None
- Storage: Located in area between Men's and Women's restroom
- Bathhouse/Fa mily Restroom: No ADA or fa mily restroom
- Pump House: Separate building

Building Repair Recommendations

- Roof and soffit in need of replacing
- Toilet stall doors in need of replacing
- Accessories in need of replacing
- Lights in need of replacing
- Door and frames in need of replacing
- Building in need of painting and refurbishing
- Add Shade Structure
- Add Office
- Add ADA and family restrooms
- Pump house doorand frame in need of replacing

Building Recommendations:

- Total pool replacement recommended. The existing bathhouse has a community mural to be preserved. Major refurbishment of the existing building. Construct a building for missing features.

	Exising (S.)	Proposed (si)	Renovation/ Addifion Est. Cost
Deck	2,565	4,700	$\$ 70,500$
Pool	3,992	4,100	$\$ 820,000$
Pool House (to include 2 new family restrooms)	450	1,300	$\$ 125,000$
Pump House	310	470	
Total Impervious Cover	7,317	10,570	

	Existing (ST)	Proposed (Si)	Renovation/ Addition Est Cost
Total Site Costs			$\$ 1,710,000$
Construction Cost Totals			$\$ 2,725,500$
Total with O wner Costs (add 30\%)			$\$ 3,543,150$

Bathhouse Plumbing Fixture Requirements (Verify with Health Department)

	Approximate SF	Toilet	Uinal	Lavatory	Shower
Existing					
Men	350	1	1	1	0
Women		2	0	1	0
Required per existing pool configuration (80 occupants)					
Men	-	1	1	1	1
Women		1	0	1	1
Required when pool is replaced (82 occupants)					
Men	-	1	1	1	1
Women		1	0	1	1

Site Rec ommendations (2407 Cantebury Street)

1. Parking

a. Existing Parking

- 20 standard spaces
- 2 accessible spaces
- 2 bicycle racks
b. Parking Criteria: Accessible spaces minimum (existing $\mathbf{2 0}+\mathbf{2}$)
- 22 parking spaces require at least 1 accessible parking space
- Assume minimum 2 bic ycle parking space ($5 \% \times 22$) +1 forSub-ChapterE (additional 10%) $=3$ total
c. Parking Recommendations
- Reconstruct existing 2 accessible parking spaces, and curb ramp. Install striping, signage and wheel stops for the 2 accessible parking spaces.
- Restripe existing parking spaces
- Additional parking is not required
- Additional bicycle racks not required
- Install 2 (22 spaces $\times 0.08$ lights/space) new parking lot lights

2. Access/Connectivity

a. Access/Connectivity Criteria: Sub-C hapter E

- Accessible pedestrian connection from Canterbury Street ROW to front entrance
- Accessible bicycle connection from Canterbury Street ROW to front entrance.
- Accessible pedestrian connection from accessible parking spacesto front entrance
- Accessible pedestrian and bicycle connection to intemal trails
- Accessible pedestrian and bicycle connection from front entrance to adjacent properties (Canterbury Street, Mildred Street, Garden Street, Holly Street, Pedemales Street)

b. Access/Connectivity Recommendations

- Construct 10' wide pedestrian and bic ycle sidewalk from C anterbury Street ROW sidewalk to fro nt entrance
- Construct 10' wide pedestrian and bicycle sidewalk from Mildred Street ROW to front entrance
- Construct 10^{\prime} wide pedestrian and bicycle sidewalk from Garden Street ROW to front entrance
- Construct 10' wide pedestrian and bicycle sidewalk from Holly Street ROW to front entrance
- Construct 10' wide pedestrian and bicycle sidewalk from PedemalesStreet ROW to front entrance
- Construct 10 ' wide pedestrian and bicycle sidewalk from Ann and Roy Butler Hike \& Bike Trail to front entrance
- Construct new 5’ wide accessible sidewalk from accessible parking spaces to front entrance
- Install wayfinding signage

3. Drainage

a. Drainage Criteria:

- Provide stormwater detention for increased Q2 - Q100 peak flows created by runoff from new impervious cover
- Provide stormwater quality treatment for runoff from new impervious cover
- Provide site grading, stormwater area inlets a round the pool improvements, storm drain piping to stormwater detention/water quality treatment flow splitter structure and discharge piping and outfall structure.
b. Drainage Recommendations
- New/Redeveloped Impervious Cover

Parking Expansion	0	sf
Exterior Sidewalks/Flatwork	11,300	sf
Pool Decks	4,700	sf
Building Roofs	1,800	sf
Total IC for Detention and WQ	17,800	sf
Pool	4,100	sf

- Construct flow splitter structure, $3,560 \mathrm{cf}(0.20 \mathrm{cf} / \mathrm{sf}$ of IC) detention volume structure, $1,930 \mathrm{cf}$ (IC x $1.3^{\prime \prime}$) water quality treatment structure, and outfall structure for 17,800 sf of new/redeveloped impervious cover.
- Construct area inlets and 18" storm drain collectorpiping around the pool improvements
- Construct site grading to drain runoff to storm drain inlets

4. Water Service

a. Water Senvice C riteria

- Provide 4" water line/meter for domestic water service
- Provide 2" water line/meter for imigation water service
- Provide 2 fire hydrants close to the pool building and 8 " fire line
- Provide 8" wastewater line for wastewater service
b. Water Senvice Recommendations
- Construct new 4" tap into new 8" fire hydrant lead that taps into water main along Canterbury Street, install 4" domestic water meter with backflow preventer within Canterbury Street ROW, install 4" domestic water pipe to pool site.
" Construct new 2" tap into new 8" fire hydrant lead that taps into water main along Canterbury

Street, install 2" irrigation meter with backflow preventer within Canterbury Street ROW, connect to site ingation system.

- Construct new 8" tap into water main along Canterbury Street, install 8" backflow preventer within Canterbury Street ROW, install 8 " fire hydrant lead pipe, install 2 fire hydrants near pool site.
- Construct new 8 " wastewater pipe from pool site to the wastewater main in Canterbury Street, install new 48" manhole at connection to wastewater main.

E.5.11 Murchison

Pool Recommendations

- Completely reconstruct the pool as a Neighborhood Pool as defined in Chapter 5.
- Site Recommendations:
- Additional parking is not required
- Restripe accessible parking spacesto be TAScompliant accessible spaces.
- Restripe all parking spaces
- Provide accessible pedestrian and bicycle access from right-of-way
- New utility connections (domestic water, reclaimed water, fire line, fire hydrants, and sanitary sewer)
- Install stormwater detention

Existing Architec tural Features

- Shade structure: Large wooden pergola in the southwest comerofgrassarea. Not ADA accessible.
- Office: None
- Storage: Located in back of bathhouse, a pprox. 81sf.
- Bathhouse/Fa mily Restroom: No ADA or fa mily restroom
- Pump House: Separate building

Building Repairs Recommendations

- Pergola in need of replacing in less than 5 years
- Lavatories fixtures in need of replacing
- Accessories in need of replacing
- Lights in need of replacing
- Building in need of painting and refurbishing
- Add Office
- Add Storage
- Add ADA and family restrooms
- Pump house doors and frames in need of replacing. Pump house has structural issues to be corrected.

Building Recommendations

- Total pool replacement recommended. Major refurbishment or replacement of existing building. Construct addition for missing features. Replace the pergola.

	Exising (ST)	Proposed (si)	Renovation/ Addition Est: Cost
Deck	4,023	4,700	$\$ 70,500$
Pool	4,224	4,100	$\$ 820,000$
Pool House (to include 2 new family restrooms)	350	1,300	$\$ 275,000$
Pump House	225	470	$\$ \$ 20,000$
Total Impervious Cover	8,822	10,570	
Total Site Costs			$\$ 1,230,000$
Construction Cost Totals		$\$ 2,415,500$	
Total with Owner Costs (add 30\%)			$\$ 3,140,150$

Bathhouse Plumbing Fixture Requirements (Verify with Health Department)

	Approximate SF	Toilet	Utinal	Lavatory	Shower
Existing					
Men	350	1	2	2	0*
Women		3	0	2	0*
* (1) Public shower on the side of the bathhouse building.					
Required per existing pool configuration (85 occupants)					
Men	-	1	1	1	1
Women		1	0	1	1
Required when pool is replaced (82 occ upants)					
Men	-	1	1	1	1
Women		1	0	1	1

Site Rec ommendations (3700 North Hills Drive)

1. Parking

a. Existing Parking

- 32 standard spaces
- 2 accessible spaces
- 3 bicycle racks
b. Parking C riteria: Accessible spaces minimum (existing $32+2$)
- 34 parking spaces requires 2 accessible parking spaces
- 34 parking spaces requires 2 bic ycle parking space (5% x34) +1 for Sub-Chapter E (add itional 10\%) $=3$ total

c. Parking Recommendations:

- Restripe all parking spaces
- Install new signage and wheel stopsfor accessible parking spaces
- Additional parking is not required
- Install 3 (34 spaces $\times 0.08$ lights/space) new parking lot lights

2. Access/Connectivity

a. Access/Connectivity Criteria: Sub-C hapter E

- Accessible pedestrian connection from Hart Lane ROW to front entrance
- Accessible bicycle connection from Hart Lane ROW to front entrance
- Accessible pedestrian connection from accessible parking to front entrance
- Accessible pedestrian and bicycle connection from front entrance to adjacent properties (Hart Lane, Far West Boulevard)
b. Access/Connectivity Recommendations
- Reconstruct accessible sidewalk a long accessible parking spaces
- Install wayfinding signage

3. Drainage
a. Drainage Criteria

- Provide stormwater detention for increased Q2 - Q100 peak flows created by runoff from new imperviouscover
- Provide stormwater quality trea tment for runoff from new impervious cover
- Provide site grading, stormwater area inlets around the pool improvements, storm drain piping to stormwater detention/water quality treatment flow splitter structure and discharge piping and outfall structure

b. Drainage Recommendations

- New/Redeveloped Impervious Cover:

Parking Expansion	0 sf	sf
Exterior Sidewalks/ Fla twork	700	sf
sf		
Pool Decks	4,700	sf
Building Roofs	1,800	sf
Total IC for Detention and WQ	7,200	sf
Pool	4,100	sf

- Construct flow splitter structure, $1,440 \mathrm{cf}(0.20 \mathrm{cf} / \mathrm{sf}$ of IC) detention volume structure, 780 cf (IC x $1.3^{\prime \prime}$) water quality treatment structure, and outfall structure for 7,200 sf of new/redeveloped impervious cover.
- Construct area inlets and 18" storm drain collectorpiping around the pool improvements
- Construct site grading to drain runoff to storm drain inlets

4. Water Senvice

a. Water Senvic \mathbf{C} Criteria

- Provide 4" water line/meter for domestic water service
- Provide 2" water line/meter for inigation water senvice
- Provide 2 fire hydrants close to the building and 8 " fire line
- Provide 8" wastewater line for wastewater service
b. Water Senvice Recommendations
- Construct new $4^{\prime \prime}$ tap into new $8^{\prime \prime}$ fire hydrant lead that taps into water main along Hart Lane, install 4" domestic water meter with backflow preventer within Hart Lane ROW, install 4" domestic waterpipe to pool site.
- Construct new 2" tap into new 8" fire hydrant lead that taps into water main along Hart Lane, install 2" irrigation meter with backflow preventer within Hart Lane ROW, connect to site irrigation system.
- Construct new 8" tap into water main along Hart Lane, install 8" backflow preventer within Hart Lane ROW, install $8^{\prime \prime}$ fire hydrant lead pipe, install 2 fire hydrants near the pool site.
- Construct new 8" wastewater pipe from pool site to the wastewater main along Hart Lane, install new 48" manhole at connection to wastewatermain.

E5.12 Parque Zaragoza

Pool Recommendations

- Pool hasconsiderable leaks
- If this pool is to continue in operation, a new bathhouse will need to be developed which may not be possible within the floodplain. This pool is also close to others and, therefore, is a candidate for decommissioning.
- If the pool is to continue in operation, completely reconstruct the pool as a Neighborhood Pool as defined in Chapter 5.

Site Recommendations

- This site is located within the floodplain
- Additional parking is not required
- Reconstruct one parking space to be TAS complia nt accessible spaces.
- Provide accessible pedestrian and bicycle access from right-of-way
- New utility connections (domestic water, reclaimed water, fire line, fire hydrants, and sanitary sewer)
- Install stormwa ter detention
- Parking lot lights

Existing Archítectural Features

- Shade structure: None
- Office: None
- Storage: None
- Bathhouse/Fa mily Restroom: None, The adjacent historic building has been condemned. Portapotties are brought in during the summer.
- Pump House: Separate building

Building Repair Rec ommendations

- Add Shade Structure
- Add Office
- Add Storage
- Add ADA and family restrooms
- Add Bathhouse

Building Recommendations

- Recommend repuposing condemned historic building adjacent to pool for bathhouse with a major renovation. Additional building may need to be added to accommodate all desired features.

	Existing (SF)	Proposed (sf)	Renovation/ Addifion Est Cost
Deck	2,673	4,700	\$70,500
Pool	3,992	4,100	\$820,000
Pool House (to include 2 new fa mily restrooms)	1,920 (build ing historic but condemned)	1,300	\$450,000
Pump House	180	470	
Total Impervious C over	8,765	10,570	
Total Site Costs			\$1,850,000
Construction Cost Totals			\$3,190,500
Total with Owner Costs (add 30\%)			\$4,147,650

Bathhouse Plumbing Fixture Requirements (Verify with Health Department)

	Approximate SF	Toilet	Uinal	Lavatory	Shower
Existing					
Men	0	0	0	0	0
Women		0	0	0	0
Required per existing pool configuration (80 occupants)					
Men	-	1	1	1	1
Women		1	0	1	1
Required when pool is replaced (82 occupants)					
Men	-	1	1	1	1
Women		1	0	1	1

Site Recommendations (2608 G onzales Street)

1. Parking

a. Existing Parking

- 2 standard spaces
- 1 accessible space
- 0 bicycle racks
b. Parking Criteria: Accessible spaces minimum (existing $2+1$)
- 3 parking spaces require at least 1 accessible parking space.
- Assume minimum 1 bicycle parking space +1 for Sub-Chapter E (additional 10%) $=2$ total
c. Parking Recommendations
- Reconstruct existing 1 accessible parking space, access aisle and curb ramp. Install striping, signage and wheel stop for the accessible parking space
- Reconstruct and stripe existing 2 parking spaces
- Additional parking is not required
- Install 1 bicycle rack
- Install 2 new parking lot lights: 1 at the accessible parking space and 1 at the 2 standard parking spaces

2. Access/Connectivity

a. a. Access/Connectivity Criteria: Sub-Chapter E

- Accessible pedestrian connection from Webberville Road ROW sidewalk to front entrance
- Accessible bicycle connection from Webberville Road ROW to front entrance
- Accessible pedestrian connection from accessible parking space to front entrance
- Accessible pedestrian connection from standard parking spaces to front entrance
- Accessible pedestrian and bicycle connection to intemal trails
- Accessible pedestrian and bicycle connection from front entrance to adjacent properties (Webberville Road, Francisco Street)
b. Access/Connectivity Recommendations
- Construct 10' wide pedestrian and bic yc le sidewalk from Webberville Road ROW sidewalk to front entrance
- Construct 10' wide pedestrian and bic ycle sidewalk from Webberville Road ROW sidewalk to front entrance
- Construct 10^{\prime} wide pedestrian and bic ycle sidewalk from Franc isco Street ROW to front entrance.
- Construct 10^{\prime} wide pedestrian and bic ycle sidewalk from intemal trails to front entrance
- Construct new 5' wide accessible sidewalk from accessible parking space to front entrance
- Construct new 5^{\prime} wide accessible sidewalk from standard parking spaces to front entrance
- Install wayfinding signage

3. Drainage

a. Drainage Criteria

- Provide stormwater detention for increased Q2 - Q100 peak flows created by runoff from new imperviouscover
- Provide stormwater quality treatment for runoff from new impervious cover
- Provide site grading, stomwater area inlets around the pool improvements, storm drain piping to stormwater detention/water quality treatment flow splitter structure and discharge piping and outfall struc ture

b. Drainage Recommendations

- New/Redeveloped Impervious Cover.

Parking Expansion	0	sf
Exterior Sidewalks/ Flatwork	14,000	sf
Pool Decks	4,700	sf
Building Roofs	1,800	sf
Total IC for Detention and WQ	20,500	sf
Pool	4,100	sf

- Construct flow splitter structure, $4,100 \mathrm{cf}(0.20 \mathrm{cf} / \mathrm{sf}$ of IC) detention volume structure, 2,230 cf (IC x $1.3^{\prime \prime}$) water quality treatment structure, and outfall structure for 20,500 sf of new/redeveloped imperviouscover.
- Construct area inlets and 18 " storm drain collectorpiping a round the pool improvements
- Construct site grading to drain runoff to storm drain inlets

4. Water Senvice

a. Water Senvice Criteria

- Provide 4" water line/meter for domestic water service
- Provide 2" water line/meter for imigation water service
- Provide 2 fire hydrants close to the pool building and 8 " fire line
- Provide 8" wastewater line for wastewater service
b. Water Senvice Recommendations
- Construct new 4" tap into new 8" fire hydrant lead that taps into water main along Webberville Road, install 4" domestic water meter with backflow preventer within Webberville Road ROW, install 4" domestic water pipe to pool site.
- Construct new 2" tap into new 8" fire hydrant lead that taps into water main along Webberville Road, install $2^{2 \prime}$ irrigation meter with backflow preventer within Webberville Road ROW, connect to site ingation system.
- Construct new 8" tap into water main along Webberville Road, install 8" backflow preventer within Webberville Road ROW, install $8^{\prime \prime}$ fire hydrant lead pipe, install 2 fire hydrants near pool site.
- Construct new 8 " wastewater pipe from pool site to the wastewater main in Francisco Street, install new 48" manhole at connection to wastewater main.

E.5.13 Patterson

Pool Recommendations

- If this pool is to continue in operation, a new bathhouse will need to be developed.
- If the pool is to continue in operation, completely reconstruct the pool as a Neighborhood Pool as defined in Chapter 5.
- The wading pool must be replaced and include zero-depth access.

Site Recommendations

- Additional parking is not required
- Reconstruct one parking space to be TAS compliant accessible spaces
- Provide accessible pedestrian and bicycle access from right-of-way
- New utility connections (domestic water, reclaimed water, fire line, fire hydrants, and sanitary sewer)
- Install stormwater detention
- Install a parking lot light

Existing Architec tural Features

- Shade structure: Wood pergola adjacent to the wading pool and fabric canopy entirely shading wading pool
- Office: None
- Storage: None
- Bathhouse/Family Restroom: None
- Pump House: Separate building with community mural

Building Repairs Recommendations

- Pergola in need of replacing in 5 years
- Add Office
- Add Storage
- Add ADA and family restrooms
- Add bathhouse
- Pump house doors and frames in need of replacing

Building Recommendations

- Total pool replacement. Construct bathhouse. Minor refurbishment to the pump house

	Existing (SF)	Proposed (si)	Renovation/ Addifion Est Cost
Deck	1,485	4,700	$\$ 70,500$
Pool	2,731	4,100	$\$ 820,000$
Pool House (to inc lude 2 new family restrooms)	0	1,300	$\$ 450,000$
Pump House	200	470	$\$ 10,000$
Total Impervious Cover	4,416	10,570	
Total Site Costs			$\$ 2,210,000$
Construction Cost Totals			$\$ 3,560,500$
Total with Owner Costs (add 30\%)			$\$ 4,628,650$

Bathhouse Plumbing Fixture Requirements (Verify with Health Department)

	Approximate SF	Toilet	Uninal	Lavator	Shower
Existing					
Men*	0	0	0	0	0**
Women*		0	0	0	0**
* Nearest existing restrooms are in the park and moderately remote. ** (2) public showers by the fence entry to the pool.					
Required per existing pool configuration (55 occupants)					
Men	-	1	1	1	1
Women		1	0	1	1
Required when pool is replaced (82 occ upants)					
Men	-	1	1	1	1
Women		1	0	1	1

Site Rec ommendations (4200 Brookview Road)

1. Parking

a. Existing Parking

- 0 standard spaces
- 1 accessible space
- 0 bicycle racks
b. Parking Criteria: Accessible spaces minimum (existing $\mathbf{0}+\mathbf{1}$)
- Assume at least 1 accessible parking space is required.
- Assume minimum 1 bicycle parking space +1 for Sub-Chapter E (additional 10%) $=2$ total

c. Parking Recommendations:

- Restripe existing accessible parking space and access a isle. Install signage and wheel stop for the accessible parking space
- Additional parking is not required
- Install 1 bic ycle rack
- Install 1 new parking lot light at the accessible parking space

2. Access/Connectivity

a. Access/Connectivity Criteria: Sub-C hapter E

- Accessible pedestrian connection from Brookview Road ROW sidewalk to front entrance and from Brookview Road to Wilshire Boulevard
- Accessible bicycle connection from Brookview Road ROW to front entrance and from Brookview Road to Wilshire Boulevard
- Accessible pedestrian connection from accessible parking space to front entrance
- Accessible pedestrian and bicycle connection to intemal tra ils
- Accessible pedestrian and bicycle connection from front entrance to adjacent properties (Brookview Road, Wilshire Boulevard, Airport Boulevard, Schieffer Avenue)
b. Access/Connectivity Recommendations
- Construct 10 ' wide pedestrian and bicycle sidewalk from Wilshire Boulevard along Brookview Road and from Brookview Road to front entrance
- Construct 10^{\prime} wide pedestrian and bicycle sidewalk from Brookview Road ROW to front entrance
- Construct 10' wide pedestria n a nd bicyc le sidewalk from Wilshire Boulevard ROW to front entrance.
- Construct 10' wide pedestrian and bicycle sidewalk from Airport Boulevard ROW to front entrance
- Construct 10^{\prime} wide pedestrian and bicycle sidewalk from Schieffer Avenue to front entrance
- Construct 10^{\prime} wide pedestrian and bicycle sidewalk from intemal tra ils to front entrance
- Construct new 5' wide accessible sidewalk from accessible parking space to front entrance
- Install wayfinding signage

3. Drainage

a. Drainage Criteria

- Provide stormwater detention for increased Q2 - Q100 peak flows created by runoff from new impervious cover
- Provide stormwater quality trea tment for runoff from new impervious cover
- Provide site grading, stormwater area inlets around the pool improvements, stom drain piping to stormwater detention/water quality treatment flow splitter structure and discharge piping and outfall structure

b. Drainage Recommendations

- New/Redeveloped Impervious Cover:

| Parking Expansion | 0 | sf |
| :--- | ---: | :--- | :--- |
| Exterior Sidewa lks/Flatwork | 20,000 | sf |
| Pool Decks | 4,700 | sf |
| Build ing Roofs | 1,800 | sf |
| Total IC for Detention and WQ | 26,500 | sf |
| Pool | 1,700 | sf |

- Construct flow splitter structure, $5,300 \mathrm{cf}(0.20 \mathrm{cf} / \mathrm{sf}$ of IC) detention volume structure, $2,880 \mathrm{cf}$ (IC x $1.3^{\prime \prime}$) water quality treatment structure, and outfall structure for 26,500 sf of new/redeveloped impervious cover.
- Construct area inlets and 18 " storm drain collector piping around the pool improvements
- Construct site grading to drain runoff to storm drain inlets

4. Water Senvice

a. Water Senvice Criteria

- Provide 4" water line/meter for domestic water service
- Provide 2" water line/meter for inigation water service
- Provide 2 fire hydrants close to the pool building and 8" fire line
- Provide 8" wastewater line for wastewater service

b. Water Senvice Recommendations

- Construct new 4" tap into new 8" fire hydrant lead that taps into water main along Schieffer Avenue, install 4" domestic water meter with backflow preventer within Schieffer Avenue ROW, install 4" domestic water pipe to pool site.

E5.14 Ramsey

Pool Recommendations

- Ma inta in as is until unsusta ina ble
- Completely reconstruct the pool as a Neighborhood Pool as defined in Chapter 5

Site Recommendations

- Additional parking is not required
- Reconstruct one parking space to be TAS compliant accessible spaces.
- Provide accessible pedestrian and bicycle access from right-of-way
- New utility connections (domestic water, reclaimed water, fire line, fire hydrants, and sanitary sewer)
- Install stomwater detention
- Install a parking lot light

Existing Architectural Features

- Shade structure: None
- Office: None
- Storage: None
- Bathhouse/Fa mily Restroom: No ADA or family restroom
- Pump House: Integrated into bathhouse building.

Building Repair Recommendations

- Finishes in both restrooms are in poor condition and are in need of replacing
- Toilet partitions in need of replacing
- Toilet and lavatory plumbing fixtures in need of replacing
- Accessories in need of replacing
- Lights in need of replacing
- Door and frames in need of replacing
- Building in poorcondition and hasstructural damage
- Building is in need of painting and major refurbishing
- Add Shade Structure
- Add Office
- Add Storage
- Add ADA and family restrooms

Building Recommendations

- Total replacement of pool. Replace bathhouse and pump house (although these could be regarded as historic and be prevented from being demolished)

	Existing (SF)	Proposed (si)	Renovation/ Addilion Est, Cost
Deck	2,844	4,700	$\$ 70,500$
Pool	3,800	4,100	$\$ 820,000$
Pool House (to include 2 new fa mily restrooms)	685	1,300	$\$ 450,000$
Pump House	Included in pool house	470	Included above
Total Impervious Cover	7,329	10,570	

	Existing (S.)	Proposed (si)	Renovation/ Addifion Est: Cost
Total Site Costs			$\$ 1,850,000$
Construction Cost Totals			$\$ 3,190,500$
Total with O wner Costs (add 30\%)			$\$ 4,147,650$

Bathhouse Plumbing Fixture Requirements (Verify with Health Department)

	Approximate SF	Toilet	Urinal	Lavatory	Shower
Existing					
Men	300	1	1	1	0
Women		1	0	1	0
Required per existing pool configuration (76 occupants)					
Men	-	1	1	1	1
Women		1	0	1	1
Required when pool is replaced (82 oc c upants)					
Men	-	1	1	1	1
Women		1	0	1	1

Site Recommendations (4301 N. Rosedale Avenue)

1. Parking

a. Existing Parking

- 0 standard spaces
- 1 accessible loading space
- 1 bicycle rack

b. Parking Criteria:

- Acc essible spaces minimum (existing $\mathbf{0}+\mathbf{1}$)
- Assume at least 1 accessible loading space is required.
- Assume minimum 1 bicycle parking space +1 for Sub-Chapter E (additional 10\%) $=2$ total

c. Parking Recommendations

- Restripe existing accessible loading space and access aisle
- Reconstruct handrail on accessible ramp
- Additional parking is not required.
- Additional bicycle rack not required
- Install 1 new parking lot light at the accessible loading space

2. Access/Connectivity

a. Access/Connectivity Criteria: Sub-Chapter E

- Accessible pedestrian connection from W. 42nd Street Road ROW sidewalk to front entrance.
- Accessible bicycle connection from W. 42nd Street Road ROW to front entrance
- Accessible pedestrian connection from accessible loading space to front entrance
- Accessible pedestrian and bicycle connection to intemal trails
- Accessible pedestrian and bicycle connection from front entrance to adjacent properties(W.42nd Street, Rosedale Avenue, Bumet Road, W. 44th Street)

b. Access/Connectivity Recommendations

- Construct 10' wide pedestrian and bic yc le sidewalk from W. 42nd Street to front entrance
- Construct 10^{\prime} wide pedestrian and bic yc le sidewalk from Rosedale Avenue ROW to front entrance
- Construct 10^{\prime} wide pedestrian and bicycle sidewalk from Bumet Road ROW to front entrance
- Construct 10' wide pedestrian and bic ycle sidewalk from W. 44th Street ROW to front entrance
- Construct 10^{\prime} wide pedestrian and bic ycle sidewalk from intemal trails to front entrance
- Construct new 5^{\prime} wide accessible sidewalk from accessible loading space ramp to front entrance
- Install wayfinding signage

3. Drainage

a. Drainage Criteria

- Provide stormwater detention for increased Q2 - Q100 peak flows created by runoff from new imperviouscover
- Provide stormwater quality treatment for runoff from new impervious cover
- Provide site grading, stormwater area inlets a round the pool improvements, storm drain piping to stormwater detention/water quality treatment flow splitter structure and discharge piping and outfall struc ture.
b. Drainage Recommendations
- New/Redeveloped Impervious Cover.

Parking Expansion	0	sf
Exterior Sidewalks/ Flatwork	13,000	sf
Pool Decks	4,700	sf
Build ing Roofs	1,800	sf
Total IC for Detention and WQ	19,500	sf
Pool	4,100	sf

- Construct flow splitter structure, 3,900 cf ($0.20 \mathrm{cf} / \mathrm{sf}$ of IC) detention volume structure, 2,120 cf (IC x $1.3^{\prime \prime}$) water quality treatment structure, and outfall structure for 19,500 sf of new/redeveloped impervious cover.
- Construct area inlets and 18 " storm drain collectorpiping around the pool improvements
- Construct site grading to drain runoff to stom drain inlets

4. Water Service

a. Water Senvice Criteria

- Provide 4" water line/meter for domestic water service
- Provide 2" water line/meter for imigation water service
- Provide 2 fire hydrants close to the pool building and 8 " fire line
- Provide 8" wastewater line for wastewater service
b. Water Senvice Recommendations
- Construct new 4" tap into new 8" fire hydrant lead that taps into water main along W. 42nd Street, install 4" domestic water meter with backflow preventer within W. 42nd Street ROW, install 4" domestic waterpipe to pool site.
- Construct new 2" tap into new 8" fire hydrant lead that taps into water main along W. 42nd Street, install 2" irrigation meter with backflow preventer within W. 42nd Street ROW, connect to site inigation system.
- Construct new 8" tap into water main along W. 42nd Street, install 8" backflow preventer within W. 42nd Street ROW, install $8^{\prime \prime}$ fire hydrant lead pipe, install 2 fire hydrants near pool site.
- Construct new 8 " wastewater pipe from pool site to the wastewater main in Rosedale Avenue, install new 48" manhole at connection to wastewater main.

E.5.15 Reed

Pool Recommendations

- Ma inta in as is until unsusta ina ble
- Completely reconstruct the pool as a Neighborhood Pool as defined in Chapter 5
- Wading pool must be replaced to include zero-depth entry
- Wading pool needs a separate filtration system

Site Recommendations

- Additional parking is not required
- Reconstruct one parking space to be TAS compliant accessible spaces
- Provide accessible pedestrian and bicycle access from right-of-way
- New utility connections (domestic water, reclaimed water, fire line, fire hydrants, and sanitary sewer)
- Install stomwater detention
- Install a parking lot light

Existing Architectural Features

- Shade structure: Wood pergola adjacent to wading pool but not ADA accessible
- Office: None
- Storage: Located between the two restrooms, approx. 25 sf
- Bathhouse/Fa mily Restroom: No ADA or fa mily restroom
- Pump House: Separate building

Building Repairs Recommendations

- Pergola in need of replacing in less than 5 years
- Accessories in need of replacing
- Add lights in bathhouse
- Doors and frames in need of replacing
- Building in need of painting and refurbishing
- Add Shade Structure
- Add Office
- Add Storage
- Add ADA and family restrooms
- Pump house door and frame in need of replacing

Building Recommendations

- Repurpose existing building as a staff office and storage, Add new bathhouse

	Exising (S7)	Proposed (Si)	Renovation/ Addition Est Cost
Deck	3,501	4,700	$\$ 70,500$
Pool	2,731	4,100	$\$ 820,000$
Pool House (to include 2 new fa mily restrooms)	220	1,300	$\$ 450,000$
Pump House	250	470	$\$ 10,000$
Total Impervious Cover	6,702	10,570	
Total Site Costs			$\$ 2,390,000$

	Existing (SF)	Proposed (si)	Renovation/ Addifion Est, Cost
Construction Cost Totals			$\$ 3,740,500$
Total with O wner Costs (add 30\%)			$\$ 4,862,650$

Bathhouse Plumbing Fixture Requirements (Verify with Health Department)

	Approximate SF	Toilet	Urinal	Lavatory	Shower
Existing					
Men	200	1	1	1	0*
Women		2	0	1	0*
* (1) Public shower located adjacent to pool deck.					
Required per existing pool configuration (55 occupants)					
Men		1	1	1	1
Women		1	0	1	1
Required when pool is replaced (82 oc cupants)					
Men	-	1	1	1	1
Women		1	0	1	1

Site Recommendations (2614 Pec os Street)

1. Parking

a. Existing Parking

- 0 standard spaces
- 1 accessible space (parallel to curb)
- 2 bicycle racks
b. Parking Criteria: Accessible spaces minimum (existing $\mathbf{0 + 1}$)
- Assume at least 1 parallel accessible parking space is required.
- Assume minimum 1 bic ycle parking space +1 for Sub-Chapter E (additional 10%) $=2$ total

c. Parking Recommendations:

- Reconstruct existing accessible parallel parking space, access aisle and curb ramp. Install accessible parking space signage and striping
- Additional parking is not required
- Additional bicycle rack not required
- Install 1 new parking lot light at the accessible parking space

2. Access/Connectivity

a. Access/Connectivity Criteria: Sub-Chapter E

- Accessible pedestrian connection from Pecos Street ROW sid ewalk to front entrance.
- Accessible bicycle connection from Pecos Street ROW to front entrance.
- Accessible pedestrian connection from accessible parking space to front entrance
- Accessible pedestrian and bicycle connection to intemal trail
- Accessible pedestrian and bic yc le connection from front entrance to adjacent properties (Pecos Street, Scenic Drive, Greenlee Drive)
b. Access/Connectivity Recommendations
- Construct 10^{\prime} wide pedestrian and bicycle sidewalk from Pecos Street to front entrance
- Construct 10' wide pedestrian and bic ycle sidewalk from Scenic Drive ROW to front entrance
- Construct 10^{\prime} wide pedestrian and bicycle sidewalk from Greenlee Drive ROW to front entrance
- Construct 10^{\prime} wide pedestrian and bic yc le sidewalk from intemal trail to front entrance
- Construct new 5^{\prime} wide accessible sidewalk from accessible parking space to front entrance
- Install wayfinding signage

3. Drainage

a. Drainage Criteria:

- Provide stormwater detention for increased Q2 - Q100 peak flows created by runoff from new imperviouscover
- Provide stormwater quality treatment for runoff from new impervious cover
- Provide site grading, stormwater area inlets around the pool improvements, storm drain piping to stormwater detention/water quality treatment flow splitter structure and discharge piping and outfall struc ture.

b. Drainage Recommendations

- New/Redeveloped Impervious Cover.

Parking Expansion	0	sf
Exterior Sidewalks/ Flatwork	26,000	sf
Pool Decks	4,700	sf
Building Roofs	1,800	sf
Total IC for Detention and WQ	32,500	sf
Pool	4,100	sf

- Construct flow splitter structure, $6,500 \mathrm{cf}(0.20 \mathrm{cf} / \mathrm{sf}$ of IC) detention volume structure, 3,530 cf (IC x 1.3") water quality treatment structure, and outfall structure for 32,500 sf of new/redeveloped impervious cover.
- Construct area inlets and 18" storm drain collectorpiping a round the pool improvements
- Construct site grading to drain runoff to storm drain inlets

4. Water Senvice

a. Water Senvice Criteria

- Provide 4" water line/meter for domestic water service
- Provide 2" water line/meter for imigation water service
- Provide 2 fire hydrants close to the pool building and 8 " fire line
- Provide 8" wastewater line for wastewater service
b. Water Service Recommendations
" Construct new 4" tap into new 8" fire hydrant lead that taps into water main along Pecos Street, install 4" domestic water meter with backflow preventer within Pecos Street ROW, install 4" domestic waterpipe to pool site.
- Construct new 2" tap into new 8" fire hydrant lead that taps into water main along Pecos Street, install $2^{\prime \prime}$ irrigation meter with backflow preventer within Pecos Street ROW, connect to site irrigation system.
- Construct new 8" tap into water main along Pecos Street, install 8" backflow preventer within Pecos Street ROW, install 8 " fire hydrant lead pipe, install 2 fire hydrants near pool site.
- Construct new 8" wastewater pipe from pool site to the wastewater main in Pecos Street, install new 48 " manhole at connection to wastewatermain.

E.5.16 West Austin

Pool Recommendations

- Ma intain as is until unsusta ina ble
- This pool is not a candidate to serve asa typical Neighborhood Pool due to its size limitations
- Long-term this is a candidate for repurposing as there is no room for a proper bathhouse

Site Recommendations

- Additional parking is not required
- Reconstruct one parking space to be TAS compliant accessible spaces.
- Provide accessible pedestrian a nd bicycle accessfrom right-of-way. Thismay be challenging due to steep slopes
- Install stormwater detention
- Install a parking lot light

Existing Architec tural Features

- Shade structure: None
- Office: None
- Storage: Located in historic restroom build ing located just outside the pool gates, approx. 60sf.
- Bathhouse/Fa mily Restroom: No ADA orfa mily restroom. Adjacent, Historic restroom build ing is not located inside pool fence (intended for use by park).
- Pump House: Separate building

Building Repairs Recommendations

- Add Shade Structure
- Add Office
- Add Storage
- Add ADA and family restrooms
- Add Bathhouse

Building Recommendations

- Construct a new building to house missing features, but the existing site may be too tight fora pool restroom expansion. Historic restroom build ing to be refurbished

	Existing (SF)	Proposed (si)	Renovation/ Addifion Est Cost
Deck	2,655	2,655 (existing)	$\$ 40,000$
Pool	1,500	1,500 (existing)	$\$ 300,000$
Pool House (to inc lude 2 new family restrooms)	0	1,000	$\$ 450,000$
Pump House	1,200	1,200 (existing)	
Total Impervious Cover	5,355	6,355	
Total Site Costs			$\$ 1,390,000$
Construction Cost Totals			$\$ 2,180,000$
Total with Owner Costs (add 30\%)			$\$ 2,834,000$

Bathhouse Plumbing Fixture Requirements (Verify with Health Department)

	Approximate SF	Toilet	Uninal	Lavatory	Shower
Existing					
Men*	60	1	0	1	0
Women*		1	0	1	0
* Existing restrooms are not ADA compliant and are serving the park, not the pool.					
Required per existing pool configuration (30 occupants)					
Men	-	1	1	1	1
Women		1	0	1	1
Required when pool is replaced (30 occupants)					
Men	-	1	1	1	1
Women		1	0	1	1

Site Recommendations (1317 W. 10th Street)

1. Parking

a. Existing Parking

- 0 standard spaces
- 0 accessible spaces
- 5 bicycle racks
b. Parking Criteria: Accessible spaces minimum (existing $\mathbf{0 + 0}$)
- Assume at least 1 accessible parking space is required on W. 10th Street.
- Assume minimum 1 bicycle parking space +1 for Sub-Chapter E (additional 10%) $=2$ total

c. Parking Recommendations

- Construct 1 accessible parking space with access aisle on W. 10th Street. Install striping and signage for accessible parking space
- Additional parking is not required
- Additional bicycle racks are not required
- Install 1 new street light at accessible parking space on W. 10th Street and 4 along accessible route from parking space to front entrance

2. Access/Connectivity

a. Access/Connectivity Criteria: Sub-C hapter E

- Accessible pedestrian connection from W. 10th Street ROW to front entrance
- Accessible bicycle connection from W. 10th Street ROW to front entrance
- Accessible pedestrian connection from accessible parking space to front entrance
- Accessible pedestrian and bicycle connection from front entrance to adjacent properties (W. 10th Street, Ma ufra is Street, W. 9th Street)
b. Access/Connectivity Recommendations
- Construct 10^{\prime} wide pedestrian and bicycle sidewalk from W. 10th Street ROW sidewalk to front entrance
- Construct 10^{\prime} wide pedestrian and bic ycle sidewalk from Ma ufra is Street ROW to front entrance
- Construct 10^{\prime} wide pedestrian and bic yc le sidewa lk from W. 9th Street ROW to front entrance
- Construct new 5^{\prime} wide accessible sidewalk from accessible parking space on W. 10th Street to front entrance
- Install wayfinding signage

3. Drainage

a. Drainage Criteria

- Provide stormwater detention for increased Q2 - Q100 peak flows created by runoff from new impervious cover
- Provide stormwater quality treatment for runoff from new impervious cover
- Provide site grading, stormwater area inlets around the pool improvements, storm drain piping to stormwater detention/water quality treatment flow splitter structure and discharge piping and outfall structure.

b. Drainage Recommendations

- New/Redeveloped Impervious Cover:

Parking Expansion
Exterior Sidewa lks/ Flatwork
Pool Decks
Building Roofs
Total IC for Detention and WQ Pool

0 sf
6,300 sf
0 sf
1,000 sf
7,300 sf
0 sf

- Construct flow splitter structure, $1,460 \mathrm{cf}(0.20 \mathrm{cf} / \mathrm{sf}$ of IC) detention volume structure, 800 cf (IC x $1.3^{\prime \prime}$) water quality treatment structure, and outfall structure for 7,300 sf of new/redeveloped impervious cover
- Construct area inlets and 18" storm drain collectorpiping around the pool improvements
- Construct site grading to drain runoff to storm drain inlets

4. Water Senvice

a. Water Senvice C riteria

- Provide 4" water line/meter for domestic water service
- Provide 2" water line/meter for imigation water service
- Provide 2 fire hydrants close to the building and 8 " fire line
- Provide 8" wastewater line for wastewater service
b. Water Senvice Recommendations
- Construct new 4" tap into new 8" fire hydrant lead that taps into water main along W. 10th Street, install 4" domestic water meter with backflow preventer within W. 10th Street ROW, install 4" domestic waterpipe to pool site.
- Construct new 2" tap into new 8" fire hydrant lead that taps into water main along W. 10th Street, install 2" irrigation meter with backflow preventer within W. 10th Street, connect to site irrigation system.
- Construct new 8" tap into water main along W. 10th Street, install 8" backflow preventer within W. 10th Street ROW, install 8 " fire hydrant lead pipe, install 2 fire hydrants near the pool site.
- Construct new 8 " wastewater pipe from pool site to the wastewater ma in in W. 10th Street, install new 48" manhole at connection to wastewater main.

E5.17 Westenfield

Features:

- Newly constructed, not a part of this report. Project information listed below for reference.
- Water area: 4,068sf
- Pool deck area: 4,696sf
- Gross build ing area: 2,062sf
- First Aid: 80sf
- Storage: 80sf
- Pump house: 1,230sf
- Fenced area: 18,275sf

	Approximate SF	Toilet	Uinal	Lavatory	Shower
Existing					
Men	840	1	1	2	1
Women		2	0	2	1
Men's Fa mily	120	1	1	1	1
Women's Fa mily	120	1	0	1	1

Site Recommendations (2008 Enfield Road)

1. SPC-2011-0315C

Westenfield Pool was recently renovated under City of Austin Site Development Permit SPC-2011-0315C. According to the SPC-2011-0315C permit drawings:

- Parking: 1 standa rd space +1 accessible space on Bridle Path/Sha ron La ne (about 3000 feet from the front entrance to the pool)
- 10 bicycle space parking at the pool entrance
- Approximately 25 parallel parking spaces along the shoulder of Winsted La ne (per aerial photo)
a. Access/Connectivity
- Sidewalk along Enfield Road frontage, adjacent to pool facility
- Pedestrian and bicycle connections (internal circulation routes) to Enfield Road and Bridle Path/ Sharon Lane
- Accessible route from accessible parking space to front entrance
- Pedestrian and bicycle connections to the park'sintemal circulation routes
- No sidewalk a long Winsted Lane frontage
- Limited curb cuts
b. Drainage
- 12 " storm drain and pool deck drain line, with drainage swale, discharging to local storm drain system at intersection of Enfield Road and Winsted Lane
- No existing on-site stormwater detention or water quality treatment

c. Water Senvice

- 4" domestic water service tap into existing water main along Enfield Road, 4" service line, 4" water meter, 4" service to pool
- 1-1/2" irrigation water service tap into 4 " water service pipe, 1 " irrigation water meter with backflow preventer
- Existing 2 fire hydrants off water main along Enfield Road, adjacent to pool site

2. Other Recommendations

- No site civil improvements outside the pool perimeter fence are recommended
- It is assumed that as a Neighborhood Pool, additional parking is not required. However, if pool improvements expand its use, then at least 1 additional accessible parking space will be required.

APPENDIX F - STE COSTS

Aquatic Master Plan								
Balcones								
Doucet + Chan, a Division of Doucet \& Associates, Inc. Texas Registration No. 3937								
Item No.	Quantity Calculation	Quantity	Unit	Item Description Unit Price			Amount	Notes
104S-A	400	400	LF	Remove P.C. Concrete Curb	\$	20.00	\$8,000.00	to expand parking lot and rebuilt driveway. Quantity take off north and west curb
104S-B			SF	Remove P.C. Concrete Slab	\$	20.00	\$0.00	
104S-C	1003	1100	SF	Remove P.C. Concrete Sidewalks \& Driveways	\$	20.00	\$22,000.00	Removed existing driveway, and existing sidewalk in front of building
SP104S			SF	Demolition, Buildings	\$	10.00	\$0.00	
SP104S-UB			EA	Demolition, Utility Boxes	\$	2,700.00	\$0.00	
			CF	Demolition, Masonry Walls, Stone with Mortar	\$	8.00	\$0.00	12" thick
			LF	Demolition, Water/Wastewater Pipe, 6 Inch to 12 Inch Dia.	\$	29.00	\$0.00	
			LF	Demolition, Electric Conduits	\$	7.00	\$0.00	
			EA	Demolition, Light Pole	\$	600.00	\$0.00	
			LF	Demolition, Chain Link Fence	\$	7.00	\$0.00	
			CY	Demolition Disposal, Loading and 5 Mile Haul to Dump (Non-Hazardous)	\$	22.00	\$0.00	
			CY-Mi	Demolition, Disposal Haul, Per Mile over 5 Miles	\$	2.00	\$0.00	
			TON	Demolition, Dump Charge	\$	110.00	\$0.00	
1115-A	2030.617284	2,030	CY	Excavation, Unclassified	\$	52.00	\$105,560.00	33120 sf $+40^{\prime} \times 200$ new driveway and assuming 2in HMAC with 8 " base and 6" subgrade
120S-A			CY	Channel Excavation	\$	90.00	\$0.00	
130S-A			CY	Class A (Select Borrow)	\$	59.00	\$0.00	
130S-T			CY	Class C (Topsoil)	\$	44.00	\$0.00	
132S-A			CY	Embankment (Fill)	\$	29.00	\$0.00	
2015	4568.888889	4,570	SY	Sub-Grade Preparation	\$	9.00	\$41,130.00	$\begin{aligned} & 33120 \mathrm{sf}+40^{\prime} \times 200^{\prime} \text { new driveway } \\ & \text { with 6" subgrade } \\ & \hline \end{aligned}$
2035-A8	4568.888889	4,570	SY	Lime Treated Subgrade, 8 Inch Thickness	\$	15.30	\$69,921.00	$\begin{aligned} & 33120 \mathrm{sf}+40^{\prime} \times 200 \text { ' new driveway } \\ & \text { with 6" subgrade } \end{aligned}$
210S-A8	1015.308642	1,020	CY	Flexible Base, 8 Inch Thickness	\$	42.00	\$42,840.00	$33120 \mathrm{sf}+40^{\prime} \times 200$ ' new driveway with 8" base
340S-B-C3			SY	Hot Mix Asphaltic Concrete Pavement, 3 Inches, Type C	\$	22.00	\$0.00	
340S-B-C2	4568.888889	4,570	SY	Hot Mix Asphaltic Concrete Pavement, 2 Inches, Type C	\$	17.00	\$77,690.00	$\begin{aligned} & 33120 \mathrm{sf}+40^{\prime} \times 200^{\prime} \text { new driveway } \\ & \text { with } 2 \text { in HMAC } \end{aligned}$
340S-B-C1.5			SY	Hot Mix Asphaltic Concrete Pavement, 1-1/2 Inches, Type C	\$	15.00	\$0.00	
360S-A			SY	7 Inch Concrete Pavement	\$	108.00	\$0.00	
4035-CY			CY	Concrete Structure,	\$	720.00	\$0.00	
4035-EA-D		1	EA	Concrete Structure, Storm Water Detention	\$	173,700.00	\$173,700.00	\$3.00/sf $\times 59,700$ ff IC
403S-EA-WQ		1	EA	Concrete Structure, Storm Water Quality Treatment	\$	249,000.00	\$249,000.00	\$4.30/sf $\times 57,900$ sf IC
414S-C			SF	Cast in Place Portland Cement Concrete Retaining Wall, Including Reinforcement	\$	61.00	\$0.00	
4305-A	1200	1,200	LF	P.C. Concrete Curb and Gutter (Excavation)	\$	18.00	\$21,600.00	assume it is 3 times the removed
430S-E			LF	P.C. Concrete Laydown Curb (Excavation)	\$	22.00	\$0.00	
4325-5	3730	3,800	SF	New P.C. Concrete Sidewalks, 5 Inch thickness	\$	12.00	\$45,600.00	From Amherst to building entrance on both side of ICR
432S-6			SF	New P.C. Concrete Sidewalks, 6 Inch thickness	\$	14.00	\$0.00	
432S-RP-1	4	4	EA	P.C. Sidewalk Curb Ramp with Pavers (Type I)	\$	1,800.00	\$7,200.00	two at ROW, two onsite
432S-SAC-1			EA	Streetscape Bench (5ft with Back)	\$	3,800.00	\$0.00	

432S-SAC-1			EA	Streetscape Bench (5ft without Back)	\$	2,300.00	\$0.00	
432S-SAC-2			EA	Streetscape Chair (2 ft)	\$	2,300.00	\$0.00	
432S-SAC-3	3	3	EA	Streetscape Bicycle Rack	\$	800.00	\$2,400.00	3 new ones. Existing ones may not be
432S-SAC-4			EA	Streetscape Trash Receptacle	\$	2,900.00	\$0.00	
432S-SAC-7C			EA	Streetscape Tree Well \& Grate	\$	6,600.00	\$0.00	
432S-PRC-1			LF	Pedestrian ADA Railing	\$	102.00	\$0.00	
SP432S-K			EA	Art Kiosks	\$	25,000.00	\$0.00	
4335-C	1000	100	SF	Type II P.C. Concrete Driveway	\$	11.00	\$1,100.00	Reconstructed driveway 40' wide and 25 deep
435S			LF	P.C. Concrete Steps	\$	160.00	\$0.00	
439S	3	3	EA	Parking Lot Bumper Curbs	\$	120.00	\$360.00	for accessible spaces
504S-3W			EA	Adjusting Water Valve Boxes to Grade	\$	950.00	\$0.00	
505S-B20			LF	Encasement Pipe, Split 20 Inch Dia., Type Steel, 0.375 Inch Minimum Thickness	\$	243.00	\$0.00	
506-ABSW			EA	Abandonment of Exisitng Manholes, Storm Water	\$	2,200.00	\$0.00	
506-ABWW			EA	Abandonment of Exisitng Manholes, Wastewater	\$	2,200.00	\$0.00	
506-ABE			EA	Abandonment of Existing Manholes, Electrical and Telecommunications	\$	2,200.00	\$0.00	
506-BSW4×4			EA.	Box Manhole, $4 \mathrm{ft} \times 4 \mathrm{ft}$	\$	6,600.00	\$0.00	
506-CNSW		1	EA	Connection of Storm Water Pipe to Existing System	\$	2,300.00	\$2,300.00	
506-CNWW	1	1	EA	Connection of Wastewater Pipe to Existing System	\$	2,300.00	\$2,300.00	for 8" wastewater line
506-EDMSSW48			LVF	Extra Depth Special Storm Water Manhole, 48 In. Dia.	\$	340.00	\$0.00	
506-MSW48	1	1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 48 In. Dia.	\$	5,700.00	\$5,700.00	SD connection
506-MSW60			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 60 In. Dia.	\$	7,400.00	\$0.00	
506-MWW48		1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 4 Ft Dia.	\$	6,300.00	\$6,300.00	at connection on Amherst Drive
506-MWW60			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 5 Ft. Dia.	\$	8,000.00	\$0.00	
SP506-M		1	EA	By-Pass Pumping at Each Connection to Existing Manhole	\$	5,200.00	\$5,200.00	at connection on Amherst Drive
508S-H18			EA	Headwalls for 18" Pipe	\$	3,000.00	\$0.00	
508S-H24		1	EA	Headwalls for 24" Pipe	\$	3,200.00	\$3,200.00	at SD outfall on Walnut Creek
508S-H48			EA	Headwalls for 48" Pipe	\$	6,400.00	\$0.00	
508S-IG		3	EA	Inlet, Grate (Area Inlet)	\$	5,600.00	\$16,800.00	inlets around pool improvements
508S-110S		6	EA.	Inlet, Standard 10 Foot	\$	5,400.00	\$32,400.00	for parking lot expansion
509S-1		1,600	LF	Trench Excavation Safety Protective Systems (all depths)	\$	2.00	\$3,200.00	
510-AW2C			LF	Pipe, 2" Dia. Copper (all depths), including Excavation and Backfill	\$	91.00	\$0.00	irigation
510-AW-4-350		400	LF	Pipe, 4" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	140.00	\$56,000.00	Domestic Line
510-AW-6-350		80	LF	Pipe, 6 " Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	159.00	\$12,720.00	fire hydrant leads
510-AW-8-350	391	400	LF	Pipe, $8^{\prime \prime}$ Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	193.00	\$77,200.00	Fire line
510-ASW18		400	LF	Pipe, 18 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	136.00	\$54,400.00	SD collection around pool improvements
510-ASW24		400	LF	Pipe, 24 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	157.00	\$62,800.00	for parking lot expansion. The site drains directly to walnut creek?
510-ASW30			LF	Pipe, 30 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	249.00	\$0.00	

510-ASW36			LF	$\begin{array}{l}\text { Pipe, } 36 \text { - inch R.C.P. Storm Drain (all depths), including Excavation and } \\ \text { Backfill }\end{array}$	\$	311.00	\$0.00	
510-ASW48			LF	Pipe, 48 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	351.00	\$0.00	
510-ASW54			LF	Pipe, 54 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	368.00	\$0.00	
510-ASW66			LF	Pipe, 66 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	403.00	\$0.00	
510-AWW6			LF	Pipe, 6" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	114.00	\$0.00	
510-AWW8		400	LF	Pipe, 8" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	125.00	\$50,000.00	Wastewater service line
510-AWW12			LF	Pipe, 12" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	159.00	\$0.00	
510-AWW21			LF	Pipe, 21" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	299.00	\$0.00	
510-BW8×2		1	EA	Connecting New 8" Water Service to 2" Private Service	\$	4,600.00	\$4,600.00	irigation service connection
510-BW8×4		1	EA	Connection New 8" Water Service to 4" Private Service	\$	6,200.00	\$6,200.00	domestic service connection
SP510-BW-M2	1	1	EA	New Water Meter, 2 Inch Meter and Water Capital Recover Fee	\$	55,000.00	\$55,000.00	Imigation meter/tap fee
SP510-BW-M4	1	1	EA	New Water Meter, 4 Inch Meter and W/WW Capital Recover Fee	\$	321,000.00	\$321,000.00	Domestic meter/tap fee
SP510-BW-RM2			EA	Relocate Existing Water Meter, 2 Inch Tap Fee	\$	2,000.00	\$0.00	
$510-\mathrm{BWW} \times \times 6$		1	EA	Connecting New $8^{\text {" W Wastewater Service to Existing Private Service }}$	\$	4,600.00	\$4,600.00	connect to 8" main on Amherst
510-J W6x6			EA	Wet Connections, $6^{\prime \prime}$ Dia. $\times 6^{\prime \prime}$ Dia.	\$	3,100.00	\$0.00	
510-J W8x8	1	1	EA	Wet Connections, $8^{\prime \prime}$ Dia. $\times 8^{\prime \prime}$ Dia.	\$	3,300.00	\$3,300.00	the other main is $36^{\prime \prime}$ CSC
$510-\mathrm{JW} 16 \times 16$			EA	Wet Connections, $16^{\prime \prime}$ Dia. $\times 16^{\prime \prime}$ Dia.	\$	4,600.00	\$0.00	
510-KW	2	2	TON	Ductile Iron Fittings	\$	11,500.00	\$23,000.00	$5 \mathrm{lb} / \mathrm{t}$
511S-A2		2	EA	Valves, Gate Type, 2" Diameter	\$	1,000.00	\$2,000.00	
511S-A3			EA	Valves, Gate Type, 3" Diameter	\$	1,200.00	\$0.00	
5115-A4	1.6	2	EA	Valves, Gate Type, 4" Diameter	\$	1,500.00	\$3,000.00	1 each/250 ft
511S-A6		2	EA	Valves, Gate Type, 6" Diameter	\$	1,900.00	\$3,800.00	for fire hydrants
511S-A8	1.6	2	EA	Valves, Gate Type, 8" Diameter	\$	2,300.00	\$4,600.00	1 each/250 ft
511S-B		2	EA	Fire Hydrant	\$	5,200.00	\$10,400.00	
511s-C2		1	EA	Pressure or Flow Control Valve Assemblies (2 Inch Backflow Preventer for Irrigation Service)	\$	4,000.00	\$4,000.00	
5115-C8		1	EA	Pressure or Flow Control Valve Assemblies (8 Inch Double Check Valve Backflow Preventer for Fire Service)	\$	16,000.00	\$16,000.00	
551			LF	Pipe Underdrains (for Tree Wells)	\$	50.00	\$0.00	
5915-B		4	SY	Dry-Riprap	\$	200.00	\$800.00	
594s-C			Cr	Revet Mattresses, Twisted Woven Wire	\$	320.00	\$0.00	
602S-D			SY	Grass Sodding, General	\$	7.00	\$0.00	
604S-A		4,000	SY	Non-Native Seeding for Erosion Control Method	\$	6.00	\$24,000.00	
604S-E			SY	Mulch, Hardwood	\$	23.00	\$0.00	
605s-A		300	SY	Soil Retention Blanket	\$	24.00	\$7,200.00	
6085-1			EA	Plantings, Type BMP Native Grasses, Sedges, Woody Shrubs	\$	23.00	\$0.00	1 ft spacing in Rain Garden
6085-1	24.86666667	25	EA	Trees, 20 Gal	\$	600.00	\$15,000.00	30ft apart along sidewalk
6085-1			EA	Plants, 5 Gal	\$	50.00	\$0.00	
6085-2			LS	Irrigation System			\$0.00	
6095-C			SY	Native Seeding for Erosion Control	\$	7.00	\$0.00	
610S-A		400	LF	Tree Protective Fencing Type A Chain Link Fence	\$	4.00	\$1,600.00	
610S-R	7	7	EA	Removal of Existing Trees	\$	570.00	\$3,990.00	
SP628S-C		9	EA	Filter Curb Inlet Protection	\$	120.00	\$1,080.00	
6285-B		100	LF	Sediment Containment Dikes with Filter Fabric	\$	9.00	\$900.00	Triangular dike on pavement
6395		40	LF	Rock Berm	\$	39.00	\$1,560.00	
6405			SF	Mortared Rock Wall	\$	50.00	\$0.00	
6415		1	EA	Stabilized Construction Entrance	\$	1,700.00	\$1,700.00	
6425		2,000	LF	Silt Fence for Erosion Control	\$	4.00	\$8,000.00	
6605			CY	Bio-Filtration Media	\$	114.00	\$0.00	

7005-TM		1	LS	Total Mobilization Payment	\$	109,000.00	\$109,000.00	5% of all costs excluding Mob cost
7015-A6			LF	Chain Link Fence, 6-Ft	\$	20.00	\$0.00	
701S-BS			EA	Chain Link Pedestrian Single Swing Gate ($6 \mathrm{Ft} \times 4 \mathrm{Ft}$)	\$	1,000.00	\$0.00	
7015-CD			EA	Chain Link Vehicular Double Swing Gate ($6 \mathrm{Ft} \times 20 \mathrm{Ft}$)	\$	2,300.00	\$0.00	
8025-BBond		1	EA	Bond Project Sign	\$	700.00	\$700.00	
803S-SF			LF	Safety Fence	\$	3.00	\$0.00	
SP803S-BAS			EA	Project Sign for Access	\$	400.00	\$0.00	
SP8035-CD		160	CD	Barricades, Signs, and Traffic Handling.	\$	600.00	\$96,000.00	$160 \mathrm{CD} /$ Block
SP803S-PS		70	CD	Portable Changeable Message Signs	\$	120.00	\$8,400.00	70 CD/Block
8245		10	EA	Traffic Signs	\$	400.00	\$4,000.00	
8275		4	EA	Bicycle Lane Signage	\$	400.00	\$1,600.00	
8295			LF	Bicycle Lane Markings	\$	400.00	\$0.00	
871S-A4W	706	720	LF	Reflectorized Type 1 Thermoplastic Pavement Markings, 4 Inches in Width, 100 Mils in Thickness, White in Color	\$	3.00	\$2,160.00	
871S-A24W			LF	Reflectorized Type 1 Thermoplastic Pavement Markings, 24 Inches in Width, 100 Mils in Thickness, White in Color	\$	16.00	\$0.00	
871S-D-SYMBOL-W			EA	Reflectorized Type 1 Pavement Marking, Symbol, 100 Mils in Thickness, White in Color	\$	400.00	\$0.00	
874S-A			LF	Eliminating Existing Pavement Markings, 4 Inches to 12 Inches in Width	\$	12.00	\$0.00	
13015-B	5555.555556	5,600	SY	Granite Gravel Hike \& Bike Trail	\$	21.00	\$117,600.00	10' wide connect to surrounding streets
16550 S		7	EA	Street Light Standard Foundation, Including Pole Base and Conduit Stub Up	\$	1,600.00	\$11,200.00	
		7	EA	Light Pole and LED Light	\$	3,700.00	\$25,900.00	
		1	EA	Electrical Panel Enclosure	\$	21,000.00	\$21,000.00	
		7	EA	Electrical Pull Box	\$	1,200.00	\$8,400.00	
		700	LF	Electrical Trenching, Conduits, Conductors for Lighting	\$	123.00	\$86,100.00	100' per light pole
SUBTOTALCONTINGENCY TOTAL							$\begin{array}{r} \$ 2,278,011.00 \\ \$ 569,502.75 \\ \hline \end{array}$	25\%

Aquatic Master Plan
Big Stacy
Doucet + Chan, a Division of Doucet \& Associates, Inc.
Texas Registration No. 3937

435S		LF	P.C. Concrete Steps	\$	160.00	\$0.00	
4395	2	EA	Parking Lot Bumper Curbs	\$	120.00	\$240.00	at ADA parking spaces
504S-3W		EA	Adjusting Water Valve Boxes to Grade	\$	950.00	\$0.00	
505S-B20		LF	Encasement Pipe, Split 20 Inch Dia., Type Steel, 0.375 Inch Minimum Thickness	\$	243.00	\$0.00	
506-ABSW		EA	Abandonment of Exisitng Manholes, Storm Water	\$	2,200.00	\$0.00	
506-ABWW		EA	Abandonment of Exisitng Manholes, Wastewater	\$	2,200.00	\$0.00	
506-ABE		EA	Abandonment of Existing Manholes, Electrical and Telecommunications	\$	2,200.00	\$0.00	
506-BSW4×4		EA.	Box Manhole, 4ft $\times 4 \mathrm{ft}$	\$	6,600.00	\$0.00	
506-CNSW	1	EA	Connection of Storm Water Pipe to Existing System	\$	2,300.00	\$2,300.00	connect to existing site drainage
506-CNWW	1	EA	Connection of Wastewater Pipe to Existing System	\$	2,300.00	\$2,300.00	on E. Live Oak Street
506-EDMSSW48		LVF	Extra Depth Special Storm Water Manhole, 48 In . Dia.	\$	340.00	\$0.00	
506-MSW48	1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 48 In. Dia.	\$	5,700.00	\$5,700.00	SD connection
506-MSW60		EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 60 In. Dia.	\$	7,400.00	\$0.00	
506-MWW48	1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 4 Ft. Dia.	\$	6,300.00	\$6,300.00	connection to WW on Live Oak
506-MWW60		EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 5 Ft Dia.	\$	8,000.00	\$0.00	
SP 506-M	1	EA	By-Pass Pumping at Each Connection to Existing Manhole	\$	5,200.00	\$5,200.00	MH on E. Live Oak Street
508S-H18		EA	Headwalls for 18" Pipe	\$	3,000.00	\$0.00	
508S-H24	1	EA	Headwalls for 24" Pipe	\$	3,200.00	\$3,200.00	outfall at Blunn Creek
508S-H48		EA	Headwalls for 48" Pipe	\$	6,400.00	\$0.00	
508S-IG	3	EA	Inlet, Grate (Area Inlet)	\$	5,600.00	\$16,800.00	improve drainage around pool site
508S-110S	1	EA.	Inlet, Standard 10 Foot	\$	5,400.00	\$5,400.00	at ADA parking spaces
509S-1	1,100	LF	Trench Excavation Safety Protective Systems (all depths)	\$	2.00	\$2,200.00	
510-AW2C	60	LF	Pipe, 2" Dia. Copper (all depths), including Excavation and Backfill	\$	91.00	\$5,460.00	irigation service
510-AW-4-350	60	LF	Pipe, 4" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	140.00	\$8,400.00	domestic service
510-AW-6-350	80	LF	Pipe, 6" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	159.00	\$12,720.00	fire hydrant leads
510-AW-8-350	150	LF	Pipe, 8" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	193.00	\$28,950.00	fire line and main tap
510-ASW18	400	LF	Pipe, 18 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	136.00	\$54,400.00	improve drainage around pool site
510-ASW24	200	LF	Pipe, 24 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	157.00	\$31,400.00	discharge to Blunn Creek
510-ASW30		LF	Pipe, 30 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	249.00	\$0.00	
510-ASW36		LF	Pipe, 36 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	311.00	\$0.00	
510-ASW48		LF	Pipe, 48 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	351.00	\$0.00	
510-ASW54		LF	Pipe, 54 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	368.00	\$0.00	
510-ASW66		LF	Pipe, 66 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	403.00	\$0.00	
510-AWW6		LF	Pipe, 6" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	114.00	\$0.00	

510-AWW8		150	LF	Pipe, 8" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	125.00	\$18,750.00	wastewater service
510-AWW12			LF	Pipe, 12" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	159.00	\$0.00	
510-AWW21			LF	Pipe, 21" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	299.00	\$0.00	
510-BW8×2		1	EA	Connecting New 8" Water Service to 2" Private Service	\$	4,600.00	\$4,600.00	imigation service connection
510-BW8×4		1	EA	Connecting New 8" Water Service to 4" Private Service	\$	6,200.00	\$6,200.00	domestic service connection
SP510-BW-M2		1	EA	New Water Meter, 2 Inch Meter and Water Capital Recover Fee	\$	55,000.00	\$55,000.00	inigation meter/tap fee
SP510-BW-M4		1	EA	New Water Meter, 4 Inch Meter and W/WW Capital Recover Fee	\$	321,000.00	\$321,000.00	domestic meter/tap fee
SP510-BW-RM2			EA	Relocate Existing Water Meter, 2 Inch Tap Fee	\$	2,000.00	\$0.00	
510-BWW8x6		1	EA	Connecting New $8^{\prime \prime}$ Wastewater Service to Existing Private Service	\$	4,600.00	\$4,600.00	
510-J W6x6			EA	Wet Connections, $6^{\prime \prime}$ Dia. $\times 6^{\prime \prime}$ Dia.	\$	3,100.00	\$0.00	
510-J W8x8		1	EA	Wet Connections, $8^{\prime \prime}$ Dia. $\times 8^{\prime \prime}$ Dia.	\$	3,300.00	\$3,300.00	
$510-\mathrm{JW} 16 \times 16$			EA	Wet Connections, 16 " Dia. $\times 16$ " Dia.	\$	4,600.00	\$0.00	
510-KW		2	TON	Ductile Iron Fittings	\$	11,500.00	\$23,000.00	$5 \mathrm{lb} / \mathrm{t}$
511S-A2		1	EA	Valves, Gate Type, 2" Diameter	\$	1,000.00	\$1,000.00	
511S-A3			EA	Valves, Gate Type, 3" Diameter	\$	1,200.00	\$0.00	
511S-A4	0	1	EA	Valves, Gate Type, 4" Diameter	\$	1,500.00	\$1,500.00	1 each/250 ft
511S-A6		2	EA	Valves, Gate Type, 6" Diameter	\$	1,900.00	\$3,800.00	at fire hydrants
511S-A8	0	1	EA	Valves, Gate Type, 8" Diameter	\$	2,300.00	\$2,300.00	1 each/250 ft
511s-B		2	EA	Fire Hydrant	\$	5,200.00	\$10,400.00	
511S-C2		1	EA	Pressure or Flow Control Valve Assemblies (2 Inch Backflow Preventer for Irrigation Service)	\$	4,000.00	\$4,000.00	for irrigation service
5115-C8	1	1	EA	Pressure or Flow Control Valve Assemblies (8 Inch Double Check Valve Backflow Preventer for Fire Service)	\$	16,000.00	\$16,000.00	For fire line
551			LF	Pipe Underdrains (for Tree Wells)	\$	50.00	\$0.00	
5915-B		4	SY	Dry-Riprap	\$	200.00	\$800.00	outfall at Blunn Creek
594s-C			CY	Revet Mattresses, Twisted Woven Wire	\$	320.00	\$0.00	
602S-D			SY	Grass Sodding, General	\$	7.00	\$0.00	
604S-A		3,700	SY	Non-Native Seeding for Erosion Control Method	\$	6.00	\$22,200.00	
604S-E			SY	Mulch, Hardwood	\$	23.00	\$0.00	
605S-A		300	SY	Soil Retention Blanket	\$	24.00	\$7,200.00	
6085-1			EA	Plantings, Type BMP Native Grasses, Sedges, Woody Shrubs	\$	23.00	\$0.00	1 ft spacing in Rain Garden
6085-1	40	5	EA	Trees, 20 Gal	\$	600.00	\$3,000.00	30ft apart along sidewalk
6085-1			EA	Plants, 5 Gal	\$	50.00	\$0.00	
6085-2		1	LS	Irigation System	\$	10,000.00	\$10,000.00	
6095-C		250	SY	Native Seeding for Erosion Control	\$	7.00	\$1,750.00	
610S-A		250	LF	Tree Protective Fencing Type A Chain Link Fence	\$	4.00	\$1,000.00	
610S-R		5	EA	Removal of Existing Trees	\$	570.00	\$2,850.00	
SP628S-C		4	EA	Filter Curb Inlet Protection	\$	120.00	\$480.00	
6285-B		100	LF	Sediment Containment Dikes with Filter Fabric	\$	9.00	\$900.00	Triangular dike on pavement
6395		40	LF	Rock Berm	\$	39.00	\$1,560.00	
6405			SF	Mortared Rock Wall	\$	50.00	\$0.00	
6415		1	EA	Stabilized Construction Entrance	\$	1,700.00	\$1,700.00	
6425		2,000	LF	Silt Fence for Erosion Control	\$	4.00	\$8,000.00	
6605			Cr	Bio-Filtration Media	\$	114.00	\$0.00	
700S-TM		1	LS	Total Mobilization Payment	\$	54,000.00	\$54,000.00	5\% of all costs excluding Mob cost
7015-A6			LF	Chain Link Fence, 6-Ft	\$	20.00	\$0.00	
7015-BS			EA	Chain Link Pedestrian Single Swing Gate ($6 \mathrm{Ft} \times 4 \mathrm{Ft}$)	\$	1,000.00	\$0.00	
701S-CD			EA	Chain Link Vehicular Double Swing Gate ($6 \mathrm{Ft} \times 20 \mathrm{Ft}$)		2,300.00	\$0.00	
802S-BBond		1	EA	Bond Project Sign	\$	700.00	\$700.00	
8035-SF			LF	Safety Fence	\$	3.00	\$0.00	
SP803S-BAS			EA	Project Sign for Access	\$	400.00	\$0.00	
SP803S-CD		80	CD	Baricades, Signs, and Traffic Handling.	\$	600.00	\$48,000.00	160 CD/Block
SP803S-PS		35	CD	Portable Changeable Message Signs	\$	120.00	\$4,200.00	$70 \mathrm{CD} /$ Block
8245		4	EA	Traffic Signs	S	400.00	\$1,600.00	

827S	2	EA	Bicycle Lane Signage	\$	400.00	\$800.00	
829 S	450	LF	Bicycle Lane Markings	\$	8.00	\$3,600.00	
871S-A4W	50	LF	Reflectorized Type 1 Thermoplastic Pavement Markings, 4 Inches in Width, 100 Mils in Thickness, White in Color	\$	3.00	\$150.00	
871S-A24W		LF	Reflectorized Type 1 Thermoplastic Pavement Markings, 24 Inches in Width, 100 Mils in Thickness, White in Color	\$	16.00	\$0.00	
871S-D-SYMBOL-W	2	EA	Reflectorized Type 1 Pavement Marking, Symbol, 100 Mils in Thickness, White in Color	\$	400.00	\$800.00	
874S-A	36	LF	Eliminating Existing Pavement Markings, 4 Inches to 12 Inches in Width	\$	12.00	\$432.00	
1301S-B		SY	Granite Gravel Hike \& Bike Trail	\$	21.00	\$0.00	10' wide connect to surrounding streets
165505	3	EA	Street Light Standard Foundation, Including Pole Base and Conduit Stub Up	\$	1,600.00	\$4,800.00	
	3	EA	Light Pole and LED Light	\$	3,700.00	\$11,100.00	
	1	EA	Electrical Panel Enclosure	\$	21,000.00	\$21,000.00	
	3	EA	Electrical Pull Box	\$	1,200.00	\$3,600.00	
	300	LF	Electrical Trenching, Conduits, Conductors for Lighting	\$	123.00	\$36,900.00	100' per light pole.
$\begin{array}{rr}\text { SUBTOTAL } \\ \text { CONTINGENCY } & \mathbf{\$ 1 , 1 1 9 , 7 0 7 . 0 0} \\ \text { TOTAL } \\ \text { S279,926.75 }\end{array}$							

Aquatic Master Plan
Brentwood
Doucet + Chan, a Division of Doucet \& Associates, Inc.
Texas Registration No. 3937

Item No.	Quantity Calculation	Quantity	Unit	Item Description		Unit Price	Amount	Notes
104S-A	70	70	LF	Remove P.C. Concrete Curb	\$	20.00	\$1,400.00	for ADA drop-off space
104S-B			SF	Remove P.C. Concrete Slab	\$	20.00	\$0.00	
104S-C	400	400	SF	Remove P.C. Concrete Sidewalks \& Driveways	\$	20.00	\$8,000.00	
SP104S			SF	Demolition, Buildings	\$	10.00	\$0.00	
SP104S-UB			EA	Demolition, Utility Boxes	\$	2,700.00	\$0.00	
			CF	Demolition, Masonry Walls, Stone with Mortar	\$	8.00	\$0.00	12" thick
			LF	Demolition, Water/Wastewater Pipe, 6 Inch to 12 Inch Dia.	\$	29.00	\$0.00	
			LF	Demolition, Electric Conduits	\$	7.00	\$0.00	
			EA	Demolition, Light Pole	\$	600.00	\$0.00	
			LF	Demolition, Chain Link Fence	\$	7.00	\$0.00	
			CY	Demolition Disposal, Loading and 5 Mile Haul to Dump (Non-Hazardous)	\$	22.00	\$0.00	
			CY-Mi	Demolition, Disposal Haul, Per Mile over 5 Miles	\$	2.00	\$0.00	
			TON	Demolition, Dump Charge	\$	110.00	\$0.00	
111S-A	360.4938272	370	CY	Excavation, Unclassified	\$	52.00	\$19,240.00	
120S-A			CY	Channel Excavation	\$	90.00	\$0.00	
130S-A			CY	Class A (Select Borrow)	\$	59.00	\$0.00	
130S-T			CY	Class C (Topsoil)	\$	44.00	\$0.00	
132S-A			CY	Embankment (Fill)	\$	29.00	\$0.00	
2015	811.1111111	820	SY	Sub-Grade Preparation	\$	9.00	\$7,380.00	
2035-A8		820	SY	Lime Treated Subgrade, 8 Inch Thickness	\$	15.30	\$12,546.00	
210S-A8	180	180	CY	Flexible Base, 8 Inch Thickness	\$	42.00	\$7,560.00	
340S-B-C3			SY	Hot Mix Asphaltic Concrete Pavement, 3 Inches, Type C	\$	22.00	\$0.00	
340S-B-C2		45	SY	Hot Mix Asphaltic Concrete Pavement, 2 Inches, Type C	\$	17.00	\$765.00	reconstruct for ADA drop-off
340S-B-C1.5			SY	Hot Mix Asphaltic Concrete Pavement, 1-1/2 Inches, Type C	\$	15.00	\$0.00	
360S-A			SY	7 Inch Concrete Pavement	\$	108.00	\$0.00	
4035-CY			CY	Concrete Structure,	\$	720.00	\$0.00	
403S-EA-D		1	EA	Concrete Structure, Storm Water Deetentioin	\$	41,400.00	\$41,400.00	\$3/sf $\times 13800$ sf IC
403S-EA-WQ		1	EA	Concrete Structure, Storm Water Quality Treatment	\$	59,340.00	\$59,340.00	\$4.30/sf $\times 13800 \mathrm{sf} \mathrm{IC}$
414S-C			SF	Cast in Place Portland Cement Concrete Retaining Wall, Including Reinforcement	\$	61.00	\$0.00	
430S-A		70	LF	P.C. Concrete Curb and Gutter (Excavation)	\$	18.00	\$1,260.00	at ADA drop-off space
430S-E			LF	P.C. Concrete Laydown Curb (Excavation)	\$	22.00	\$0.00	
432S-5	6875	6,900	SF	New P.C. Concrete Sidewalks, 5 Inch thickness	\$	12.00	\$82,800.00	
432S-6			SF	New P.C. Concrete Sidewalks, 6 Inch thickness	\$	14.00	\$0.00	
432S-RP-1		2	EA	P.C. Sidewalk Curb Ramp with Pavers (Type I)	\$	1,800.00	\$3,600.00	
432S-SAC-1			EA	Streetscape Bench (5ft with Back)	\$	3,800.00	\$0.00	
432S-SAC-1			EA	Streetscape Bench (5ft without Back)	\$	2,300.00	\$0.00	
432S-SAC-2			EA	Streetscape Chair (2 f)	\$	2,300.00	\$0.00	
432S-SAC-3		2	EA	Streetscape Bicycle Rack	\$	800.00	\$1,600.00	
432S-SAC-4			EA	Streetscape Trash Receptacle	\$	2,900.00	\$0.00	
432S-SAC-7C			EA	Streetscape Tree Well \& Grate	\$	6,600.00	\$0.00	
432S-PRC-1		50	LF	Pedestrian ADA Railing	\$	102.00	\$5,100.00	ADA dropp-off space ramp
SP432S-K			EA	Art Kiosks	\$	25,000.00	\$0.00	
433S-C			SF	Type II P.C. Concrete Driveway	\$	11.00	\$0.00	

435S			LF	P.C. Concrete Steps	\$	160.00	\$0.00	
439S			EA	Parking Lot Bumper Curbs	\$	120.00	\$0.00	
504S-3W			EA	Adjusting Water Valve Boxes to Grade	\$	950.00	\$0.00	
505S-B20			LF	Encasement Pipe, Split 20 Inch Dia., Type Steel, 0.375 Inch Minimum Thickness	\$	243.00	\$0.00	
506-ABSW			EA	Abandonment of Exisitng Manholes, Storm Water	\$	2,200.00	\$0.00	
506-ABWW			EA	Abandonment of Exisitng Manholes, Wastewater	\$	2,200.00	\$0.00	
506-ABE			EA	Abandonment of Existing Manholes, Electrical and Telecommunications	\$	2,200.00	\$0.00	
506-BSW4×4			EA.	Box Manhole, $4 \mathrm{ft} \times 4 \mathrm{ft}$	\$	6,600.00	\$0.00	
506-CNSW		1	EA	Connection of Storm Water Pipe to Existing System	\$	2,300.00	\$2,300.00	connect to SD on Arroyo Seco
506-CNWW		1	EA	Connection of Wastewater Pipe to Existing System	\$	2,300.00	\$2,300.00	connect to WW main on Arroyo Seco
506-EDMSSW48			LVF	Extra Depth Special Storm Water Manhole, 48 In . Dia.	\$	340.00	\$0.00	
506-MSW48		1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 48 In. Dia.	\$	5,700.00	\$5,700.00	connect to SD on Arroyo Seco
506-MSW60			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 60 In . Dia.	\$	7,400.00	\$0.00	
506-MWW48		1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 4 Ft. Dia.	\$	6,300.00	\$6,300.00	connect to WW main on Arroyo Seco
506-MWW60			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 5 Ft Dia.	\$	8,000.00	\$0.00	
SP 506-M		1	EA	By-Pass Pumping at Each Connection to Existing Manhole	\$	5,200.00	\$5,200.00	connect to WW main on Arroyo Seco
508S-H18			EA	Headwalls for 18" Pipe	\$	3,000.00	\$0.00	
508S-H24		1	EA	Headwalls for 24" Pipe	\$	3,200.00	\$3,200.00	outfall at Arroyo Seco
508S-H48			EA	Headwalls for 48" Pipe	\$	6,400.00	\$0.00	
508S-IG		3	EA	Inlet, Grate (Area Inlet)	\$	5,600.00	\$16,800.00	improve drainage around pool site
508S-110S		1	EA.	Inlet, Standard 10 Foot	\$	5,400.00	\$5,400.00	at ADA drop-off space
509S-1		900	LF	Trench Excavation Safety Protective Systems (all depths)	\$	2.00	\$1,800.00	
510-AW2C		60	LF	Pipe, 2" Dia. Copper (all depths), including Excavation and Backfill	\$	91.00	\$5,460.00	irrigation service
510-AW-4-350		60	LF	Pipe, 4" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	140.00	\$8,400.00	domestic service
510-AW-6-350			LF	Pipe, 6" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	159.00	\$0.00	
510-AW-8-350		120	LF	Pipe, 8" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	193.00	\$23,160.00	main service
510-ASW18		320	LF	Pipe, 18 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	136.00	\$43,520.00	improve drainage around pool site
510-ASW24		200	LF	Pipe, 24 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	157.00	\$31,400.00	outfall to Arroyo Seco
510-ASW30			LF	Pipe, 30 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	249.00	\$0.00	
510-ASW36			LF	Pipe, 36 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	311.00	\$0.00	
510-ASW48			LF	Pipe, 48 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	351.00	\$0.00	
510-ASW54			LF	Pipe, 54 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	368.00	\$0.00	
510-ASW66			LF	Pipe, 66 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	403.00	\$0.00	
510-AWW6			LF	Pipe, 6" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	114.00	\$0.00	

510-AWW8		140	LF	Pipe, 8" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	125.00	\$17,500.00	WW service to Arroyo Seco WW main
510-AWW12			LF	Pipe, 12" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	159.00	\$0.00	
510-AWW21			LF	Pipe, 21" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	299.00	\$0.00	
510-BW8x2		1	EA	Connecting New 8" Water Service to 2" Private Service	\$	4,600.00	\$4,600.00	irrigation service connection
510-BW8×4		1	EA	Connecting New 8" Water Service to 4" Private Service	\$	6,200.00	\$6,200.00	domestic service connection
SP510-BW-M2		1	EA	New Water Meter, 2 Inch Meter and W Capital Recover Fee	\$	55,000.00	\$55,000.00	irrigation meter/tap fee
SP510-BW-M4		1	EA	New Water Meter, 4 Inch Meter and W/WW Capital Recover Fee	\$	321,000.00	\$321,000.00	domestic meter/tap fee
SP510-BW-RM2			EA	Relocate Existing Water Meter, 2 Inch Tap Fee	\$	2,000.00	\$0.00	
510-BWW8x6		1	EA	Connecting New 8" Wastewater Service to Existing Private Service	\$	4,600.00	\$4,600.00	connect to WW main on Arroyo Seco
510-J W6X6			EA	Wet Connections, 6" Dia. $\times 6$ " Dia.	\$	3,100.00	\$0.00	
510-J W8X8		1	EA	Wet Connections, 8" Dia. $\times 8^{\prime \prime}$ Dia.	\$	3,300.00	\$3,300.00	connect to W main on Arroyo Seco
510-J W16X16			EA	Wet Connections, 16 " Dia. $\times 16^{\prime \prime}$ Dia.	\$	4,600.00	\$0.00	
510-KW		2	TON	Ductile Iron Fittings	\$	11,500.00	\$23,000.00	$5 \mathrm{lb} / \mathrm{ft}$
511S-A2		1	EA	Valves, Gate Type, 2" Diameter	\$	1,000.00	\$1,000.00	
511S-A3			EA	Valves, Gate Type, 3" Diameter	\$	1,200.00	\$0.00	
511S-A4	0	1	EA	Valves, Gate Type, 4" Diameter	\$	1,500.00	\$1,500.00	1 each/250 ft
511S-A6			EA	Valves, Gate Type, 6" Diameter	\$	1,900.00	\$0.00	
511S-A8	0	1	EA	Valves, Gate Type, 8" Diameter	\$	2,300.00	\$2,300.00	1 each/250 ft
511S-B			EA	Fire Hydrant	\$	5,200.00	\$0.00	
5115-C2		1	EA	Pressure or Flow Control Valve Assemblies (2 Inch Backflow Preventer)	\$	4,000.00	\$4,000.00	for irrigation service
511S-C8	1		EA	Pressure or F low Control Valve Assemblies (8 Inch Double Check Valve Backflow Preventer)	\$	16,000.00	\$0.00	For fire line
551			LF	Pipe Underdrains (for Tree Wells)	\$	50.00	\$0.00	
591S-B		4	SY	Dry-Riprap	\$	140.00	\$560.00	at SD outfall
594S-C			CY	Revet Mattresses, Twisted Woven Wire	\$	320.00	\$0.00	
602S-D			SY	Grass Sodding, General	\$	7.00	\$0.00	
604S-A			SY	Non-Native Seeding for Erosion Control Method	\$	6.00	\$0.00	
604S-E			SY	Mulch, Hardwood	\$	23.00	\$0.00	
605S-A		300	SY	Soil Retention Blanket	\$	24.00	\$7,200.00	
608S-1			EA	Plantings, Type BMP Native Grasses, Sedges, Woody Shrubs	\$	23.00	\$0.00	1 ft spacing in Rain Garden
608S-1	45.83333333	46	EA	Trees, 20 Gal	\$	600.00	\$27,600.00	$30 f t$ apart along sidewalk
608S-1			EA	Plants, 5 Gal	\$	50.00	\$0.00	
608S-2		1	LS	Irrigation System	\$	10,000.00	\$10,000.00	
6095-C		800	SY	Native Seeding for Erosion Control	\$	7.00	\$5,600.00	
610S-A		750	LF	Tree Protective Fencing Type A Chain Link Fence	\$	4.00	\$3,000.00	
610S-R		5	EA	Removal of Existing Trees	\$	570.00	\$2,850.00	
SP628S-C		4	EA	Filter Curb Inlet Protection	\$	120.00	\$480.00	
628S-B		100	LF	Sediment Containment Dikes with Filter Fabric	\$	9.00	\$900.00	Triangular dike on pavement
639S		40	LF	Rock Berm	\$	39.00	\$1,560.00	
640S			SF	Mortared Rock Wall	\$	50.00	\$0.00	
6415		1	EA	Stabilized Construction Entrance	\$	1,700.00	\$1,700.00	
642 S	1160	2,000	LF	Silt Fence for Erosion Control	\$	4.00	\$8,000.00	
660S			CY	Bio-Filtration Media	\$	114.00	\$0.00	
700S-TM		1	LS	Total Mobilization Payment	\$	54,000.00	\$54,000.00	5\% of all costs excluding Mob cost
701S-A6			LF	Chain Link Fence, 6-Ft	\$	20.00	\$0.00	
701S-BS			EA	Chain Link Pedestrian Single Swing Gate ($6 \mathrm{Ft} \times 4 \mathrm{Ft}$)	\$	1,000.00	\$0.00	
701S-CD			EA	Chain Link Vehicular Double Swing Gate ($6 \mathrm{Ft} \times 20 \mathrm{Ft}$)	\$	2,300.00	\$0.00	
802S-BBond		1	EA	Bond Project Sign	\$	700.00	\$700.00	
803S-SF			LF	Safety Fence	\$	3.00	\$0.00	
SP803S-BAS			EA	Project Sign for Access	\$	400.00	\$0.00	
SP803S-CD		80	CD	Barricades, Signs, and Traffic Handling.	\$	600.00	\$48,000.00	160 CD/Block
SP803S-PS		35	CD	Portable Changeable Message Signs	\$	120.00	\$4,200.00	70 CD/Block

Aquatic Master Plan
Doucet + Chan, a Division of Doucet \& Associates, Inc.
Texas Registration No. 3937

Item No.	Quantity Calculation	Quantity	Unit	Item Description		Unit Price	Amount	Notes
104S-A		400	LF	Remove P.C. Concrete Curb	\$	20.00	\$8,000.00	reconstruct along ADA parking spaces
104S-B			SF	Remove P.C. Concrete Slab	\$	20.00	\$0.00	
104S-C		2500	SF	Remove P.C. Concrete Sidewalks \& Driveways	\$	20.00	\$50,000.00	
SP104S			SF	Demolition, Buildings	\$	10.00	\$0.00	
SP104S-UB			EA	Demolition, Utility Boxes	\$	2,700.00	\$0.00	
			CF	Demolition, Masonry Walls, Stone with Mortar	\$	8.00	\$0.00	12" thick
			LF	Demolition, Water/Wastewater Pipe, 6 Inch to 12 Inch Dia.	\$	29.00	\$0.00	
			LF	Demolition, Electric Conduits	\$	7.00	\$0.00	
			EA	Demolition, Light Pole	\$	600.00	\$0.00	
			LF	Demolition, Chain Link Fence	\$	7.00	\$0.00	
			CY	Demolition Disposal, Loading and 5 Mile Haul to Dump (Non-Hazardous)	\$	22.00	\$0.00	
			CY-Mi	Demolition, Disposal Haul, Per Mile over 5 Miles	\$	2.00	\$0.00	
			TON	Demolition, Dump Charge	\$	110.00	\$0.00	
111S-A	246.9135802	250	CY	Excavation, Unclassified	\$	52.00	\$13,000.00	
120S-A			CY	Channel Excavation	\$	90.00	\$0.00	
130S-A			CY	Class A (Select Borrow)	\$	59.00	\$0.00	
130S-T			CY	Class C (Topsoil)	\$	44.00	\$0.00	
132S-A			CY	Embankment (Fill)	\$	29.00	\$0.00	
2015	555.5555556	560	SY	Sub-Grade Preparation	\$	9.00	\$5,040.00	
2035-A8		560	SY	Lime Treated Subgrade, 8 Inch Thickness	\$	15.30	\$8,568.00	
210S-A8		125	CY	Flexible Base, 8 Inch Thickness	\$	42.00	\$5,250.00	
340S-B-C3			SY	Hot Mix Asphaltic Concrete Pavement, 3 Inches, Type C	\$	22.00	\$0.00	
340S-B-C2		90	SY	Hot Mix Asphaltic Concrete Pavement, 2 Inches, Type C	\$	17.00	\$1,530.00	reconstruct ADA parking spaces
340S-B-C1.5			SY	Hot Mix Asphaltic Concrete Pavement, 1-1/2 Inches, Type C	\$	15.00	\$0.00	
360S-A			SY	7 Inch Concrete Pavement	\$	108.00	\$0.00	
403S-CY			CY	Concrete Structure,	\$	720.00	\$0.00	
403S-EA-D		1	EA	Concrete Structure, Storm Water Detention	\$	34,500.00	\$34,500.00	\$3/sf $\times 11500 \mathrm{sf} \mathrm{IC}$
403S-EA-WQ		1	EA	Concrete Structure, Storm Water Quality Treatment	\$	49,500.00	\$49,500.00	\$4.30/sf $\times 11500 \mathrm{sf}$ IC
414S-C			SF	Cast in Place Portland Cement Concrete Retaining Wall, Including Reinforcement	\$	61.00	\$0.00	
430S-A		400	LF	P.C. Concrete Curb and Gutter (Excavation)	\$	18.00	\$7,200.00	
430S-E			LF	P.C. Concrete Laydown Curb (Excavation)	\$	22.00	\$0.00	
4325-5		5,000	SF	New P.C. Concrete Sidewalks, 5 Inch thickness	\$	12.00	\$60,000.00	
432S-6			SF	New P.C. Concrete Sidewalks, 6 Inch thickness	\$	14.00	\$0.00	
432S-RP-1		5	EA	P.C. Sidewalk Curb Ramp with Pavers (Type I)	\$	1,800.00	\$9,000.00	
432S-SAC-1			EA	Streetscape Bench (5ft with Back)	\$	3,800.00	\$0.00	
432S-SAC-1			EA	Streetscape Bench (5ft without Back)	\$	2,300.00	\$0.00	
432S-SAC-2			EA	Streetscape Chair (2 f)	\$	2,300.00	\$0.00	
432S-SAC-3		4	EA	Streetscape Bicycle Rack	\$	800.00	\$3,200.00	
432S-SAC-4			EA	Streetscape Trash Receptacle	\$	2,900.00	\$0.00	
432S-SAC-7C			EA	Streetscape Tree Well \& Grate	\$	6,600.00	\$0.00	
432S-PRC-1		150	LF	Pedestrian ADA Railing	\$	102.00	\$15,300.00	access ramp to pool
SP432S-K			EA	Art Kiosks	\$	25,000.00	\$0.00	
433S-C			SF	Type II P.C. Concrete Driveway	\$	11.00	\$0.00	

435S		LF	P.C. Concrete Steps	\$	160.00	\$0.00	
4395	3	EA	Parking Lot Bumper Curbs	\$	120.00	\$360.00	ADA parking spaces
504S-3W		EA	Adjusting Water Valve Boxes to Grade	\$	950.00	\$0.00	
505S-B20		LF	Encasement Pipe, Split 20 Inch Dia., Type Steel, 0.375 Inch Minimum Thickness	\$	243.00	\$0.00	
506-ABSW		EA	Abandonment of Exisitng Manholes, Storm Water	\$	2,200.00	\$0.00	
506-ABWW		EA	Abandonment of Exisitng Manholes, Wastewater	\$	2,200.00	\$0.00	
506-ABE		EA	Abandonment of Existing Manholes, Electrical and Telecommunications	\$	2,200.00	\$0.00	
506-BSW4×4		EA.	Box Manhole, 4ft $\times 4 \mathrm{ft}$	\$	6,600.00	\$0.00	
506-CNSW	1	EA	Connection of Storm Water Pipe to Existing System	\$	2,300.00	\$2,300.00	
506-CNWW	1	EA	Connection of Wastewater Pipe to Existing System	\$	2,300.00	\$2,300.00	connect to WW main on Yaupon
506-EDMSSW48		LVF	Extra Depth Special Storm Water Manhole, 48 In . Dia.	\$	340.00	\$0.00	
506-MSW48	1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 48 In. Dia.	\$	5,700.00	\$5,700.00	SD connection
506-MSW60		EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 60 In. Dia.	\$	7,400.00	\$0.00	
506-MWW48	1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 4 Ft Dia.	\$	6,300.00	\$6,300.00	connect to WW main on Yaupon
506-MWW60		EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 5 Ft. Dia.	\$	8,000.00	\$0.00	
SP 506-M	1	EA	By-Pass Pumping at Each Connection to Existing Manhole	\$	5,200.00	\$5,200.00	at MH on Yaupon
508S-H18		EA	Headwalls for 18" Pipe	\$	3,000.00	\$0.00	
508S-H24	1	EA	Headwalls for 24" Pipe	\$	3,200.00	\$3,200.00	SD outfall
508S-H48		EA	Headwalls for 48" Pipe	\$	6,400.00	\$0.00	
508S-IG	3	EA	Inlet, Grate (Area Inlet)	\$	5,600.00	\$16,800.00	improve drainage around pool site
508S-I10S	1	EA.	Inlet, Standard 10 Foot	\$	5,400.00	\$5,400.00	at ADA parking spaces
509S-1	840	LF	Trench Excavation Safety Protective Systems (all depths)	\$	2.00	\$1,680.00	
510-AW2C	60	LF	Pipe, 2" Dia. Copper (all depths), including Excavation and Backfill	\$	91.00	\$5,460.00	irigation service
510-AW-4-350	60	LF	Pipe, 4" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	140.00	\$8,400.00	domestic service
510-AW-6-350		LF	Pipe, 6" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	159.00	\$0.00	
510-AW-8-350	120	LF	Pipe, 8" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	193.00	\$23,160.00	main service
510-ASW18	200	LF	Pipe, 18 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	136.00	\$27,200.00	improve drainage around pool site
510-ASW24	200	LF	Pipe, 24 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	157.00	\$31,400.00	to SD outfall
510-ASW30		LF	Pipe, 30 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	249.00	\$0.00	
510-ASW36		LF	Pipe, 36 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	311.00	\$0.00	
510-ASW48		LF	Pipe, 48 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	351.00	\$0.00	
510-ASW54		LF	Pipe, 54 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	368.00	\$0.00	
510-ASW66		LF	Pipe, 66 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	403.00	\$0.00	
510-AWW6		LF	Pipe, 6" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	114.00	\$0.00	

510-AWW8		200	LF	Pipe, 8" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	125.00	\$25,000.00	WW service to Yaupon WW main
510-AWW12			LF	Pipe, 12" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	159.00	\$0.00	
510-AWW21			LF	Pipe, 21" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	299.00	\$0.00	
510-BW8×2		1	EA	Connecting New 8" Water Service to 2" Private Service	\$	4,600.00	\$4,600.00	imigation service connection
510-BW8×4		1	EA	Connecting New 8" Water Service to 4" Private Service	\$	6,200.00	\$6,200.00	domestic service connection
SP510-BW-M2		1	EA	New Water Meter, 2 Inch Meter and W Capital Recover Fee	\$	55,000.00	\$55,000.00	inigation meter/tap fee
SP510-BW-M4		1	EA	New Water Meter, 4 Inch Meter and W Capital Recover Fee	\$	321,000.00	\$321,000.00	domestic meter/tap fee
SP510-BW-RM2			EA	Relocate Existing Water Meter, 2 Inch Tap Fee	\$	2,000.00	\$0.00	
510-BWW8x6		1	EA	Connecting New $8^{\prime \prime}$ Wastewater Service to Existing Private Service	\$	4,600.00	\$4,600.00	connection to WW main on Yaupon
510-J W6x6			EA	Wet Connections, $6^{\prime \prime}$ Dia. $\times 6^{\prime \prime}$ Dia.	\$	3,100.00	\$0.00	
510-J W8x8		1	EA	Wet Connections, 8" Dia. $\times 8^{\prime \prime}$ Dia.	\$	3,300.00	\$3,300.00	connection to W main on Yaupon
$510-\mathrm{JW} 16 \times 16$			EA	Wet Connections, 16 " Dia. $\times 16^{\prime \prime}$ Dia.	\$	4,600.00	\$0.00	
510-KW		2	TON	Ductile Iron Fittings	\$	11,500.00	\$23,000.00	$5 \mathrm{lb} / \mathrm{t}$
511S-A2		1	EA	Valves, Gate Type, 2" Diameter	\$	1,000.00	\$1,000.00	
511S-A3			EA	Valves, Gate Type, 3" Diameter	\$	1,200.00	\$0.00	
511S-A4	0	1	EA	Valves, Gate Type, 4" Diameter	\$	1,500.00	\$1,500.00	1 each/250 ft
511S-A6			EA	Valves, Gate Type, 6" Diameter	\$	1,900.00	\$0.00	
511S-A8	0	1	EA	Valves, Gate Type, 8" Diameter	\$	2,300.00	\$2,300.00	1 each/250 ft
5115-B			EA	Fire Hydrant	\$	5,200.00	\$0.00	
511S-C2		1	EA	Pressure or Flow Control Valve Assemblies (2 Inch Backlow Preventer)	\$	4,000.00	\$4,000.00	for irrigation line
5115-C8	1		EA	Pressure or Flow Control Valve Assemblies (8 Inch Double Check Valve Backflow Preventer)	\$	16,000.00	\$0.00	For fire line
551			LF	Pipe Underdrains (for Tree Wells)	\$	50.00	\$0.00	
5915-B		4	SY	Dry-Riprap	\$	140.00	\$560.00	at SD outfall
594s-C			CY	Revet Mattresses, Twisted Woven Wire	\$	320.00	\$0.00	
602S-D			SY	Grass Sodding, General	\$	7.00	\$0.00	
604S-A			SY	Non-Native Seeding for Erosion Control Method	\$	6.00	\$0.00	
604S-E			SY	Mulch, Hardwood	\$	23.00	\$0.00	
605s-A		300	SY	Soil Retention Blanket	\$	24.00	\$7,200.00	
6085-1			EA	Plantings, Type BMP Native Grasses, Sedges, Woody Shrubs	\$	23.00	\$0.00	1 ft spacing in Rain Garden
6085-1	0	34	EA	Trees, 20 Gal	\$	600.00	\$20,400.00	30ft apart along sidewalk
6085-1			EA	Plants, 5 Gal	\$	50.00	\$0.00	
6085-2		1	LS	Irigation System	\$	10,000.00	\$10,000.00	
6095-C		250	SY	Native Seeding for Erosion Control	\$	7.00	\$1,750.00	at SD outfall
610S-A		400	LF	Tree Protective Fencing Type A Chain Link Fence	\$	4.00	\$1,600.00	
610S-R		2	EA	Removal of Existing Trees	\$	570.00	\$1,140.00	
SP628S-C		4	EA	Filter Curb Inlet Protection	\$	120.00	\$480.00	
6285-B		100	LF	Sediment Containment Dikes with Filter Fabric	\$	9.00	\$900.00	Triangular dike on pavement
6395		40	LF	Rock Berm	\$	39.00	\$1,560.00	
6405			SF	Mortared Rock Wall	\$	50.00	\$0.00	
6415		1	EA	Stabilized Construction Entrance	\$	1,700.00	\$1,700.00	
6425		2,000	LF	Silt Fence for Erosion Control	\$	4.00	\$8,000.00	
6605			CY	Bio-Filtration Media	\$	114.00	\$0.00	
700S-TM		1	LS	Total Mobilization Payment	\$	49,000.00	\$49,000.00	5\% of all costs excluding Mob cost
7015-A6			LF	Chain Link Fence, 6 -Ft	\$	20.00	\$0.00	
7015-BS			EA	Chain Link Pedestrian Single Swing Gate ($6 \mathrm{Ft} \times 4 \mathrm{Ft}$)	\$	1,000.00	\$0.00	
701S-CD			EA	Chain Link Vehicular Double Swing Gate ($6 \mathrm{Ft} \times 20 \mathrm{Ft}$)		2,300.00	\$0.00	
802S-BBond		1	EA	Bond Project Sign	\$	700.00	\$700.00	
8035-SF			LF	Safety Fence	\$	3.00	\$0.00	
SP803S-BAS			EA	Project Sign for Access	\$	400.00	\$0.00	
SP803S-CD		80	CD	Baricades, Signs, and Traffic Handling.	\$	600.00	\$48,000.00	160 CD/Block
SP803S-PS		35	CD	Portable Changeable Message Signs	\$	120.00	\$4,200.00	$70 \mathrm{CD} /$ Block
8245		4	EA	Traffic Signs	S	400.00	\$1,600.00	

827S		EA	Bicycle Lane Signage	\$	400.00	\$0.00	
829S		LF	Bicycle Lane Markings	\$	8.00	\$0.00	
871S-A4W	50	LF	Reflectorized Type 1 Thermoplastic Pavement Markings, 4 Inches in Width, 100 Mils in Thickness, White in Color	\$	3.00	\$150.00	
871S-A24W		LF	Reflectorized Type 1 Thermoplastic Pavement Markings, 24 Inches in Width, 100 Mils in Thickness, White in Color	\$	16.00	\$0.00	
871S-D-SYMBOL-W	3	EA	Reflectorized Type 1 Pavement Marking, Symbol, 100 Mils in Thickness, White in Color	\$	400.00	\$1,200.00	
874S-A	50	LF	Eliminating Existing Pavement Markings, 4 Inches to 12 Inches in Width	\$	12.00	\$600.00	
1301S-B		SY	Granite Gravel Hike \& Bike Trail	\$	21.00	\$0.00	10' wide connect to surrounding streets
165505		EA	Street Light Standard Foundation, Including Pole Base and Conduit Stub Up	\$	1,600.00	\$0.00	
		EA	Light Pole and LED Light	\$	3,700.00	\$0.00	
		EA	Electrical Panel Enclosure	\$	21,000.00	\$0.00	
		EA	Electrical Pull Box	\$	1,200.00	\$0.00	
		LF	Electrical Trenching, Conduits, Conductors for Lighting	\$	123.00	\$0.00	
SUBTOTAL CONTINGENCY $\$ 1,027,188.00$ TOTAL $\$ 256,797.00$							
						\$1,283,985.00	

Aquatic Master Plan
Doucet + Chan, a Division of Doucet \& Associates, Inc.
Texas Registration No. 3937

4355			LF	P.C. Concrete Steps	\$	160.00	\$0.00	
4395			EA	Parking Lot Bumper Curbs	\$	120.00	\$0.00	
504S-3W			EA	Adjusting Water Valve Boxes to Grade	\$	950.00	\$0.00	
505S-B20			LF	Encasement Pipe, Split 20 Inch Dia., Type Steel, 0.375 Inch Minimum Thickness	\$	243.00	\$0.00	
506-ABSW			EA	Abandonment of Exisitng Manholes, Storm Water	\$	2,200.00	\$0.00	
506-ABWW			EA	Abandonment of Exisiting Manholes, Wastewater	\$	2,200.00	\$0.00	
506-ABE			EA	Abandonment of Existing Manholes, Electrical and Telecommunications	\$	2,200.00	\$0.00	
506-BSW4x4			EA.	Box Manhole, $4 \mathrm{ft} \times 4 \mathrm{ft}$	\$	6,600.00	\$0.00	
506-CNSW		1	EA	Connection of Storm Water Pipe to Existing System	\$	2,300.00	\$2,300.00	
506-CNWW		1	EA	Connection of Wastewater Pipe to Existing System	\$	2,300.00	\$2,300.00	connection to WW main on Vargas
506-EDMSSW48			LVF	Extra Depth Special Storm Water Manhole, 48 In . Dia.	\$	340.00	\$0.00	
506-MSW48		1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 48 In. Dia.	\$	5,700.00	\$5,700.00	SD connection
506-MSW60			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 60 In. Dia.	\$	7,400.00	\$0.00	
506-MWW48		1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 4 Ft Dia.	\$	6,300.00	\$6,300.00	connection to WW main on Vargas
506-MWW60			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 5 Ft Dia.	\$	8,000.00	\$0.00	
SP 506-M		1	EA	By-Pass Pumping at Each Connection to Existing Manhole	\$	5,200.00	\$5,200.00	connection to WW main on Vargas
508S-H18			EA	Headwalls for 18" Pipe	\$	3,000.00	\$0.00	
508S-H24		1	EA	Headwalls for 24" Pipe	\$	3,200.00	\$3,200.00	SD outfall
508S-H48			EA	Headwalls for 48" Pipe	\$	6,400.00	\$0.00	
5085-IG		3	EA	Inlet, Grate (Area Inlet)	\$	5,600.00	\$16,800.00	improve drainage around pool site
508s-110s		1	EA.	Inlet, Standard 10 Foot	\$	5,400.00	\$5,400.00	at ADA parking
5095-1		800	LF	Trench Excavation Safety Protective Systems (all depths)	\$	2.00	\$1,600.00	
510-AW2C		50	LF	Pipe, 2" Dia. Copper (all depths), including Excavation and Backfill	\$	91.00	\$4,550.00	irigation service
510-AW-4-350		50	LF	Pipe, 4" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	140.00	\$7,000.00	domestic service
510-AW-6-350			LF	Pipe, 6" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	159.00	\$0.00	
510-AW-8-350		100	LF	Pipe, 8" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	193.00	\$19,300.00	main service
510-ASW18		200	LF	Pipe, 18 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	136.00	\$27,200.00	improve drainage around pool site
510-ASW24		200	LF	Pipe, 24 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	157.00	\$31,400.00	to SD outfall
510-Asw30			LF	Pipe, 30 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	249.00	\$0.00	
510-ASW36			LF	Pipe, 36 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	311.00	\$0.00	
510-ASW48			LF	Pipe, 48 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	351.00	\$0.00	
510-ASW54			LF	Pipe, 54 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	368.00	\$0.00	
510-ASW66			LF	Pipe, 66 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	403.00	\$0.00	
510-AWW6			LF	Pipe, 6" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	114.00	\$0.00	

510-AWW8		200	LF	Pipe, 8" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	125.00	\$25,000.00	WW service to Vargas
510-AWW12			LF	Pipe, 12" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	159.00	\$0.00	
510-AWW21			LF	Pipe, 21" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	299.00	\$0.00	
510-BW8×2		1	EA	Connecting New 8" Water Service to 2" Private Service	\$	4,600.00	\$4,600.00	imigation service connection
510-BW8×4		1	EA	Connecting New 8" Water Service to 4" Private Service	\$	6,200.00	\$6,200.00	domestic service connection
SP510-BW-M2		1	EA	New Water Meter, 2 Inch Meter and W Capital Recover Fee	\$	55,000.00	\$55,000.00	imigation meter/tap fee
SP510-BW-M4		1	EA	New Water Meter, 4 Inch Meter and W/WW Capital Recover Fee	\$	321,000.00	\$321,000.00	domestic meter/tap fee
SP510-BW-RM2			EA	Relocate Existing Water Meter, 2 Inch Tap Fee	\$	2,000.00	\$0.00	
$510-\mathrm{BWW} \times \times 6$		1	EA	Connecting New 8 " Wastewater Service to Existing Private Service	\$	4,600.00	\$4,600.00	connect to WW main on Vargas
510-J W6X6			EA	Wet Connections, $6^{\prime \prime}$ Dia. $\times 6^{\prime \prime}$ Dia.	\$	3,100.00	$\$ 0.00$	
510-J W8x8		1	EA	Wet Connections, $8^{\prime \prime}$ Dia. $\times 8^{\prime \prime}$ Dia.	\$	3,300.00	\$3,300.00	connect to W main on Vargas
$510-\mathrm{JW} 16 \times 16$			EA	Wet Connections, $16^{\prime \prime}$ Dia. $\times 16^{\prime \prime}$ Dia.	\$	4,600.00	\$0.00	
510-KW		2	TON	Ductile Iron Fittings	\$	11,500.00	\$23,000.00	$5 \mathrm{lb} / \mathrm{t}$
511S-A2		1	EA	Valves, Gate Type, 2" Diameter	\$	1,000.00	\$1,000.00	
5115-A3			EA	Valves, Gate Type, 3" Diameter	\$	1,200.00	\$0.00	
511S-A4	0	1	EA	Valves, Gate Type, 4" Diameter	\$	1,500.00	\$1,500.00	1 each/250 ft
511S-A6			EA	Valves, Gate Type, 6" Diameter	\$	1,900.00	\$0.00	
511S-A8	0	1	EA	Valves, Gate Type, 8" Diameter	\$	2,300.00	\$2,300.00	1 each/250 ft
5115-B			EA	Fire Hydrant	\$	5,200.00	\$0.00	
511S-C2		1	EA	Pressure or Flow Control Valve Assemblies (2 Inch Backflow Preventer)	\$	4,000.00	\$4,000.00	for irrigation service
511s-C8	1		EA	Pressure or Flow Control Valve Assemblies (8 Inch Double Check Valve Backflow Preventer)	\$	16,000.00	\$0.00	For fire line
551			LF	Pipe Underdrains (for Tree Wells)	\$	50.00	\$0.00	
5915-B		4	SY	Dry-Riprap	\$	140.00	\$560.00	SD outfall
5945-C			CY	Revet Mattresses, Twisted Woven Wire	\$	320.00	\$0.00	
602S-D			SY	Grass Sodding, General	\$	7.00	\$0.00	
6045-A			SY	Non-Native Seeding for Erosion Control Method	\$	6.00	\$0.00	
6045-E			SY	Mulch, Hardwood	\$	23.00	\$0.00	
605S-A		300	SY	Soil Retention Blanket	\$	24.00	\$7,200.00	
6085-1			EA	Plantings, Type BMP Native Grasses, Sedges, Woody Shrubs	\$	23.00	\$0.00	1 ft spacing in Rain Garden
6085-1	0	47	EA	Trees, 20 Gal	\$	600.00	\$28,200.00	30ft apart along sidewalk
6085-1			EA	Plants, 5 Gal	\$	50.00	\$0.00	
6085-2		1	LS	Irrigation System	\$	10,000.00	\$10,000.00	
6095-C		1,060	SY	Native Seeding for Erosion Control	\$	7.00	\$7,420.00	
610S-A		550	LF	Tree Protective Fencing Type A Chain Link Fence	\$	4.00	\$2,200.00	
610S-R		2	EA	Removal of Existing Trees	\$	570.00	\$1,140.00	
SP6285-C		4	EA	Fitter Curb Inlet P rotection	\$	120.00	\$480.00	
6285-B		100	LF	Sediment Containment Dikes with Filter Fabric	\$	9.00	\$900.00	Triangular dike on pavement
6395		40	LF	Rock Berm	\$	39.00	\$1,560.00	
6405			SF	Mortared Rock Wall	\$	50.00	\$0.00	
6415		1	EA	Stabilized Construction Entrance	\$	1,700.00	\$1,700.00	
6425		2,000	LF	Silt Fence for Erosion Control	\$	4.00	\$8,000.00	
6605			CY	Bio-Filtration Media	\$	114.00	\$0.00	
700S-TM		1	LS	Total Mobilization Payment	\$	58,000.00	\$58,000.00	5\% of all costs excluding Mob cost
7015-A6			LF	Chain Link Fence, 6-Ft	\$	20.00	\$0.00	
7015-BS			EA	Chain Link Pedestrian Single Swing Gate ($6 \mathrm{Ft} \times 4 \mathrm{Ft}$)	\$	1,000.00	\$0.00	
701S-CD			EA	Chain Link Vehicular Double Swing Gate ($6 \mathrm{Ft} \times 20 \mathrm{Ft}$)	\$	2,300.00	\$0.00	
802S-BBond		1	EA	Bond Project Sign	\$	700.00	\$700.00	
8035-SF			LF	Safety Fence	\$	3.00	\$0.00	
SP803S-BAS			EA	Project Sign for Access	\$	400.00	\$0.00	
SP803S-CD		40	CD	Barricades, Signs, and Traffic Handling.	\$	600.00	\$24,000.00	$160 \mathrm{CD} / \mathrm{Block}$
SP803S-PS		18	CD	Portable Changeable Message Signs	\$	120.00	\$2,160.00	70 CD/Block
8245		4	EA	Traffic Signs	\$	400.00	\$1,600.00	

827S		EA	Bicycle Lane Signage	\$	400.00	\$0.00	
829S	600	LF	Bicycle Lane Markings	\$	8.00	\$4,800.00	
871S-A4W	200	LF	Reflectorized Type 1 Thermoplastic Pavement Markings, 4 Inches in Width, 100 Mils in Thickness, White in Color	\$	3.00	\$600.00	
871S-A24W		LF	Reflectorized Type 1 Thermoplastic Pavement Markings, 24 Inches in Width, 100 Mils in Thickness, White in Color	\$	16.00	\$0.00	
871S-D-SYMBOL-W		EA	Reflectorized Type 1 Pavement Marking, Symbol, 100 Mils in Thickness, White in Color	\$	400.00	\$0.00	
874S-A		LF	Eliminating Existing Pavement Markings, 4 Inches to 12 Inches in Width	\$	12.00	\$0.00	
1301S-B		SY	Granite Gravel Hike \& Bike Trail	\$	21.00	\$0.00	10' wide connect to surrounding streets
165505	2	EA	Street Light Standard Foundation, Including Pole Base and Conduit Stub Up	\$	1,600.00	\$3,200.00	
	2	EA	Light Pole and LED Light	\$	3,700.00	\$7,400.00	
	1	EA	Electrical Panel Enclosure	\$	21,000.00	\$21,000.00	
	2	EA	Electrical Pull Box	\$	1,200.00	\$2,400.00	
	200	LF	Electrical Trenching, Conduits, Conductors for Lighting	\$	123.00	\$24,600.00	100' per light pole
 SUBTOTAL CONTINGENCY $\$ 1,206,808.00$ TOTAL $\$ 301,702.00$ 							

Aquatic Master Plan
Doucet + Chan, a Division of Doucet \& Associates, Inc.
Texas Registration No. 3937

510-AWW8	500	500	LF	Pipe, 8" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	125.00	\$62,500.00	WW service to main on Beckett
510-AWW12			LF	Pipe, 12" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	159.00	\$0.00	
510-AWW21			LF	Pipe, 21" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	299.00	\$0.00	
510-BW8×2		1	EA	Connecting New 8^{\prime} Water Service to 2" Private Service	\$	4,600.00	\$4,600.00	imigation service connection
$510-\mathrm{BW} 8 \times 4$		1	EA	Connecting New 8^{\prime} Water Service to 4" Private Service	\$	6,200.00	\$6,200.00	domestic service connection
SP510-BW-M2		1	EA	New Water Meter, 2 Inch Meter and W Capital Recover Fee	\$	55,000.00	\$55,000.00	imigation meter/tap fee
SP510-BW-M4		1	EA	New Water Meter, 4 Inch Meter and W/WW Capital Recover Fee	\$	321,000.00	\$321,000.00	domestic meter/tap fee
SP510-BW-RM2			EA	Relocate Existing Water Meter, 2 Inch Tap Fee	\$	2,000.00	\$0.00	
510-BWW8×6		1	EA	Connecting New $8^{\prime \prime}$ Wastewater Service to Existing Private Service	\$	4,600.00	\$4,600.00	connect to WW main on Beckett
510-J W6X6			EA	Wet Connections, 6" Dia. $\times 6^{\prime \prime}$ Dia.	\$	3,100.00	\$0.00	
$510-\mathrm{JW} 8 \times 8$		1	EA	Wet Connections, $8^{\prime \prime}$ Dia. $\times 8^{\prime \prime}$ Dia.	\$	3,300.00	\$3,300.00	connect to W main on Beckett
$510-\mathrm{J}$ W 8×12			EA	Wet Connections, $8^{\prime \prime}$ Dia. $\times 12^{\prime \prime}$ Dia.				
510-J W16X16			EA	Wet Connections, $16^{\prime \prime}$ Dia. $\times 16^{\prime \prime}$ Dia.	\$	4,600.00	\$0.00	
510-KW		2	TON	Ductile Iron Fittings	\$	11,500.00	\$23,000.00	$5 \mathrm{lb} / \mathrm{t}$
511S-A2		1	EA	Valves, Gate Type, 2" Diameter	\$	1,000.00	\$1,000.00	
5115-A3			EA	Valves, Gate Type, 3" Diameter	\$	1,200.00	\$0.00	
511S-A4	2	2	EA	Valves, Gate Type, 4" Diameter	\$	1,500.00	\$3,000.00	1 each/250 ft
511S-A6		2	EA	Valves, Gate Type, 6" Diameter	\$	1,900.00	\$3,800.00	for fire hydrants
511S-A8	2	2	EA	Valves, Gate Type, 8" Diameter	\$	2,300.00	\$4,600.00	1 each/250 ft
511S-B		2	EA	Fire Hydrant	\$	5,200.00	\$10,400.00	
511S-C2		1	EA	Pressure or Flow Control Valve Assemblies (2 Inch Backflow Preventer)	\$	4,000.00	\$4,000.00	for irrigation service
511S-C8	1	1	EA	Pressure or Flow Control Valve Assemblies (8 Inch Double Check Valve Backflow Preventer)	\$	16,000.00	\$16,000.00	For fire line
551			LF	Pipe Underdrains (for Tree Wells)	\$	50.00	\$0.00	
591S-B		4	SY	Dry-Riprap	\$	140.00	\$560.00	SD outfall
594S-C			CY	Revet Mattresses, Twisted Woven Wire	\$	320.00	\$0.00	
602S-D			SY	Grass Sodding, General	\$	7.00	\$0.00	
604S-A			SY	Non-Native Seeding for Erosion Control Method	\$	6.00	\$0.00	
604S-E			SY	Mulch, Hardwood	\$	23.00	\$0.00	
605s-A		300	SY	Soil Retention Blanket	\$	24.00	\$7,200.00	
6085-1			EA	Plantings, Type BMP Native Grasses, Sedges, Woody Shrubs		23.00	\$0.00	1 ft spacing in Rain Garden
6085-1	16.66666667	17	EA	Trees, 20 Gal	\$	600.00	\$10,200.00	30ft apart along sidewalk
6085-1			EA	Plants, 5 Gal	\$	50.00	\$0.00	
6085-2			LS	Irrigation System			\$0.00	
6095-C		250	SY	Native Seeding for Erosion Control	\$	7.00	\$1,750.00	SD outfall
610S-A		600	LF	Tree Protective Fencing Type A Chain Link Fence	\$	4.00	\$2,400.00	
610S-R		2	EA	Removal of Existing Trees	\$	570.00	\$1,140.00	
SP6285-C		4	EA	Filter Curb Inlet Protection	\$	120.00	\$480.00	
6285-B		100	LF	Sediment Containment Dikes with Filter Fabric	\$	9.00	\$900.00	Triangular dike on pavement
6395		40	LF	Rock Berm	\$	39.00	\$1,560.00	
6405			SF	Mortared Rock Wall	\$	50.00	\$0.00	
6415		1	EA	Stabilized Construction Entrance	\$	1,700.00	\$1,700.00	
6425		2,000	LF	Silt Fence for Erosion Control	\$	4.00	\$8,000.00	
6605			CY	Bio-Filtration Media	\$	114.00	\$0.00	
700S-TM		1	LS	Total Mobilization Payment	\$	53,000.00	\$53,000.00	5\% of all costs excluding Mob cost
7015-A6			LF	Chain Link Fence, 6-Ft	\$	20.00	\$0.00	
701S-BS			EA	Chain Link Pedestrian Single Swing Gate ($6 \mathrm{Ft} \times 4 \mathrm{Ft}$)	\$	1,000.00	\$0.00	
7015-CD			EA	Chain Link Vehicular Double Swing Gate ($6 \mathrm{Ft} \times 20 \mathrm{Ft}$)	\$	2,300.00	\$0.00	
8025-BBond			EA	Bond Project Sign	\$	700.00	\$0.00	
803S-SF		1	LF	Safety Fence	\$	3.00	\$3.00	
SP803S-BAS			EA	Project Sign for Access	\$	400.00	\$0.00	
SP8035-CD		80	CD	Barricades, Signs, and Traffic Handling.	\$	600.00	\$48,000.00	$160 \mathrm{CD} / \mathrm{Block}$
SP803S-PS		36	CD	Portable Changeable Message Signs	\$	120.00	\$4,320.00	$70 \mathrm{CD} /$ Block

8245		4	EA	Traffic Signs	\$	400.00	\$1,600.00	
8275			EA	Bicycle Lane Signage	\$	400.00	\$0.00	
8295			LF	Bicycle Lane Markings	\$	400.00	\$0.00	
871S-A4W		1,370	LF	Reflectorized Type 1 Thermoplastic Pavement Markings, 4 Inches in Width, 100 Mils in Thickness, White in Color	\$	3.00	\$4,110.00	
871S-A24W			LF	Reflectorized Type 1 Thermoplastic Pavement Markings, 24 Inches in Width, 100 Mils in Thickness, White in Color	\$	16.00	\$0.00	
871S-D-SYMBOL-W			EA	Reflectorized Type 1 Pavement Marking, Symbol, 100 Mils in Thickness, White in Color	\$	400.00	\$0.00	
874S-A		1,370	LF	Eliminating Existing Pavement Markings, 4 Inches to 12 Inches in Width	\$	12.00	\$16,440.00	
13015-B	1111.111111	1,200	SY	Granite Gravel Hike \& Bike Trail	\$	21.00	\$25,200.00	10 ' wide connect to surrounding streets (check if needed)
16550 S			EA	Street Light Standard Foundation, Including Pole Base and Conduit Stub Up	\$	1,600.00	\$0.00	
			EA	Light Pole and LED Light	\$	3,700.00	\$0.00	
			EA	Electrical Panel Enclosure	\$	21,000.00	\$0.00	
			EA	Electrical Pull Box	\$	1,200.00	\$0.00	
			LF	Electrical Trenching, Conduits, Conductors for Lighting	\$	123.00	\$0.00	
					SUBTOTAL CONTINGENCY TOTAL		$\begin{array}{r} \hline \$ 1,112,631.00 \\ \$ 278,157.75 \\ \hline \end{array}$	

Aquatic Master Plan
Dittmar
Doucet + Chan, a Division of Doucet \& Associates, Inc.

4355		LF	P.C. Concrete Steps	\$	160.00	\$0.00	
4395	5	EA	Parking Lot Bumper Curbs	\$	120.00	\$600.00	
504S-3W		EA	Adjusting Water Valve Boxes to Grade	\$	950.00	\$0.00	
505s-B20		LF	Encasement Pipe, Split 20 Inch Dia., Type Steel, 0.375 Inch Minimum Thickness	\$	243.00	\$0.00	
506-ABSW		EA	Abandonment of Exisitng Manholes, Storm Water	\$	2,200.00	\$0.00	
506-ABWW		EA	Abandonment of Exisitng Manholes, Wastewater	\$	2,200.00	\$0.00	
506-ABE		EA	Abandonment of Existing Manholes, Electrical and Telecommunications	\$	2,200.00	\$0.00	
$506-\mathrm{BSW} 4 \times 4$		EA.	Box Manhole, $4 \mathrm{ft} \times 4 \mathrm{ft}$	\$	6,600.00	\$0.00	
506-CNSW	1	EA	Connection of Storm Water Pipe to Existing System	\$	2,300.00	\$2,300.00	
506-CNWW	1	EA	Connection of Wastewater Pipe to Existing System	\$	2,300.00	\$2,300.00	connect to on-site WW main
506-EDMSSW48		LVF	Extra Depth Special Storm Water Manhole, 48 In . Dia.	\$	340.00	\$0.00	
506-MSW48	1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 48 In . Dia.	\$	5,700.00	\$5,700.00	connect to SD system
506-MSW60		EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 60 In. Dia.	\$	7,400.00	\$0.00	
506-MWW48		EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 4 Ft. Dia.	\$	6,300.00	\$0.00	
506-MWW60	1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 5 Ft Dia.	\$	8,000.00	\$8,000.00	connect to on-site WW main
SP506-M	1	EA	By-Pass Pumping at Each Connection to Existing Manhole	\$	5,200.00	\$5,200.00	at connection to on-site WW main
508S-H18		EA	Headwalls for 18" Pipe	\$	3,000.00	\$0.00	
508S-H24	1	EA	Headwalls for 24" Pipe	\$	3,200.00	\$3,200.00	SD outfall
508S-H48		EA	Headwalls for 48" Pipe	\$	6,400.00	\$0.00	
5085-IG	3	EA	Inlet, Grate (Area Inlet)	\$	5,600.00	\$16,800.00	improve drainage around pool site
5085-110S	1	EA.	Inlet, Standard 10 Foot	\$	5,400.00	\$5,400.00	at ADA parking
5095-1	2,180	LF	Trench Excavation Safety Protective Systems (all depths)	\$	2.00	\$4,360.00	
510-AW2C	300	LF	Pipe, 2" Dia. Copper (all depths), including Excavation and Backfill	\$	91.00	\$27,300.00	irigation service
510-AW-4-350	300	LF	Pipe, 4" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	140.00	\$42,000.00	domestic service
510-AW-6-350	80	LF	Pipe, 6" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	159.00	\$12,720.00	fire hydrant leads
510-AW-8-350	100	LF	Backfill Pipe, 8" Dia. Class 350 Ductile Iron (all depths), including Excavation and Barkill	\$	193.00	\$19,300.00	main service
510-ASW18	600	LF	Pipe, 18 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	136.00	\$81,600.00	improve drainage around pool site
510-ASW24	200	LF	Pipe, 24 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	157.00	\$31,400.00	to SD outfall
510-ASW30		LF	Pipe, 30 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	249.00	\$0.00	
510-ASW36		LF	Pipe, 36 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	311.00	\$0.00	
510-ASW48		LF	Pipe, 48 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	351.00	\$0.00	
510-ASW54		LF	Pipe, 54 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	368.00	\$0.00	
510-ASW66		LF	Pipe, 66 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	403.00	\$0.00	
510-AWW6		LF	Pipe, 6" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	114.00	\$0.00	

510-AWW8		600	LF	Pipe, 8" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	125.00	\$75,000.00	WW service to on-site main
510-AWW12			LF	Pipe, 12" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	159.00	\$0.00	
510-AWW21			LF	Pipe, 21" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	299.00	\$0.00	
510-BW8×2		1	EA	Connecting New 8" Water Service to 2" Private Service	\$	4,600.00	\$4,600.00	imigation service connection
510-BW8x4		1	EA	Connecting New 8" Water Service to 4" Private Service	\$	6,200.00	\$6,200.00	domestic service connection
SP510-BW-M2		1	EA	New Water Meter, 2 Inch Meter and W Capital Recover Fee	\$	55,000.00	\$55,000.00	imigation meter/tap fee
SP510-BW-M4		1	EA	New Water Meter, 4 Inch Meter and W/WW Capital Recover Fee	\$	321,000.00	\$321,000.00	domestic meter/tap fee
SP510-BW-RM2			EA	Relocate Existing Water Meter, 2 Inch Tap Fee	\$	2,000.00	\$0.00	
510-BWW8×6		1	EA	Connecting New 8 " Wastewater Service to Existing Private Service	\$	4,600.00	\$4,600.00	connection to WW main on site
510-J W6x6			EA	Wet Connections, $6^{\prime \prime}$ Dia. $\times 6^{\prime \prime}$ Dia.	\$	3,100.00	\$0.00	
510-J W8x8		1	EA	Wet Connections, $8^{\prime \prime}$ Dia. $\times 8^{\prime \prime}$ Dia.	\$	3,300.00	\$3,300.00	connection to W main on Dittmar
510-J W16x16			EA	Wet Connections, $16^{\prime \prime}$ Dia. $\times 16^{\prime \prime}$ Dia.	\$	4,600.00	\$0.00	
510-KW		3	TON	Ductile Iron Fittings	\$	11,500.00	\$32,775.00	$5 \mathrm{lb} / \mathrm{t}$
511S-A2		1	EA	Valves, Gate Type, 2" Diameter	\$	1,000.00	\$1,000.00	
5115-A3			EA	Valves, Gate Type, 3" Diameter	\$	1,200.00	\$0.00	
511S-A4	0	1	EA	Valves, Gate Type, 4" Diameter	\$	1,500.00	\$1,500.00	1 each/250 ft
511S-A6		2	EA	Valves, Gate Type, 6" Diameter	\$	1,900.00	\$3,800.00	for fire hydrants
511S-A8	0	1	EA	Valves, Gate Type, 8" Diameter	\$	2,300.00	\$2,300.00	1 each/250 ft
511s-B		2	EA	Fire Hydrant	\$	5,200.00	\$10,400.00	
511S-C2		1	EA	Pressure or Flow Control Valve Assemblies (2 Inch Backflow Preventer)	\$	4,000.00	\$4,000.00	for irrigation service
511S-C8	1	1	EA	Pressure or Flow Control Valve Assemblies (8 Inch Double Check Valve Backflow Preventer)	\$	16,000.00	\$16,000.00	For fire line
551			LF	Pipe Underdrains (for Tree Wells)	\$	50.00	\$0.00	
5915-B		4	SY	Dry-Riprap	\$	140.00	\$560.00	SD outfall
594s-C			CY	Revet Mattresses, Twisted Woven Wire	\$	320.00	\$0.00	
602S-D			SY	Grass Sodding, General	\$	7.00	\$0.00	
604S-A			SY	Non-Native Seeding for Erosion Control Method	\$	6.00	\$0.00	
604S-E			SY	Mulch, Hardwood	\$	23.00	\$0.00	
605s-A		300	SY	Soil Retention Blanket	\$	24.00	\$7,200.00	
6085-1			EA	Plantings, Type BMP Native Grasses, Sedges, Woody Shrubs	\$	23.00	\$0.00	1 ft spacing in Rain Garden
6085-1	0	35	EA	Trees, 20 Gal	\$	600.00	\$21,000.00	30ft apart along sidewalk
6085-1			EA	Plants, 5 Gal	\$	50.00	\$0.00	
6085-2		1	LS	Irrigation System	\$	10,000.00	\$10,000.00	
6095-C		250	SY	Native Seeding for Erosion Control	\$	7.00	\$1,750.00	at SD outfall
610S-A		1,200	LF	Tree Protective Fencing Type A Chain Link Fence	\$	4.00	\$4,800.00	
610S-R			EA	Removal of Existing Trees	\$	570.00	\$0.00	
SP6285-C		3	EA	Filter Curb Inlet Protection	\$	120.00	\$360.00	
6285-B		100	LF	Sediment Containment Dikes with Filter Fabric	\$	9.00	\$900.00	Triangular dike on pavement
6395		40	LF	Rock Berm	\$	39.00	\$1,560.00	
6405			SF	Mortared Rock Wall	\$	50.00	\$0.00	
6415		1	EA	Stabilized Construction Entrance	\$	1,700.00	\$1,700.00	
6425		2,000	LF	Silt Fence for Erosion Control	\$	4.00	\$8,000.00	
6605			CY	Bio-Filtration Media	\$	114.00	\$0.00	
700S-TM		1	LS	Total Mobilization Payment	\$	70,000.00	\$70,000.00	5\% of all costs excluding Mob cost
7015-A6			LF	Chain Link Fence, 6 -Ft	\$	20.00	\$0.00	
701S-BS			EA	Chain Link Pedestrian Single Swing Gate ($6 \mathrm{Ft} \times 4 \mathrm{Ft}$)	\$	1,000.00	\$0.00	
701S-CD			EA	Chain Link Vehicular Double Swing Gate ($6 \mathrm{Ft} \times 20 \mathrm{Ft}$)	\$	2,300.00	\$0.00	
802S-bBond		1	EA	Bond Project Sign	\$	700.00	\$700.00	
8035-SF			LF	Safety Fence	\$	3.00	\$0.00	
SP803S-BAS			EA	Project Sign for Access	\$	400.00	\$0.00	
SP803S-CD		160	CD	Barricades, Signs, and Traffic Handling.	\$	600.00	\$96,000.00	$160 \mathrm{CD} / \mathrm{Block}$
SP803S-PS		70	CD	Portable Changeable Message Signs	\$	120.00	\$8,400.00	70 CD/Block
8245		4	EA	Traffic Signs	\$	400.00	\$1,600.00	

827S		1	EA	Bicycle Lane Signage	\$	400.00	\$400.00	
829S			LF	Bicycle Lane Markings	\$	400.00	\$0.00	
871S-A4W		350	LF	Reflectorized Type 1 Thermoplastic Pavement Markings, 4 Inches in Width, 100 Mils in Thickness, White in Color	\$	3.00	\$1,050.00	
871S-A24W			LF	Reflectorized Type 1 Thermoplastic Pavement Markings, 24 Inches in Width, 100 Mils in Thickness, White in Color	\$	16.00	\$0.00	
871S-D-SYMBOL-W		5	EA	Reflectorized Type 1 Pavement Marking, Symbol, 100 Mils in Thickness, White in Color	\$	400.00	\$2,000.00	
874S-A			LF	Eliminating Existing Pavement Markings, 4 Inches to 12 Inches in Width	\$	12.00	\$0.00	
1301S-B	166.6666667	200	SY	Granite Gravel Hike \& Bike Trail	\$	21.00	\$4,200.00	10' wide connect to surrounding streets
16550 S			EA	Street Light Standard Foundation, Including Pole Base and Conduit Stub Up	\$	1,600.00	\$0.00	
			EA	Light Pole and LED Light	\$	3,700.00	\$0.00	
			EA	Electrical Panel Enclosure	\$	21,000.00	\$0.00	
			EA	Electrical Pull Box	\$	1,200.00	\$0.00	
			LF	Electrical Trenching, Conduits, Conductors for Lighting	\$	123.00	\$0.00	
					SUBTOTAL \$1,457,995.00			
					CONTINGENCY		364,498.75	
					TOTAL		822,493.75	

Aquatic Master Plan
Doucet + Chan, a Division of Doucet \& Associates, Inc.
Texas Registration No. 3937

4355			LF	P.C. Concrete Steps	\$	160.00	\$0.00	
4395			EA	Parking Lot Bumper Curbs	\$	120.00	\$0.00	
504S-3W			EA	Adjusting Water Valve Boxes to Grade	\$	950.00	\$0.00	
505S-820			LF	Encasement Pipe, Split 20 Inch Dia., Type Steel, 0.375 Inch Minimum Thickness	\$	243.00	\$0.00	
506-ABSW			EA	Abandonment of Exisitng Manholes, Storm Water	\$	2,200.00	\$0.00	
506-ABWW			EA	Abandonment of Exisitng Manholes, Wastewater	\$	2,200.00	\$0.00	
506-ABE			EA	Abandonment of Existing Manholes, Electrical and Telecommunications	\$	2,200.00	\$0.00	
506-BSW4x4			EA.	Box Manhole, 4ft $\times 4 \mathrm{ft}$	\$	6,600.00	\$0.00	
506-CNSW		1	EA	Connection of Storm Water Pipe to Existing System	\$	2,300.00	\$2,300.00	
506-CNWW		1	EA	Connection of Wastewater Pipe to Existing System	\$	2,300.00	\$2,300.00	connect to WW main on Loyola
506-EDMSSW48			LVF	Extra Depth Special Storm Water Manhole, 48 In. Dia.	\$	340.00	\$0.00	
506-MSW48		1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 48 In. Dia.	\$	5,700.00	\$5,700.00	Connect to SD system
506-MSW60			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 60 In. Dia.	\$	7,400.00	\$0.00	
506-MWW48		1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 4 Ft. Dia.	\$	6,300.00	\$6,300.00	connect to WW main on Loyola
506-MWW60			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 5 Ft Dia.	\$	8,000.00	\$0.00	
SP 506-M		1	EA	By-Pass Pumping at Each Connection to Existing Manhole	\$	5,200.00	\$5,200.00	at connection to WW main on Loyola
508S-H18			EA	Headwalls for 18" Pipe	\$	3,000.00	\$0.00	
508S-H24		1	EA	Headwalls for 24" Pipe	\$	3,200.00	\$3,200.00	SD outfall
5085-H48			EA	Headwalls for 48" Pipe	\$	6,400.00	\$0.00	
508S-IG		3	EA	Inlet, Grate (Area Inlet)	\$	5,600.00	\$16,800.00	improve drainage around pool site
508S-110s		1	EA.	Inlet, Standard 10 Foot	\$	5,400.00	\$5,400.00	at ADA parking
5095-1		1,160	LF	Trench Excavation Safety Protective Systems (all depths)	\$	2.00	\$2,320.00	
510-AW2C	150	150	LF	Pipe, 2" Dia. Copper (all depths), including Excavation and Backfill	\$	91.00	\$13,650.00	irrigation service
510-AW-4-350	100	100	LF	Pipe, 4" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	140.00	\$14,000.00	domestic service
510-AW-6-350		80	LF	Pipe, 6" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	159.00	\$12,720.00	fire hydrant leads
510-AW-8-350	210	210	LF	Pipe, 8" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	193.00	\$40,530.00	main service
510-ASW18	140	200	LF	Pipe, 18 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	136.00	\$27,200.00	improve drainage around pool site
510-ASW24		200	LF	Pipe, 24 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	157.00	\$31,400.00	to SD outfall
510-ASW30			LF	Pipe, 30 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	249.00	\$0.00	
510-ASW36			LF	Pipe, 36 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	311.00	\$0.00	
510-ASW48			LF	Pipe, 48 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	351.00	\$0.00	
510-ASW54			LF	Pipe, 54 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	368.00	\$0.00	
510-ASW66			LF	Pipe, 66 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	403.00	\$0.00	
510-AWW6			LF	Pipe, $6^{n \prime}$ Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	114.00	\$0.00	

510-AWW8		220	LF	Pipe, 8" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	125.00	\$27,500.00	WW service to main on Loyola
510-AWW12			LF	Pipe, 12" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	159.00	\$0.00	
510-AWW21			LF	Pipe, 21" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	299.00	\$0.00	
510-BW8×2		1	EA	Connecting New 8" Water Service to 2" Private Service	\$	4,600.00	\$4,600.00	imigation service connection
510-BW8x4		1	EA	Connecting New 8" Water Service to 4" Private Service	\$	6,200.00	\$6,200.00	domestic service connection
SP510-BW-M2		1	EA	New Water Meter, 2 Inch Meter and W Capital Recover Fee	\$	55,000.00	\$55,000.00	imigation meter/tap fee
SP510-BW-M4		1	EA	New Water Meter, 4 Inch Meter and W/WW Capital Recover Fee	\$	321,000.00	\$321,000.00	domestic meter/tap fee
SP510-BW-RM2			EA	Relocate Existing Water Meter, 2 Inch Tap Fee	\$	2,000.00	\$0.00	
510-BWW8×6		1	EA	Connecting New 8"Wastewater Service to Existing Private Service	\$	4,600.00	\$4,600.00	connect to WW main on Loyola
510-J W6x6			EA	Wet Connections, $6^{\prime \prime}$ Dia. $\times 6^{\prime \prime}$ Dia.	\$	3,100.00	\$0.00	
510-J W8x8		1	EA	Wet Connections, $8^{\prime \prime}$ Dia. $\times 8^{\prime \prime}$ Dia.	\$	3,300.00	\$3,300.00	connect to W main on Loyola
$510-\mathrm{JW16} \mathrm{\times 16}$			EA	Wet Connections, $16{ }^{\text {" Dia. } \times 16 \text { " Dia. }}$	\$	4,600.00	\$0.00	
510-KW	0.155	1.0	TON	Ductile Iron Fittings	\$	11,500.00	\$11,500.00	$5 \mathrm{lb} / \mathrm{t}$
511S-A2		1	EA	Valves, Gate Type, 2" Diameter	\$	1,000.00	\$1,000.00	
511S-A3			EA	Valves, Gate Type, 3" Diameter	\$	1,200.00	\$0.00	
511S-A4	0.4	1	EA	Valves, Gate Type, 4" Diameter	\$	1,500.00	\$1,500.00	1 each/250 ft
511S-A6		2	EA	Valves, Gate Type, 6" Diameter	\$	1,900.00	\$3,800.00	for fire hydrants
511S-A8	0.84	1	EA	Valves, Gate Type, 8" Diameter	\$	2,300.00	\$2,300.00	1 each/250 ft
511s-B		2	EA	Fire Hydrant	\$	5,200.00	\$10,400.00	
511S-C2		1	EA	Pressure or Flow Control Valve Assemblies (2 Inch Backflow Preventer)	\$	4,000.00	\$4,000.00	for irrigation service
511S-C8		1	EA	Pressure or Flow Control Valve Assemblies (8 Inch Double Check Valve Backflow Preventer)	\$	16,000.00	\$16,000.00	For fire line
551			LF	Pipe Underdrains (for Tree Wells)	\$	50.00	\$0.00	
5915-B		4	SY	Dry-Riprap	\$	140.00	\$560.00	at SD outfall
$5945-\mathrm{C}$			CY	Revet Mattresses, Twisted Woven Wire	\$	320.00	\$0.00	
602S-D			SY	Grass Sodding, General	\$	7.00	\$0.00	
604S-A			SY	Non-Native Seeding for Erosion Control Method	\$	6.00	\$0.00	
604S-E			SY	Mulch, Hardwood	\$	23.00	\$0.00	
605S-A		300	SY	Soil Retention Blanket	\$	24.00	\$7,200.00	
6085-1			EA	Plantings, Type BMP Native Grasses, Sedges, Woody Shrubs	\$	23.00	\$0.00	1 ft spacing in Rain Garden
6085-1	66.41666667	67	EA	Trees, 20 Gal	\$	600.00	\$40,200.00	30ft apart along sidewalk
6085-1			EA	Plants, 5 Gal	\$	50.00	\$0.00	
6085-2		1	LS	Irrigation System	\$	10,000.00	\$10,000.00	
6095-C		600	SY	Native Seeding for Erosion Control	\$	7.00	\$4,200.00	
6105-A		1,000	LF	Tree Protective Fencing Type A Chain Link Fence	\$	4.00	\$4,000.00	
610S-R		67	EA	Removal of Existing Trees	\$	570.00	\$38,190.00	
SP628S-C		2	EA	Filter Curb Inlet Protection	\$	120.00	\$240.00	
6285-B		100	LF	Sediment Containment Dikes with Filter Fabric	\$	9.00	\$900.00	Triangular dike on pavement
6395		40	LF	Rock Berm	\$	39.00	\$1,560.00	
6405			SF	Mortared Rock Wall		50.00	\$0.00	
6415		1	EA	Stabilized Construction Entrance	\$	1,700.00	\$1,700.00	
6425		2,000	LF	Silt Fence for Erosion Control	\$	4.00	\$8,000.00	
6605			CY	Bio-Filtration Media	\$	114.00	\$0.00	
700S-TM		1	LS	Total Mobilization Payment	\$	65,000.00	\$65,000.00	5\% of all costs excluding Mob cost
7015-A6			LF	Chain Link Fence, 6 -Ft	\$	20.00	\$0.00	
7015-BS			EA	Chain Link Pedestrian Single Swing Gate ($6 \mathrm{Ft} \times 4 \mathrm{Ft}$)	\$	1,000.00	\$0.00	
701S-CD			EA	Chain Link Vehicular Double Swing Gate ($6 \mathrm{Ft} \times 20 \mathrm{Ft}$)	\$	2,300.00	\$0.00	
802S-BBond		1	EA	Bond Project Sign	\$	700.00	\$700.00	
8035-SF			LF	Safety Fence	\$	3.00	\$0.00	
SP803S-BAS			EA	Project Sign for Access	\$	400.00	\$0.00	
SP803S-CD		80	CD	Barricades, Signs, and Traffic Handling.	\$	600.00	\$48,000.00	$160 \mathrm{CD} / \mathrm{Block}$
SP803S-PS		35	CD	Portable Changeable Message Signs	-	120.00	\$4,200.00	$70 \mathrm{CD} / \mathrm{Block}$
8245		4	EA	Traffic Signs	\$	400.00	\$1,600.00	

Aquatic Master Plan
Doucet + Chan, a Division of Doucet \& Associates, Inc.
Texas Registration No. 3937

435 S			LF	P.C. Concrete Steps	\$	160.00	\$0.00	
439 S			EA	Parking Lot Bumper Curbs	\$	120.00	\$0.00	
504S-3W			EA	Adjusting Water Valve Boxes to Grade	\$	950.00	\$0.00	
505S-B20			LF	Encasement Pipe, Split 20 Inch Dia., Type Steel, 0.375 Inch Minimum Thickness	\$	243.00	\$0.00	
506-ABSW			EA	Abandonment of Exisitng Manholes, Storm Water	\$	2,200.00	\$0.00	
506-ABWW			EA	Abandonment of Exisitng Manholes, Wastewater	\$	2,200.00	\$0.00	
506-ABE			EA	Abandonment of Existing Manholes, Electrical and Telecommunications	\$	2,200.00	\$0.00	
506-BSW4×4			EA.	Box Manhole, 4ft $\times 4 \mathrm{ft}$	\$	6,600.00	\$0.00	
506-CNSW		1	EA	Connection of Storm Water Pipe to Existing System	\$	2,300.00	\$2,300.00	
506-CNWW			EA	Connection of Wastewater Pipe to Existing System	\$	2,300.00	\$0.00	
506-EDMSSW48			LVF	Extra Depth Special Storm Water Manhole, 48 In . Dia.	\$	340.00	\$0.00	
506-MSW48		1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 48 In. Dia.	\$	5,700.00	\$5,700.00	connect to SD system
506-MSW60			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 60 In. Dia.	\$	7,400.00	\$0.00	
506-MWW48			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 4 Ft. Dia.	\$	6,300.00	\$0.00	
506-MWW60			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 5 Ft. Dia.	\$	8,000.00	\$0.00	
SP 506-M			EA	By-Pass Pumping at Each Connection to Existing Manhole	\$	5,200.00	\$0.00	
508S-H18			EA	Headwalls for 18" Pipe	\$	3,000.00	\$0.00	
508S-H24		1	EA	Headwalls for 24" Pipe	\$	3,200.00	\$3,200.00	SD outfall
508S-H48			EA	Headwalls for 48" Pipe	\$	6,400.00	\$0.00	
508S-IG		3	EA	Inlet, Grate (Area Inlet)	\$	5,600.00	\$16,800.00	improve drainage around pool area
508S-110S		1	EA.	Inlet, Standard 10 Foot	\$	5,400.00	\$5,400.00	at ADA parking
509S-1		2,280	LF	Trench Excavation Safety Protective Systems (all depths)	\$	2.00	\$4,560.00	
510-AW2C		150	LF	Pipe, 2" Dia. Copper (all depths), including Excavation and Backfill	\$	91.00	\$13,650.00	irrigation service
510-AW-4-350		150	LF	Pipe, 4" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	140.00	\$21,000.00	domestic service
510-AW-6-350		80	LF	Pipe, 6" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	159.00	\$12,720.00	fire hydrant leads
510-AW-8-350		200	LF	Pipe, 8" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	193.00	\$38,600.00	main service
510-ASW18		1,500	LF	Pipe, 18 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	136.00	\$204,000.00	improve drainage around pool area
510-ASW24		200	LF	Pipe, 24 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	157.00	\$31,400.00	to SD outfall
510-ASW30			LF	Pipe, 30 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	249.00	\$0.00	
510-ASW36			LF	Pipe, 36 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	311.00	\$0.00	
510-ASW48			LF	Pipe, 48 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	351.00	\$0.00	
510-ASW54			LF	Pipe, 54 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	368.00	\$0.00	
510-ASW66			LF	Pipe, 66 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	403.00	\$0.00	
510-AWW6			LF	Pipe, 6" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	114.00	\$0.00	

510-AWW8			LF	Pipe, 8" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	125.00	\$0.00	
510-AWW12			LF	Pipe, 12" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	159.00	\$0.00	
510-AWW21			LF	Pipe, 21" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	299.00	\$0.00	
510-BW8×2		1	EA	Connecting New 8 " Water Service to 2" Private Service	\$	4,600.00	\$4,600.00	irigation service connection
510-BW8×4		1	EA	Connecting New 8" Water Service to 4" Private Service	\$	6,200.00	\$6,200.00	domestic service connection
SP510-BW-M2		1	EA	New Water Meter, 2 Inch Meter and W Capital Recover Fee	\$	55,000.00	\$55,000.00	imigation meter/tap fee
SP510-BW-M4		1	EA	New Water Meter, 4 Inch Meter and W/WW Capital Recover Fee	\$	321,000.00	\$321,000.00	domestic meter/tap fee
SP510-BW-RM2			EA	Relocate Existing Water Meter, 2 Inch Tap Fee	\$	2,000.00	\$0.00	
$510-\mathrm{BWW} \times 6$			EA	Connecting New $8^{\prime \prime}$ Wastewater Service to Existing Private Service	\$	4,600.00	\$0.00	
510-J W6X6			EA	Wet Connections, 6" Dia. $\times 6^{\prime \prime}$ Dia.	\$	3,100.00	\$0.00	
510-J W8×8		1	EA	Wet Connections, $8^{\prime \prime}$ Dia. $\times 8^{\prime \prime}$ Dia.	\$	3,300.00	\$3,300.00	connect to W main on site
$510-\mathrm{JW} 16 \times 16$			EA	Wet Connections, 16 " Dia. $\times 16^{\prime \prime}$ Dia.	\$	4,600.00	\$0.00	
510-KW		1	TON	Ductile Iron Fittings	\$	11,500.00	\$11,500.00	$5 \mathrm{lb} / \mathrm{t}$
511S-A2		1	EA	Valves, Gate Type, 2" Diameter	\$	1,000.00	\$1,000.00	
511S-A3			EA	Valves, Gate Type, 3" Diameter	\$	1,200.00	\$0.00	
511S-A4	0	1	EA	Valves, Gate Type, 4" Diameter	\$	1,500.00	\$1,500.00	1 each/250 ft
511S-A6		2	EA	Valves, Gate Type, 6" Diameter	\$	1,900.00	\$3,800.00	for fire hydrants
511S-A8	0	1	EA	Valves, Gate Type, 8" Diameter	\$	2,300.00	\$2,300.00	1 each/250 ft
511s-B		2	EA	Fire Hydrant	\$	5,200.00	\$10,400.00	
511S-C2		1	EA	Pressure or Flow Control Valve Assemblies (2 Inch Backflow Preventer)	\$	4,000.00	\$4,000.00	for irrigation service
511s-C8	1	1	EA	Pressure or Flow Control Valve Assemblies (8 Inch Double Check Valve Backflow Preventer)	\$	16,000.00	\$16,000.00	For fire line
551			LF	Pipe Underdrains (for Tree Wells)	\$	50.00	\$0.00	
5915-B		4	SY	Dry-Riprap	\$	140.00	\$560.00	SD outfall
594s-C			CY	Revet Mattresses, Twisted Woven Wire	\$	320.00	\$0.00	
602S-D			SY	Grass Sodding, General	\$	7.00	\$0.00	
604S-A			SY	Non-Native Seeding for Erosion Control Method	\$	6.00	\$0.00	
604S-E			SY	Mulch, Hardwood	\$	23.00	\$0.00	
605S-A		300	SY	Soil Retention Blanket	\$	24.00	\$7,200.00	
6085-1			EA	Plantings, Type BMP Native Grasses, Sedges, Woody Shrubs	\$	23.00	\$0.00	1 ft spacing in Rain Garden
6085-1	20	20	EA	Trees, 20 Gal	\$	600.00	\$12,000.00	30ft apart along sidewalk
6085-1			EA	Plants, 5 Gal	\$	50.00	\$0.00	
6085-2		1	LS	Irrigation System	\$	10,000.00	\$10,000.00	
6095-C		250	SY	Native Seeding for Erosion Control	\$	7.00	\$1,750.00	at SD outfall
610S-A		500	LF	Tree Protective Fencing Type A Chain Link Fence	\$	4.00	\$2,000.00	
610S-R		2	EA	Removal of Existing Trees	\$	570.00	\$1,140.00	
SP628S-C		5	EA	Fitter Curb Inlet Protection	\$	120.00	\$600.00	
6285-B		100	LF	Sediment Containment Dikes with Filter Fabric	\$	9.00	\$900.00	Triangular dike on pavement
6395		40	LF	Rock Berm	\$	39.00	\$1,560.00	
6405			SF	Mortared Rock Wall	\$	50.00	\$0.00	
6415		1	EA	Stabilized Construction Entrance	\$	1,700.00	\$1,700.00	
6425		2,000	LF	Silt Fence for Erosion Control	\$	4.00	\$8,000.00	
6605			CY	Bio-Filtration Media	\$	114.00	\$0.00	
700S-TM		1	LS	Total Mobilization Payment	\$	69,000.00	\$69,000.00	5\% of all costs excluding Mob cost
701S-A6			LF	Chain Link Fence, 6 -Ft	\$	20.00	\$0.00	
701S-BS			EA	Chain Link Pedestrian Single Swing Gate ($6 \mathrm{Ft} \times 4 \mathrm{Ft}$)	\$	1,000.00	\$0.00	
701S-CD			EA	Chain Link Vehicular Double Swing Gate ($6 \mathrm{Ft} \times 20 \mathrm{Ft}$)	\$	2,300.00	\$0.00	
802S-BBond		1	EA	Bond Project Sign	\$	700.00	\$700.00	
8035-SF			LF	Safety Fence	\$	3.00	\$0.00	
SP803S-BAS			EA	Project Sign for Access	\$	400.00	\$0.00	
SP803S-CD		160	CD	Baricades, Signs, and Traffic Handling.	\$	600.00	\$96,000.00	$160 \mathrm{CD} / \mathrm{Block}$
SP803S-PS		70	CD	Portable Changeable Message Signs	\$	120.00	\$8,400.00	$70 \mathrm{CD} /$ Block
8245		4	EA	Traffic Signs	\$	400.00	\$1,600.00	

Aquatic Master Plan
Doucet + Chan, a Division of Doucet \& Associates, Inc. Texas Registration No. 3937

Item No.	Quantity Calculation	Quantity	Unit	Item Description		Unit Price	Amount	Notes
104S-A	600	600	LF	Remove P.C. Concrete Curb	\$	20.00	\$12,000.00	existing one side of driveway and one side of existing parking lot.
104S-B			SF	Remove P.C. Concrete Slab	\$	20.00	\$0.00	
104S-C	500	500	SF	Remove P.C. Concrete Sidewalks \& Driveways	\$	20.00	\$10,000.00	existing 25 driveway to be demolished
SP104S			SF	Demolition, Buildings	\$	10.00	\$0.00	
SP104S-UB			EA	Demolition, Utility Boxes	\$	2,700.00	\$0.00	
			CF	Demolition, Masonry Walls, Stone with Mortar	\$	8.00	\$0.00	12" thick
			LF	Demolition, Water/Wastewater Pipe, 6 Inch to 12 Inch Dia.	\$	29.00	\$0.00	
			LF	Demolition, Electric Conduits	\$	7.00	\$0.00	
			EA	Demolition, Light Pole	\$	600.00	\$0.00	
			LF	Demolition, Chain Link Fence	\$	7.00	\$0.00	
			CY	Demolition Disposal, Loading and 5 Mile Haul to Dump (Non-Hazardous)	\$	22.00	\$0.00	
			CY-Mi	Demolition, Disposal Haul, Per Mile over 5 Miles	\$	2.00	\$0.00	
			TON	Demolition, Dump Charge	\$	110.00	\$0.00	
111S-A	2289.777778	3,100	CY	Excavation, Unclassified	\$	52.00	\$161,200.00	$\begin{aligned} & 46368 \text { sf new parking lot }+40^{\prime} \times 300 \text { ' } \\ & \text { HMAC new driveway }+3500 \text { sf } \\ & \text { sidewalks }+800 \text { sf concrete new } \\ & \text { driveway) }=62,668 \text { sf } \times 16^{\prime \prime} \text { total depth } \end{aligned}$
120S-A			CY	Channel Excavation	\$	90.00	\$0.00	
130S-A			CY	Class A (Select Borrow)	\$	59.00	\$0.00	
130S-T			CY	Class C (Topsoil)	\$	44.00	\$0.00	
132S-A			CY	Embankment (Fill)	\$	29.00	\$0.00	
2015	5152	6,970	SY	Sub-Grade Preparation	\$	9.00	\$62,730.00	62668sf
203S-A8	5152	6,970	SY	Lime Treated Subgrade, 8 Inch Thickness	\$	15.30	\$106,641.00	
210S-A8	1144.888889	1,550	CY	Flexible Base, 8 Inch Thickness	\$	42.00	\$65,100.00	62668sf $\times 8$ "
340S-B-C3			SY	Hot Mix Asphaltic Concrete Pavement, 3 Inches, Type C	\$	22.00	\$0.00	
340S-B-C2	5152	6,490	SY	Hot Mix Asphaltic Concrete Pavement, 2 Inches, Type C	\$	17.00	\$110,330.00	46368sf $+40^{\prime} \times 300$ = 58368 sf
340S-B-C1.5			SY	Hot Mix Asphaltic Concrete Pavement, 1-1/2 Inches, Type C	\$	15.00	\$0.00	
360S-A			SY	7 Inch Concrete Pavement	\$	108.00	\$0.00	
403S-CY			CY	Concrete Structure,	\$	720.00	\$0.00	
403S-EA-D		1	EA	Concrete Structure, Storm Water Detention	\$	252,600.00	\$252,600.00	\$3/sf $\times 84200 \mathrm{sf}$ IC
403S-EA-WQ		1	EA	Concrete Structure, Storm Water Quality Treatment	\$	362,060.00	\$362,060.00	\$4.30/sf x 84200sf IC
414S-C			SF	Cast in Place Portland Cement Concrete Retaining Wall, Including Reinforcement	\$	61.00	\$0.00	
430S-A	2600	2,600	LF	P.C. Concrete Curb and Gutter (Excavation)	\$	18.00	\$46,800.00	
430S-E			LF	P.C. Concrete Laydown Curb (Excavation)	\$	22.00	\$0.00	
432S-5	3500	3,500	SF	New P.C. Concrete Sidewalks, 5 Inch thickness	\$	12.00	\$42,000.00	
432S-6			SF	New P.C. Concrete Sidewalks, 6 Inch thickness	\$	14.00	\$0.00	
432S-RP-1	4	4	EA	P.C. Sidewalk Curb Ramp with Pavers (Type I)	\$	1,800.00	\$7,200.00	
432S-SAC-1			EA	Streetscape Bench (5ft with Back)	\$	3,800.00	\$0.00	
432S-SAC-1			EA	Streetscape Bench (5ft without Back)	\$	2,300.00	\$0.00	
432S-SAC-2			EA	Streetscape Chair (2 ft)	\$	2,300.00	\$0.00	
432S-SAC-3			EA	Streetscape Bicycle Rack	\$	800.00	\$0.00	

432S-SAC-4			EA	Streetscape Trash Receptacle	\$	2,900.00	\$0.00	
432S-SAC-7C			EA	Streetscape Tree Well \& Grate	\$	6,600.00	\$0.00	
432S-PRC-1			LF	Pedestrian ADA Railing	\$	102.00	\$0.00	
SP432S-K			EA	Art Kiosks	\$	25,000.00	\$0.00	
4335-C	800	800	SF	Type II P.C. Concrete Driveway	\$	11.00	\$8,800.00	new driveway within Manchaca ROW
435S			LF	P.C. Concrete Steps	\$	160.00	\$0.00	
4395	5	5	EA	Parking Lot Bumper Curbs	\$	120.00	\$600.00	
504S-3W			EA	Adjusting Water Valve Boxes to Grade	\$	950.00	\$0.00	
505S-B20			LF	Encasement Pipe, Split 20 Inch Dia., Type Steel, 0.375 Inch Minimum Thickness	\$	243.00	\$0.00	
506-ABSW			EA	Abandonment of Exisitng Manholes, Storm Water	\$	2,200.00	\$0.00	
506-ABWW			EA	Abandonment of Exisitng Manholes, Wastewater	\$	2,200.00	\$0.00	
506-ABE			EA	Abandonment of Existing Manholes, Electrical and Telecommunications	\$	2,200.00	\$0.00	
506-BSW4×4			EA.	Box Manhole, 4ft $\times 4 \mathrm{ft}$	\$	6,600.00	\$0.00	
506-CNSW		1	EA	Connection of Storm Water Pipe to Existing System	\$	2,300.00	\$2,300.00	
506-CNWW			EA	Connection of Wastewater Pipe to Existing System	\$	2,300.00	\$0.00	
506-EDMSSW48			LVF	Extra Depth Special Storm Water Manhole, 48 In . Dia.	\$	340.00	\$0.00	
506-MSW48		1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 48 In. Dia.	\$	5,700.00	\$5,700.00	connect to SD system
506-MSW60			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 60 In. Dia.	\$	7,400.00	\$0.00	
506-MWW48			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 4 Ft. Dia.	\$	6,300.00	\$0.00	
506-MWW60			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 5 Ft. Dia.	\$	8,000.00	\$0.00	
SP 506-M			EA	By-Pass Pumping at Each Connection to Existing Manhole	\$	5,200.00	\$0.00	
508S-H18			EA	Headwalls for 18" Pipe	\$	3,000.00	\$0.00	
508S-H24		1	EA	Headwalls for 24" Pipe	\$	3,200.00	\$3,200.00	SD outfall
508S-H48			EA	Headwalls for 48" Pipe	\$	6,400.00	\$0.00	
508S-IG		5	EA	Inlet, Grate (Area Inlet)	\$	5,600.00	\$28,000.00	improve drainage around pool site
508S-110S		5	EA.	Inlet, Standard 10 Foot	\$	5,400.00	\$27,000.00	for parking lot expansion and at ADA parking spaces
509S-1		2,780	LF	Trench Excavation Safety Protective Systems (all depths)	\$	2.00	\$5,560.00	
510-AW2C		300	LF	Pipe, 2" Dia. Copper (all depths), including Excavation and Backfill	\$	91.00	\$27,300.00	irrigation service
510-AW-4-350	300	300	LF	Pipe, 4" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	140.00	\$42,000.00	domestic service
510-AW-6-350		80	LF	Pipe, 6" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	159.00	\$12,720.00	fire hydrant leads
510-AW-8-350	600	600	LF	Pipe, 8" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	193.00	\$115,800.00	main service
510-ASW18		1,200	LF	Pipe, 18 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	136.00	\$163,200.00	improve drainage around pool site
510-ASW24		300	LF	Pipe, 24 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	157.00	\$47,100.00	to SD outfall
510-ASW30			LF	Pipe, 30 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	249.00	\$0.00	
510-ASW36			LF	Pipe, 36 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	311.00	\$0.00	

510-ASW48			LF	Pipe, 48 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	351.00	\$0.00	
510-ASW54			LF	Pipe, 54 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	368.00	\$0.00	
510-ASW66			LF	Pipe, 66 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	403.00	\$0.00	
510-AWW6			LF	Pipe, 6" Dia. PVC SDR-26 Type (all depths), including Excavation and	\$	114.00	\$0.00	
510-AWW8			LF	Pipe, 8" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	125.00	\$0.00	
510-AWW12			LF	Pipe, 12" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	159.00	\$0.00	
510-AWW21			LF	Pipe, 21" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	299.00	\$0.00	
510-BW8×2		1	EA	Connecting New 8" Water Service to 2" Private Service	\$	4,600.00	\$4,600.00	imigation service connection
510-BW8×4		1	EA	Connecting New 8 " Water Service to 4" Private Service	\$	6,200.00	\$6,200.00	domestic service connection
SP510-BW-M2	1	1	EA	New Water Meter, 2 Inch Meter and W Capital Recover Fee	\$	55,000.00	\$55,000.00	inigation metertap fee
SP510-BW-M4	1	1	EA	New Water Meter, 4 Inch Meter and W/WW Capital Recover Fee	\$	321,000.00	\$321,000.00	domestic meter/tap fee
SP510-BW-RM2			EA	Relocate Existing Water Meter, 2 Inch Tap Fee	\$	2,000.00	\$0.00	
510-BWW8×6			EA	Connecting New $8^{\prime \prime}$ Wastewater Service to Existing Private Service	\$	4,600.00	\$0.00	
510-J W6X6			EA	Wet Connections, $6^{\prime \prime}$ Dia. $\times 6^{\prime \prime}$ Dia.	\$	3,100.00	\$0.00	
510-J W8x8		1	EA	Wet Connections, $8^{\prime \prime}$ Dia. $\times 8^{\prime \prime}$ Dia.	\$	3,300.00	\$3,300.00	connect to W main on Manchaca
$510-\mathrm{JW}$ W16×16			EA	Wet Connections, 16" Dia. $\times 16$ " Dia.	\$	4,600.00	\$0.00	
510-KW		2	TON	Ductile Iron Fittings	\$	11,500.00	\$23,000.00	$5 \mathrm{lb} / \mathrm{t}$
511S-A2		2	EA	Valves, Gate Type, 2" Diameter	\$	1,000.00	\$2,000.00	
5115-A3			EA	Valves, Gate Type, 3" Diameter	\$	1,200.00	\$0.00	
511S-A4	1.2	2	EA	Valves, Gate Type, 4" Diameter	\$	1,500.00	\$3,000.00	1 each/250 ft
511S-A6		2	EA	Valves, Gate Type, 6" Diameter	\$	1,900.00	\$3,800.00	for fire hydrants
511S-A8	2.4	3	EA	Valves, Gate Type, 8" Diameter	\$	2,300.00	\$6,900.00	1 each/250 ft
511S-B	2	2	EA	Fire Hydrant	\$	5,200.00	\$10,400.00	
511S-C2		1	EA	Pressure or Flow Control Valve Assemblies (2 Inch Backflow Preventer)	\$	4,000.00	\$4,000.00	for irrigation service
511s-C8	1	1	EA	Pressure or Flow Control Valve Assemblies (8 Inch Double Check Valve Backflow Preventer)	\$	16,000.00	\$16,000.00	For fire line
551			LF	Pipe Underdrains (for Tree Wells)	\$	50.00	\$0.00	
591S-B		8	SY	Dry-Riprap	\$	140.00	\$1,120.00	SD outfall
$594 \mathrm{~S}-\mathrm{C}$			CY	Revet Mattresses, Twisted Woven Wire	\$	320.00	\$0.00	
602S-D			SY	Grass Sodding, General	\$	7.00	\$0.00	
6045-A			SY	Non-Native Seeding for Erosion Control Method	\$	6.00	\$0.00	
604S-E			SY	Mulch, Hardwood	\$	23.00	\$0.00	
605S-A		300	SY	Soil Retention Blanket	\$	24.00	\$7,200.00	SD outfall
6085-1			EA	Plantings, Type BMP Native Grasses, Sedges, Woody Shrubs	\$	23.00	\$0.00	1 ft spacing in Rain Garden
608S-1	23.33333333	24	EA	Trees, 20 Gal	\$	600.00	\$14,400.00	30ft apart along sidewalk
6085-1			EA	Plants, 5 Gal	\$	50.00	\$0.00	
6085-2		1	LS	Irrigation System	\$	10,000.00	\$10,000.00	
6095-C		50	SY	Native Seeding for Erosion Control	\$	7.00	\$350.00	
610S-A		1,000	LF	Tree Protective Fencing Type A Chain Link Fence	\$	4.00	\$4,000.00	
$610 \mathrm{~S}-\mathrm{R}$		10	EA	Removal of Existing Trees	\$	570.00	\$5,700.00	
SP6285-C		2	EA	Fitter Curb Inlet Protection	\$	120.00	\$240.00	
628S-B		100	LF	Sediment Containment Dikes with Filter Fabric	\$	9.00	\$900.00	Triangular dike on pavement
6395		100	LF	Rock Berm	\$	39.00	\$3,900.00	
6405			SF	Mortared Rock Wall	\$	50.00	\$0.00	
6415		2	EA	Stabilized Construction Entrance	\$	1,700.00	\$3,400.00	
6425		3,000	LF	Silt Fence for Erosion Control	\$	4.00	\$12,000.00	
6605			Cr	Bio-Filtration Media	\$	114.00	\$0.00	
700S-TM		1	LS	Total Mobilization Payment	\$	133,000.00	\$133,000.00	5\% of all costs excluding Mob cost
7015-A6			LF	Chain Link Fence, 6-Ft	\$	20.00	\$0.00	

701S-BS			EA	Chain Link Pedestrian Single Swing Gate ($6 \mathrm{Ft} \times 4 \mathrm{Ft}$)	\$	1,000.00	\$0.00	
7015-CD			EA	Chain Link Vehicular Double Swing Gate ($6 \mathrm{Ft} \times 20 \mathrm{Ft}$)	\$	2,300.00	\$0.00	
8025-BBond		1	EA	Bond Project Sign	\$	700.00	\$700.00	
803S-SF			LF	Safety Fence	\$	3.00	\$0.00	
SP803S-BAS			EA	Project Sign for Access	\$	400.00	\$0.00	
SP8035-CD		80	CD	Barricades, Signs, and Traffic Handling.	\$	600.00	\$48,000.00	$160 \mathrm{CD} / \mathrm{Block}$
SP803S-PS		35	CD	Portable Changeable Message Signs	\$	120.00	\$4,200.00	70 CD/Block
8245		10	EA	Traffic Signs	\$	400.00	\$4,000.00	
8275		2	EA	Bicycle Lane Signage	\$	400.00	\$800.00	
8295		300	LF	Bicycle Lane Markings	\$	400.00	\$120,000.00	
871S-A4W		3,600	LF	Reflectorized Type 1 Thermoplastic Pavement Markings, 4 Inches in Width, 100 Mils in Thickness, White in Color	\$	3.00	\$10,800.00	
871S-A24W			LF	Reflectorized Type 1 Thermoplastic Pavement Markings, 24 Inches in Width, 100 Mils in Thickness, White in Color	\$	16.00	\$0.00	
871S-D-SYMBOL-W			EA	Reflectorized Type 1 Pavement Marking, Symbol, 100 Mils in Thickness, White in Color	\$	400.00	\$0.00	
874S-A		870	LF	Eliminating Existing Pavement Markings, 4 Inches to 12 Inches in Width	\$	12.00	\$10,440.00	
13015-B	555.5555556	560	SY	Granite Gravel Hike \& Bike Trail	\$	21.00	\$11,760.00	10' wide connect to surrounding streets
16550 S	9	9	EA	Street Light Standard Foundation, Including Pole Base and Conduit Stub Up	\$	1,600.00	\$14,400.00	
	9	9	EA	Light Pole and LED Light	\$	3,700.00	\$33,300.00	
		1	EA	Electrical Panel Enclosure	\$	21,000.00	\$21,000.00	
		9	EA	Electrical Pull Box	\$	1,200.00	\$10,800.00	
		900	LF	Electrical Trenching, Conduits, Conductors for Lighting	\$	123.00	\$110,700.00	100' per light pole
SUBTOTAL $\$ 2,784,251.00$ CONTINGENCY $\$ 696,062.75$ $\$ 3,480,313.75$								

Aquatic Master Plan
Doucet + Chan, a Division of Doucet \& Associates, Inc.
Texas Registration No. 3937

510-AWW8		470	LF	Pipe, 8" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	125.00	\$58,750.00	WW service to main on Cargas
510-AWW12			LF	Pipe, 12" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	159.00	\$0.00	
510-AWW21			LF	Pipe, 21" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	299.00	\$0.00	
510-BW8×2		1	EA	Connecting New 8" Water Service to 2" Private Service	\$	4,600.00	\$4,600.00	imigation service connection
510-BW8×4		1	EA	Connecting New 8" Water Service to 4" Private Service	\$	6,200.00	\$6,200.00	domestic service connection
SP510-BW-M2		1	EA	New Water Meter, 2 Inch Meter and W Capital Recover Fee	\$	55,000.00	\$55,000.00	irigation meter/tap fee
SP510-BW-M4		1	EA	New Water Meter, 4 Inch Meter and W/WW Capital Recover Fee	\$	321,000.00	\$321,000.00	domestic meter/tap fee
SP510-BW-RM2			EA	Relocate Existing Water Meter, 2 Inch Tap Fee	\$	2,000.00	\$0.00	
$510-\mathrm{BWW} \times \times 6$		1	EA	Connecting New $8^{\prime \prime}$ Wastewater Service to Existing Private Service	\$	4,600.00	\$4,600.00	connect to WW main on Vargas
510-J W6x6			EA	Wet Connections, $6^{\prime \prime}$ Dia. $\times 6^{\prime \prime}$ Dia.	\$	3,100.00	\$0.00	
510-J W8x8		1	EA	Wet Connections, $8^{\prime \prime}$ Dia. $\times 8^{\prime \prime}$ Dia.	\$	3,300.00	\$3,300.00	connect to W main on Vargas
$510-\mathrm{JW16} \mathrm{\times 16}$			EA	Wet Connections, $16^{\prime \prime}$ Dia. $\times 16^{\prime \prime}$ Dia.	\$	4,600.00	\$0.00	
510-KW		2	TON	Ductile Iron Fittings	\$	11,500.00	\$23,000.00	$5 \mathrm{lb} / \mathrm{t}$
511S-A2		1	EA	Valves, Gate Type, 2" Diameter	\$	1,000.00	\$1,000.00	
511S-A3			EA	Valves, Gate Type, 3" Diameter	\$	1,200.00	\$0.00	
511S-A4	0	1	EA	Valves, Gate Type, 4" Diameter	\$	1,500.00	\$1,500.00	1 each/250 ft
511S-A6			EA	Valves, Gate Type, 6" Diameter	\$	1,900.00	\$0.00	
511S-A8	0	1	EA	Valves, Gate Type, 8" Diameter	\$	2,300.00	\$2,300.00	1 each/250 ft
511s-B			EA	Fire Hydrant	\$	5,200.00	\$0.00	
511S-C2		1	EA	Pressure or Flow Control Valve Assemblies (2 Inch Backflow Preventer)	\$	4,000.00	\$4,000.00	for irrigation service
511S-C8	1		EA	Pressure or Flow Control Valve Assemblies (8 Inch Double Check Valve Backflow Preventer)	\$	16,000.00	\$0.00	For fire line
551			LF	Pipe Underdrains (for Tree Wells)	\$	50.00	\$0.00	
5915-B		4	SY	Dry-Riprap	\$	140.00	\$560.00	SD outfall
594s-C			CY	Revet Mattresses, Twisted Woven Wire	\$	320.00	\$0.00	
602S-D			SY	Grass Sodding, General	\$	7.00	\$0.00	
604S-A			SY	Non-Native Seeding for Erosion Control Method	\$	6.00	\$0.00	
604S-E			SY	Mulch, Hardwood	\$	23.00	\$0.00	
605S-A		300	SY	Soil Retention Blanket	\$	24.00	\$7,200.00	
6085-1			EA	Plantings, Type BMP Native Grasses, Sedges, Woody Shrubs	\$	23.00	\$0.00	1 ft spacing in Rain Garden
6085-1	36.33333333	37	EA	Trees, 20 Gal	\$	600.00	\$22,200.00	30ft apart along sidewalk
6085-1			EA	Plants, 5 Gal	\$	50.00	\$0.00	
6085-2		1	LS	Irrigation System	\$	10,000.00	\$10,000.00	
6095-C		810	SY	Native Seeding for Erosion Control	\$	7.00	\$5,670.00	
610S-A	1290	1,300	LF	Tree Protective Fencing Type A Chain Link Fence	\$	4.00	\$5,200.00	
610S-R		4	EA	Removal of Existing Trees	\$	570.00	\$2,280.00	
SP628S-C		2	EA	Fitter Curb Inlet Protection	\$	120.00	\$240.00	
6285-B		100	LF	Sediment Containment Dikes with Filter Fabric	\$	9.00	\$900.00	Triangular dike on pavement
6395		40	LF	Rock Berm	\$	39.00	\$1,560.00	
6405			SF	Mortared Rock Wall	\$	50.00	\$0.00	
6415		1	EA	Stabilized Construction Entrance	\$	1,700.00	\$1,700.00	
6425		2,000	LF	Silt Fence for Erosion Control	\$	4.00	\$8,000.00	
6605			CY	Bio-Filtration Media		114.00	\$0.00	
700S-TM		1	LS	Total Mobilization Payment	\$	54,000.00	\$54,000.00	5\% of all costs excluding Mob cost
7015-A6			LF	Chain Link Fence, 6-Ft	\$	20.00	\$0.00	
701S-BS			EA	Chain Link Pedestrian Single Swing Gate ($6 \mathrm{Ft} \times 4 \mathrm{Ft}$)	\$	1,000.00	\$0.00	
701S-CD			EA	Chain Link Vehicular Double Swing Gate ($6 \mathrm{Ft} \times 20 \mathrm{Ft}$)	\$	2,300.00	\$0.00	
802S-BBond		1	EA	Bond Project Sign	\$	700.00	\$700.00	
8035-SF			LF	Safety Fence	\$	3.00	\$0.00	
SP803S-BAS			EA	Project Sign for Access	\$	400.00	\$0.00	
SP803S-CD		80	CD	Barricades, Signs, and Traffic Handling.	\$	600.00	\$48,000.00	$160 \mathrm{CD} / \mathrm{Block}$
SP803S-PS		35	CD	Portable Changeable Message Signs	\$	120.00	\$4,200.00	70 CD/Block
8245		4	EA	Traffic Signs	\$	400.00	\$1,600.00	

827S		1	EA	Bicycle Lane Signage	\$	400.00	\$400.00	
8295		900	LF	Bicycle Lane Markings	\$	8.00	\$7,200.00	
871S-A4W	45	50	LF	Reflectorized Type 1 Thermoplastic Pavement Markings, 4 Inches in Width, 100 Mils in Thickness, White in Color	\$	3.00	\$150.00	
871S-A24W			LF	Reflectorized Type 1 Thermoplastic Pavement Markings, 24 Inches in Width, 100 Mils in Thickness, White in Color	\$	16.00	\$0.00	
871S-D-SYMBOL-W		3	EA	Reflectorized Type 1 Pavement Marking, Symbol, 100 Mils in Thickness, White in Color	\$	400.00	\$1,200.00	
874S-A		40	LF	Eliminating Existing Pavement Markings, 4 Inches to 12 Inches in Width	\$	12.00	\$480.00	
1301S-B			SY	Granite Gravel Hike \& Bike Trail	\$	21.00	\$0.00	10' wide connect to surrounding streets
16550 S		2	EA	Street Light Standard Foundation, Including Pole Base and Conduit Stub Up	\$	1,600.00	\$3,200.00	
		2	EA	Light Pole and LED Light	\$	3,700.00	\$7,400.00	
		1	EA	Electrical Panel Enclosure	\$	21,000.00	\$21,000.00	
		2	EA	Electrical Pull Box	\$	1,200.00	\$2,400.00	
		200	LF	Electrical Trenching, Conduits, Conductors for Lighting	\$	123.00	\$24,600.00	100' per light pole
					SUBTOTAL		,131,174.00	
					CONTINGENCY		\$282,793.50	
					TO		,413,967.50	

Aquatic Master Plan
Doucet + Chan, a Division of Doucet \& Associates, Inc.
Texas Registration No. 3937

435S			LF	P.C. Concrete Steps	\$	160.00	\$0.00	
439S		5	EA	Parking Lot Bumper Curbs	\$	120.00	\$600.00	
504S-3W			EA	Adjusting Water Valve Boxes to Grade	\$	950.00	\$0.00	
505S-B20			LF	Encasement Pipe, Split 20 Inch Dia., Type Steel, 0.375 Inch Minimum Thickness	\$	243.00	\$0.00	
506-ABSW			EA	Abandonment of Exisitng Manholes, Storm Water	\$	2,200.00	\$0.00	
506-ABWW			EA	Abandonment of Exisitng Manholes, Wastewater	\$	2,200.00	\$0.00	
506-ABE			EA	Abandonment of Existing Manholes, Electrical and Telecommunications	\$	2,200.00	\$0.00	
506-BSW4×4			EA.	Box Manhole, $4 \mathrm{ft} \times 4 \mathrm{ft}$	\$	6,600.00	\$0.00	
506-CNSW		1	EA	Connection of Storm Water Pipe to Existing System	\$	2,300.00	\$2,300.00	
506-CNWW		1	EA	Connection of Wastewater Pipe to Existing System	\$	2,300.00	\$2,300.00	connect to WW main on site
506-EDMSSW48			LVF	Extra Depth Special Storm Water Manhole, 48 In . Dia.	\$	340.00	\$0.00	
506-MSW48			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 48 In. Dia.	\$	5,700.00	\$0.00	
506-MSW60		1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 60 In. Dia.	\$	7,400.00	\$7,400.00	connect to SD system
506-MWW48			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 4 Ft. Dia.	\$	6,300.00	\$0.00	
506-MWW60		1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 5 Ft. Dia.	\$	8,000.00	\$8,000.00	connect to WW main on site
SP 506-M		1	EA	By-Pass Pumping at Each Connection to Existing Manhole	\$	5,200.00	\$5,200.00	at connection to WW main on site
508S-H18			EA	Headwalls for 18" Pipe	\$	3,000.00	\$0.00	
508S-H24		1	EA	Headwalls for 24" Pipe	\$	3,200.00	\$3,200.00	SD outfall
508S-H48			EA	Headwalls for 48" Pipe	\$	6,400.00	\$0.00	
508S-IG		4	EA	Inlet, Grate (Area Inlet)	\$	5,600.00	\$22,400.00	improve drainage around pool site
508S-110S		2	EA.	Inlet, Standard 10 Foot	\$	5,400.00	\$10,800.00	at ADA parking
509S-1		1,760	LF	Trench Excavation Safety P rotective Systems (all depths)	\$	2.00	\$3,520.00	
510-AW2C		100	LF	Pipe, 2" Dia. Copper (all depths), including Excavation and Backfill	\$	91.00	\$9,100.00	irrigation service
510-AW-4-350		100	LF	Pipe, 4" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	140.00	\$14,000.00	domestic service
510-AW-6-350		80	LF	Pipe, 6" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	159.00	\$12,720.00	fire hydrant leads
510-AW-8-350		380	LF	Pipe, 8" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	193.00	\$73,340.00	main service to E. 12th
510-ASW18		700	LF	Pipe, 18 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	136.00	\$95,200.00	improve drainage around pool site
510-ASW24		200	LF	Pipe, 24 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	157.00	\$31,400.00	to SD outfall
510-ASW30			LF	Pipe, 30 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	249.00	\$0.00	
510-ASW36			LF	Pipe, 36 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	311.00	\$0.00	
510-ASW48			LF	Pipe, 48 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	351.00	\$0.00	
510-ASW54			LF	Pipe, 54 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	368.00	\$0.00	
510-ASW66			LF	Backfill Pipe, 66 - inch R.C.P. Storm Drain (all depths), including Excavation and	\$	403.00	\$0.00	
510-AWW6			LF	Pipe, 6" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	114.00	\$0.00	

510-AWW8		200	LF	Pipe, 8" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	125.00	\$25,000.00	WW service to main on site
510-AWW12			LF	Pipe, 12" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	159.00	\$0.00	
510-AWW21			LF	Pipe, 21" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	299.00	\$0.00	
510-BW8×2		1	EA	Connecting New 8" Water Service to 2" Private Service	\$	4,600.00	\$4,600.00	imigation service connection
510-BW8×4		1	EA	Connecting New 8" Water Service to 4" Private Service	\$	6,200.00	\$6,200.00	domestic service connection
SP510-BW-M2		1	EA	New Water Meter, 2 Inch Meter and W Capital Recover Fee	\$	55,000.00	\$55,000.00	irigation metertap fee
SP510-BW-M4		1	EA	New Water Meter, 4 Inch Meter and W/WW Capital Recover Fee	\$	321,000.00	\$321,000.00	domestic meter/tap fee
SP510-BW-RM2			EA	Relocate Existing Water Meter, 2 Inch Tap Fee	\$	2,000.00	\$0.00	
510-BWW8×6		1	EA	Connecting New 8 " Wastewater Service to Existing Private Service	\$	4,600.00	\$4,600.00	connect to WW main on site
510-J W6x6			EA	Wet Connections, $6^{\prime \prime}$ Dia. $\times 6^{\prime \prime}$ Dia.	\$	3,100.00	\$0.00	
510-J W8x8		1	EA	Wet Connections, $8^{\prime \prime}$ Dia. $\times 8^{\prime \prime}$ Dia.	\$	3,300.00	\$3,300.00	connect to W main on E. 12th
510-J W16x16			EA	Wet Connections, $16^{\prime \prime}$ Dia. $\times 16^{\prime \prime}$ Dia.	\$	4,600.00	\$0.00	
510-KW		3	TON	Ductile Iron Fittings	\$	11,500.00	\$34,500.00	$5 \mathrm{lb} / \mathrm{t}$
511S-A2		1	EA	Valves, Gate Type, 2" Diameter	\$	1,000.00	\$1,000.00	
5115-A3			EA	Valves, Gate Type, 3" Diameter	\$	1,200.00	\$0.00	
511S-A4	0	1	EA	Valves, Gate Type, 4" Diameter	\$	1,500.00	\$1,500.00	1 each/250 ft
5115-A6		2	EA	Valves, Gate Type, 6" Diameter	\$	1,900.00	\$3,800.00	for fire hydrants
511S-A8	0	1	EA	Valves, Gate Type, 8" Diameter	\$	2,300.00	\$2,300.00	1 each/250 ft
511s-B		2	EA	Fire Hydrant	\$	5,200.00	\$10,400.00	
511S-C2		1	EA	Pressure or Flow Control Valve Assemblies (2 Inch Backflow Preventer)	\$	4,000.00	\$4,000.00	for irrigation service
511S-C8	1	1	EA	Pressure or Flow Control Valve Assemblies (8 Inch Double Check Valve Backflow Preventer)	\$	16,000.00	\$16,000.00	For fire line
551			LF	Pipe Underdrains (for Tree Wells)	\$	50.00	\$0.00	
5915-B		4	SY	Dry-Riprap	\$	140.00	\$560.00	SD outfall
5945-C			CY	Revet Mattresses, Twisted Woven Wire	\$	320.00	\$0.00	
602S-D			SY	Grass Sodding, General	\$	7.00	\$0.00	
604S-A			SY	Non-Native Seeding for Erosion Control Method	\$	6.00	\$0.00	
604S-E			SY	Mulch, Hardwood	\$	23.00	\$0.00	
605S-A		300	SY	Soil Retention Blanket	\$	24.00	\$7,200.00	
6085-1			EA	Plantings, Type BMP Native Grasses, Sedges, Woody Shrubs	\$	23.00	\$0.00	1 ft spacing in Rain Garden
6085-1	151.5	30	EA	Trees, 20 Gal	\$	600.00	\$18,000.00	30ft apart along sidewalk
6085-1			EA	Plants, 5 Gal	\$	50.00	\$0.00	
6085-2		1	LS	Irrigation System	\$	10,000.00	\$10,000.00	
6095-C		2,600	SY	Native Seeding for Erosion Control	\$	7.00	\$18,200.00	
610S-A		200	LF	Tree Protective Fencing Type A Chain Link Fence	\$	4.00	\$800.00	
610S-R		5	EA	Removal of Existing Trees	\$	570.00	\$2,850.00	
SP6285-C		1	EA	Filter Curb Inlet Protection	\$	120.00	\$120.00	
6285-B		100	LF	Sediment Containment Dikes with Filter Fabric	\$	9.00	\$900.00	Triangular dike on pavement
6395		40	LF	Rock Berm	\$	39.00	\$1,560.00	
6405			SF	Mortared Rock Wall	\$	50.00	\$0.00	
6415		1	EA	Stabilized Construction Entrance	\$	1,700.00	\$1,700.00	
6425		2,000	LF	Silt Fence for Erosion Control	\$	4.00	\$8,000.00	
6605			CY	Bio-Filtration Media	\$	114.00	\$0.00	
700S-TM		1	LS	Total Mobilization Payment	\$	90,000.00	\$90,000.00	5\% of all costs excluding Mob cost
7015-A6			LF	Chain Link Fence, 6 -Ft	\$	20.00	\$0.00	
7015-BS			EA	Chain Link Pedestrian Single Swing Gate ($6 \mathrm{Ft} \times 4 \mathrm{Ft}$)	\$	1,000.00	\$0.00	
701S-CD			EA	Chain Link Vehicular Double Swing Gate ($6 \mathrm{Ft} \times 20 \mathrm{Ft}$)	\$	2,300.00	\$0.00	
802S-BBond		1	EA	Bond Project Sign		700.00	\$700.00	
8035-SF			LF	Safety Fence	\$	3.00	\$0.00	
SP803S-BAS			EA	Project Sign for Access	\$	400.00	\$0.00	
SP803S-CD		160	CD	Barricades, Signs, and Traffic Handling.	\$	600.00	\$96,000.00	$160 \mathrm{CD} / \mathrm{Block}$
SP803S-PS		70	CD	Portable Changeable Message Signs	\$	120.00	\$8,400.00	$70 \mathrm{CD} /$ Block
8245		4	EA	Traffic Signs	\$	400.00	\$1,600.00	

Aquatic Master Plan
Doucet + Chan, a Division of Doucet \& Associates, Inc.
Texas Registration No. 3937

510-AWW8		180	LF	Pipe, 8" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	125.00	\$22,500.00	WW service to Peyton Gin
510-AWW12			LF	Pipe, 12" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	159.00	\$0.00	
510-AWW21			LF	Pipe, 21" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	299.00	\$0.00	
510-BW8×2		1	EA	Connecting New 8" Water Service to 2" Private Service	\$	4,600.00	\$4,600.00	irrigation service connection
510-BW8×4		1	EA	Connecting New 8" Water Service to 4" Private Service	\$	6,200.00	\$6,200.00	domestic service connection
SP510-BW-M2		1	EA	New Water Meter, 2 Inch Meter and W Capital Recover Fee	\$	55,000.00	\$55,000.00	irrigation meter/tap fee
SP510-BW-M4		1	EA	New Water Meter, 4 Inch Meter and W/WW Capital Recover Fee	\$	321,000.00	\$321,000.00	domestic meterltap fee
SP510-BW-RM2			EA	Relocate Existing Water Meter, 2 Inch Tap Fee	\$	2,000.00	\$0.00	
510-BWW8×6		1	EA	Connecting New $8^{\prime \prime}$ Wastewater Service to Existing Private Service	\$	4,600.00	\$4,600.00	connect to WW main on Peyton Gin
510-J W6x6			EA	Wet Connections, 6" Dia. $\times 6^{\prime \prime}$ Dia.	\$	3,100.00	\$0.00	
510-J W8x8		1	EA	Wet Connections, $8^{\prime \prime}$ Dia. $\times 8^{\prime \prime}$ Dia.	\$	3,300.00	\$3,300.00	connect to W main on Peyton Gin
$510-\mathrm{JW} 16 \times 16$			EA	Wet Connections, $16^{\prime \prime}$ Dia. $\times 16^{\prime \prime}$ Dia.	\$	4,600.00	\$0.00	
510-KW		3	TON	Ductile Iron Fittings	\$	11,500.00	\$34,500.00	$5 \mathrm{lb} / \mathrm{t}$
511S-A2		1	EA	Valves, Gate Type, 2" Diameter	\$	1,000.00	\$1,000.00	
511S-A3			EA	Valves, Gate Type, 3" Diameter	\$	1,200.00	\$0.00	
511S-A4	0	1	EA	Valves, Gate Type, 4" Diameter	\$	1,500.00	\$1,500.00	1 each/250 ft
511S-A6		2	EA	Valves, Gate Type, 6" Diameter	\$	1,900.00	\$3,800.00	for fire hydrants
511S-A8	0	1	EA	Valves, Gate Type, 8" Diameter	\$	2,300.00	\$2,300.00	1 each/250 ft
5115-B		2	EA	Fire Hydrant	\$	5,200.00	\$10,400.00	
511S-C2		1	EA	Pressure or Flow Control Valve Assemblies (2 Inch Backflow Preventer)	\$	4,000.00	\$4,000.00	for irrigation service
511S-C8	1	1	EA	Pressure or Flow Control Valve Assemblies (8 Inch Double Check Valve Backflow Preventer)	\$	16,000.00	\$16,000.00	For fire line
551			LF	Pipe Underdrains (for Tree Wells)	\$	50.00	\$0.00	
5915-B		4	SY	Dry-Riprap	\$	140.00	\$560.00	SD outfall
594s-C			CY	Revet Mattresses, Twisted Woven Wire	\$	320.00	\$0.00	
602S-D			SY	Grass Sodding, General	\$	7.00	\$0.00	
604S-A			SY	Non-Native Seeding for Erosion Control Method	\$	6.00	\$0.00	
604S-E			SY	Mulch, Hardwood	\$	23.00	\$0.00	
605s-A		300	SY	Soil Retention Blanket	\$	24.00	\$7,200.00	
6085-1			EA	Plantings, Type BMP Native Grasses, Sedges, Woody Shrubs	\$	23.00	\$0.00	1 ft spacing in Rain Garden
6085-1	8.133333333	10	EA	Trees, 20 Gal	\$	600.00	\$6,000.00	30ft apart along sidewalk
6085-1			EA	Plants, 5 Gal	\$	50.00	\$0.00	
6085-2		1	LS	Irigation System	\$	10,000.00	\$10,000.00	
6095-C		50	SY	Native Seeding for Erosion Control	\$	7.00	\$350.00	
610S-A		150	LF	Tree Protective Fencing Type A Chain Link Fence	\$	4.00	\$600.00	
610 S -R		10	EA	Removal of Existing Trees	\$	570.00	\$5,700.00	
SP628S-C		2	EA	Filter Curb Inlet Protection	\$	120.00	\$240.00	
6285-B		100	LF	Sediment Containment Dikes with Filter Fabric	\$	9.00	\$900.00	Triangular dike on pavement
6395		40	LF	Rock Berm	\$	39.00	\$1,560.00	
6405			SF	Mortared Rock Wall	\$	50.00	\$0.00	
6415		1	EA	Stabilized Construction Entrance	\$	1,700.00	\$1,700.00	
6425		2,000	LF	Silt Fence for Erosion Control	\$	4.00	\$8,000.00	
6605			CY	Bio-Filtration Media	\$	114.00	\$0.00	
700S-TM		1	LS	Total Mobilization Payment	\$	48,000.00	\$48,000.00	5\% of all costs excluding Mob cost
7015-A6			LF	Chain Link Fence, 6 -Ft	\$	20.00	\$0.00	
7015-BS			EA	Chain Link Pedestrian Single Swing Gate ($6 \mathrm{Ft} \times 4 \mathrm{Ft}$)	\$	1,000.00	\$0.00	
701S-CD			EA	Chain Link Vehicular Double Swing Gate ($6 \mathrm{Ft} \times 20 \mathrm{Ft}$)	\$	2,300.00	\$0.00	
802S-BBond		1	EA	Bond Project Sign	\$	700.00	\$700.00	
8035-SF			LF	Safety Fence	\$	3.00	\$0.00	
SP803S-BAS			EA	Project Sign for Access	\$	400.00	\$0.00	
SP803S-CD		80	CD	Baricades, Signs, and Traffic Handling.	\$	600.00	\$48,000.00	$160 \mathrm{CD} / \mathrm{Block}$
SP803S-PS		35	CD	Portable Changeable Message Signs	\$	120.00	\$4,200.00	70 CD/Block
8245		4	EA	Traffic Signs	\$	400.00	\$1,600.00	

Aquatic Master Plan
Doucet + Chan, a Division of Doucet \& Associates, Inc.
Texas Registration No. 3937

Item No.	Quantity Calculation	Quantity	Unit	Item Description		Unit Price	Amount	Notes
104S-A		160	LF	Remove P.C. Concrete Curb	\$	20.00	\$3,200.00	at ADA parking and curb ramp reconstruction
104S-B			SF	Remove P.C. Concrete Slab	\$	20.00	\$0.00	
104S-C		2000	SF	Remove P.C. Concrete Sidewalks \& Driveways	\$	20.00	\$40,000.00	
SP104S			SF	Demolition, Buildings	\$	10.00	\$0.00	
SP104S-UB			EA	Demolition, Utility Boxes	\$	2,700.00	\$0.00	
			CF	Demolition, Masonry Walls, Stone with Mortar	\$	8.00	\$0.00	12" thick
			LF	Demolition, Water/Wastewater Pipe, 6 Inch to 12 Inch Dia.	\$	29.00	\$0.00	
			LF	Demolition, Electric Conduits	\$	7.00	\$0.00	
			EA	Demolition, Light Pole	\$	600.00	\$0.00	
			LF	Demolition, Chain Link Fence	\$	7.00	\$0.00	
			CY	Demolition Disposal, Loading and 5 Mile Haul to Dump (Non-Hazardous)	\$	22.00	\$0.00	
			CY-Mi	Demolition, Disposal Haul, Per Mile over 5 Miles	\$	2.00	\$0.00	
			TON	Demolition, Dump Charge	\$	110.00	\$0.00	
111S-A	370.3703704	300	CY	Excavation, Unclassified	\$	52.00	\$15,600.00	$5500 s f+500 s f=6000 s f \times 16^{\prime \prime}$
120S-A			CY	Channel Excavation	\$	90.00	\$0.00	
130S-A			CY	Class A (Select Borrow)	\$	59.00	\$0.00	
130S-T			CY	Class C (Topsoil)	\$	44.00	\$0.00	
132S-A			CY	Embankment (Fill)	\$	29.00	\$0.00	
2015	833.3333333	670	SY	Sub-Grade Preparation	\$	9.00	\$6,030.00	6000sf
203S-A8		670	SY	Lime Treated Subgrade, 8 Inch Thickness	\$	15.30	\$10,251.00	
210S-A8	185.1851852	150	CY	Flexible Base, 8 Inch Thickness	\$	42.00	\$6,300.00	6000sf x 8"
340S-B-C3			SY	Hot Mix Asphaltic Concrete Pavement, 3 Inches, Type C	\$	22.00	\$0.00	
340S-B-C2		60	SY	Hot Mix Asphaltic Concrete Pavement, 2 Inches, Type C	\$	17.00	\$1,020.00	500sf
340S-B-C1.5			SY	Hot Mix Asphaltic Concrete P avement, 1-1/2 Inches, Type C	\$	15.00	\$0.00	
360S-A			SY	7 Inch Concrete Pavement	\$	108.00	\$0.00	
403S-CY			CY	Concrete Structure,	\$	720.00	\$0.00	
403S-EA-D		1	EA	Concrete Structure, Storm Water Detention	\$	17,400.00	\$17,400.00	\$3/sf $\times 5800 \mathrm{sf} \mathrm{IC}$
403S-EA-WQ		1	EA	Concrete Structure, Storm Water Quality Treatment	\$	24,940.00	\$24,940.00	\$4.30/sf \times 5800sf IC
414S-C			SF	Cast in Place Portland Cement Concrete Retaining Wall, Including Reinforcement	\$	61.00	\$0.00	
430S-A		160	LF	P.C. Concrete Curb and Gutter (Excavation)	\$	18.00	\$2,880.00	
430S-E			LF	P.C. Concrete Laydown Curb (Excavation)	\$	22.00	\$0.00	
432S-5	5500	5,500	SF	New P.C. Concrete Sidewalks, 5 Inch thickness	\$	12.00	\$66,000.00	
432S-6			SF	New P.C. Concrete Sidewalks, 6 Inch thickness	\$	14.00	\$0.00	
432S-RP-1		6	EA	P.C. Sidewalk Curb Ramp with Pavers (Type I)	\$	1,800.00	\$10,800.00	
432S-SAC-1			EA	Streetscape Bench (5ft with Back)	\$	3,800.00	\$0.00	
432S-SAC-1			EA	Streetscape Bench (5ft without Back)	\$	2,300.00	\$0.00	
432S-SAC-2			EA	Streetscape Chair (2 ft)	\$	2,300.00	\$0.00	
432S-SAC-3		1	EA	Streetscape Bicycle Rack	\$	800.00	\$800.00	
432S-SAC-4			EA	Streetscape Trash Receptacle	\$	2,900.00	\$0.00	
432S-SAC-7C			EA	Streetscape Tree Well \& Grate	\$	6,600.00	\$0.00	
432S-PRC-1		50	LF	Pedestrian ADA Railing	\$	102.00	\$5,100.00	
SP432S-K			EA	Art Kiosks	\$	25,000.00	\$0.00	
433S-C			SF	Type II P.C. Concrete Driveway	\$	11.00	\$0.00	

4355			LF	P.C. Concrete Steps	\$	160.00	\$0.00	
4395			EA	Parking Lot Bumper Curbs	\$	120.00	\$0.00	
504s-3W			EA	Adjusting Water Valve Boxes to Grade	\$	950.00	\$0.00	
505S-B20			LF	Encasement Pipe, Split 20 Inch Dia., Type Steel, 0.375 Inch Minimum Thickness	\$	243.00	\$0.00	
506-ABSW			EA	Abandonment of Exisitng Manholes, Storm Water	\$	2,200.00	\$0.00	
506-ABWW			EA	Abandonment of Exisitng Manholes, Wastewater	\$	2,200.00	\$0.00	
506-ABE			EA	Abandonment of Existing Manholes, Electrical and Telecommunications	\$	2,200.00	\$0.00	
506-BSW4×4			EA.	Box Manhole, 4ft $\times 4 \mathrm{ft}$	\$	6,600.00	\$0.00	
506-CNSW		1	EA	Connection of Storm Water Pipe to Existing System	\$	2,300.00	\$2,300.00	
506-CNWW		1	EA	Connection of Wastewater Pipe to Existing System	\$	2,300.00	\$2,300.00	connect to WW main on East Side
506-EDMSSW48			LVF	Extra Depth Special Storm Water Manhole, 48 In . Dia.	\$	340.00	\$0.00	
506-MSW48		1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 48 In. Dia.	\$	5,700.00	\$5,700.00	connect to SD system
506-MSW60			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 60 In. Dia.	\$	7,400.00	\$0.00	
506-MWW48		1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 4 Ft Dia.	\$	6,300.00	\$6,300.00	connect to WW main on East Side
506-MWW60			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 5 Ft Dia.	\$	8,000.00	\$0.00	
SP506-M		1	EA	By-Pass Pumping at Each Connection to Existing Manhole	\$	5,200.00	\$5,200.00	connection at WW main on East Side
508S-H18			EA	Headwalls for 18" Pipe	\$	3,000.00	\$0.00	
508S-H24		1	EA	Headwalls for 24" Pipe	\$	3,200.00	\$3,200.00	SD outfall
508S-H48			EA	Headwalls for 48" Pipe	\$	6,400.00	\$0.00	
508S-IG		3	EA	Inlet, Grate (Area Inlet)	\$	5,600.00	\$16,800.00	improve drainage around pool site
508S-110S		1	EA.	Inlet, Standard 10 Foot	\$	5,400.00	\$5,400.00	at ADA parking and curb ramp
509S-1		1,160	LF	Trench Excavation Safety Protective Systems (all depths)	\$	2.00	\$2,320.00	
510-AW2C		50	LF	Pipe, 2" Dia. Copper (all depths), including Excavation and Backfill	\$	91.00	\$4,550.00	irrigation service
510-AW-4-350		50	LF	Pipe, 4" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	140.00	\$7,000.00	domestic service
510-AW-6-350		80	LF	Pipe, 6" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	159.00	\$12,720.00	fire hydrant leads
510-AW-8-350		400	LF	Pipe, 8" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	193.00	\$77,200.00	main service to main on Alameda
510-ASW18		300	LF	Pipe, 18 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	136.00	\$40,800.00	improve drainage around pool site
510-ASW24		200	LF	Pipe, 24 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	157.00	\$31,400.00	to SD outfall
510-ASW30			LF	Pipe, 30 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	249.00	\$0.00	
510-ASW36			LF	Pipe, 36 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	311.00	\$0.00	
510-ASW48			LF	Pipe, 48 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	351.00	\$0.00	
510-ASW54			LF	Pipe, 54 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	368.00	\$0.00	
510-ASW66			LF	Pipe, 66 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	403.00	\$0.00	
510-AWW6			LF	Pipe, 6" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	114.00	\$0.00	

510-AWW8		80	LF	Pipe, 8" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	125.00	\$10,000.00	WW service to main on East Side
510-AWW12			LF	Pipe, 12" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	159.00	\$0.00	
510-AWW21			LF	Pipe, 21" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	299.00	\$0.00	
510-BW8×2		1	EA	Connecting New 8" Water Service to 2" Private Service	\$	4,600.00	\$4,600.00	imigation service connectioin
510-BW8×4		1	EA	Connecting New 8" Water Service to 4" Private Service	\$	6,200.00	\$6,200.00	domestic service connectioin
SP510-BW-M2		1	EA	New Water Meter, 2 Inch Meter and W Capital Recover Fee	\$	55,000.00	\$55,000.00	imigation meter/tap fee
SP510-BW-M4		1	EA	New Water Meter, 4 Inch Meter and W/WW Capital Recover Fee	\$	321,000.00	\$321,000.00	domestic meter/tap fee
SP510-BW-RM2			EA	Relocate Existing Water Meter, 2 Inch Tap Fee	\$	2,000.00	\$0.00	
$510-\mathrm{BWW} \times \times 6$		1	EA	Connecting New $8^{\prime \prime}$ Wastewater Service to Existing Private Service	\$	4,600.00	\$4,600.00	connect to WW main on East Side
510-J W6x6			EA	Wet Connections, $6^{\prime \prime}$ Dia. $\times 6^{\prime \prime}$ Dia.	\$	3,100.00	\$0.00	
510-J W8x8		1	EA	Wet Connections, $8^{\prime \prime}$ Dia. $\times 8^{\prime \prime}$ Dia.	\$	3,300.00	\$3,300.00	connect to W main on Alameda
$510-\mathrm{JW} 16 \times 16$			EA	Wet Connections, $16^{\prime \prime}$ Dia. $\times 16^{\prime \prime}$ Dia.	\$	4,600.00	\$0.00	
$510-\mathrm{KW}$		3	TON	Ductile Iron Fittings	\$	11,500.00	\$34,500.00	$5 \mathrm{lb} / \mathrm{t}$
511S-A2		1	EA	Valves, Gate Type, 2" Diameter	\$	1,000.00	\$1,000.00	
511S-A3			EA	Valves, Gate Type, 3" Diameter	\$	1,200.00	\$0.00	
5115-A4	0	1	EA	Valves, Gate Type, 4" Diameter	\$	1,500.00	\$1,500.00	1 each/250 ft
5115-A6		2	EA	Valves, Gate Type, 6" Diameter	\$	1,900.00	\$3,800.00	for fire hydrants
511S-A8	0	1	EA	Valves, Gate Type, 8" Diameter	\$	2,300.00	\$2,300.00	1 each/250 ft
511S-B		2	EA	Fire Hydrant	\$	5,200.00	\$10,400.00	
511S-C2		1	EA	Pressure or Flow Control Valve Assemblies (2 Inch Backlow Preventer)	\$	4,000.00	\$4,000.00	for irrigation service
5115-C8	1	1	EA	Pressure or Flow Control Valve Assemblies (8 Inch Double Check Valve Backflow Preventer)	\$	16,000.00	\$16,000.00	For fire line
551			LF	Pipe Underdrains (for Tree Wells)	\$	50.00	\$0.00	
5915-B		4	SY	Dry-Riprap	\$	140.00	\$560.00	SD outfall
594s-C			CY	Revet Mattresses, Twisted Woven Wire	\$	320.00	\$0.00	
602S-D			SY	Grass Sodding, General	\$	7.00	\$0.00	
604S-A			SY	Non-Native Seeding for Erosion Control Method	\$	6.00	\$0.00	
604S-E			SY	Mulch, Hardwood	\$	23.00	\$0.00	
605s-A		300	SY	Soil Retention Blanket	\$	24.00	\$7,200.00	
6085-1			EA	Plantings, Type BMP Native Grasses, Sedges, Woody Shrubs	\$	23.00	\$0.00	1 ft spacing in Rain Garden
6085-1	36.66666667	37	EA	Trees, 20 Gal	\$	600.00	\$22,200.00	30ft apart along sidewalk
6085-1			EA	Plants, 5 Gal	\$	50.00	\$0.00	
6085-2		1	LS	Irrigation System	\$	10,000.00	\$10,000.00	
6095-C		900	SY	Native Seeding for Erosion Control	\$	7.00	\$6,300.00	
610S-A		1,500	LF	Tree Protective Fencing Type A Chain Link Fence	\$	4.00	\$6,000.00	
610S-R		15	EA	Removal of Existing Trees	\$	570.00	\$8,550.00	
SP628S-C		2	EA	Filter Curb Inlet Protection	\$	120.00	\$240.00	
6285-B		100	LF	Sediment Containment Dikes with Filter Fabric	\$	9.00	\$900.00	Triangular dike on pavement
6395		40	LF	Rock Berm	\$	39.00	\$1,560.00	
6405			SF	Mortared Rock Wall	\$	50.00	\$0.00	
6415		1	EA	Stabilized Construction Entrance	\$	1,700.00	\$1,700.00	
6425		2,000	LF	Silt Fence for Erosion Control	\$	4.00	\$8,000.00	
6605			CY	Bio-Filtration Media	\$	114.00	\$0.00	
700S-TM		1	LS	Total Mobilization Payment	\$	60,000.00	\$60,000.00	5\% of all costs excluding Mob cost
7015-A6			LF	Chain Link Fence, 6 -Ft	\$	20.00	\$0.00	
7015-BS			EA	Chain Link Pedestrian Single Swing Gate ($6 \mathrm{Ft} \times 4 \mathrm{Ft}$)	\$	1,000.00	\$0.00	
701S-CD			EA	Chain Link Vehicular Double Swing Gate ($6 \mathrm{Ft} \times 20 \mathrm{Ft}$)	\$	2,300.00	\$0.00	
802S-BBond		1	EA	Bond Project Sign	\$	700.00	\$700.00	
8035-SF			LF	Safety Fence	\$	3.00	\$0.00	
SP803S-BAS			EA	Project Sign for Access	\$	400.00	\$0.00	
SP803S-CD		80	CD	Baricades, Signs, and Traffic Handling.	\$	600.00	\$48,000.00	$160 \mathrm{CD} / \mathrm{Block}$
SP803S-PS		35	CD	Portable Changeable Message Signs	\$	120.00	\$4,200.00	$70 \mathrm{CD} /$ Block
8245		4	EA	Traffic Signs	\$	400.00	\$1,600.00	

Aquatic Master Plan
Doucet + Chan, a Division of Doucet \& Associates, Inc.
Texas Registration No. 3937

4335-C	800	800	SF	Type II P.C. Concrete Driveway	\$	11.00	\$8,800.00	new driveway within ROW
435 S			LF	P.C. Concrete Steps	\$	160.00	\$0.00	
4395	6	6	EA	Parking Lot Bumper Curbs	\$	120.00	\$720.00	
504S-3W			EA	Adjusting Water Valve Boxes to Grade	\$	950.00	\$0.00	
505S-B20			LF	Encasement Pipe, Split 20 Inch Dia., Type Steel, 0.375 Inch Minimum Thickness	\$	243.00	\$0.00	
506-ABSW			EA	Abandonment of Exisitng Manholes, Storm Water	\$	2,200.00	\$0.00	
506-ABWW			EA	Abandonment of Exisitng Manholes, Wastewater	\$	2,200.00	\$0.00	
506-ABE			EA	Abandonment of Existing Manholes, Electrical and Telecommunications	\$	2,200.00	\$0.00	
506-BSW4×4			EA.	Box Manhole, 4ft $\times 4 \mathrm{ft}$	\$	6,600.00	\$0.00	
506-CNSW		1	EA	Connection of Storm Water Pipe to Existing System	\$	2,300.00	\$2,300.00	
506-CNWW		1	EA	Connection of Wastewater P ipe to Existing System	\$	2,300.00	\$2,300.00	connect to WW main in Parker
506-EDMSSW48			LVF	Extra Depth Special Storm Water Manhole, 48 In. Dia.	\$	340.00	\$0.00	
506-MSW48	1		EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 48 In . Dia.	\$	5,700.00	\$0.00	
506-MSW60		1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 60 In. Dia.	\$	7,400.00	\$7,400.00	connect to SD system
506-MWW48		1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 4 Ft Dia.	\$	6,300.00	\$6,300.00	connect to WW main in Parker
506-MWW60			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 5 Ft. Dia.	\$	8,000.00	\$0.00	
SP506-M		1	EA	By-Pass Pumping at Each Connection to Existing Manhole	\$	5,200.00	\$5,200.00	at connection to WW main in Parker
508S-H18			EA	Headwalls for 18" Pipe	\$	3,000.00	\$0.00	
508S-H24			EA	Headwalls for 24" Pipe	\$	3,200.00	\$0.00	
508S-H48		1	EA	Headwalls for 48" Pipe	\$	6,400.00	\$6,400.00	SD outfall
508S-IG		6	EA	Inlet, Grate (Area Inlet)	\$	5,600.00	\$33,600.00	improve drainage around pool site
508S-I10S	1	4	EA.	Inlet, Standard 10 Foot	\$	5,400.00	\$21,600.00	for parking expansion
509S-1		2,530	LF	Trench Excavation Safety Protective Systems (all depths)	\$	2.00	\$5,060.00	
510-AW2C		200	LF	Pipe, 2" Dia. Copper (all depths), including Excavation and Backfill	\$	91.00	\$18,200.00	irrigation service
510-AW-4-350	400	400	LF	Pipe, 4" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	140.00	\$56,000.00	domestic service
510-AW-6-350		80	LF	Pipe, 6" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	159.00	\$12,720.00	fire hydrant leads
510-AW-8-350	450	450	LF	Pipe, 8" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	193.00	\$86,850.00	main service
510-ASW18			LF	Pipe, 18 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	136.00	\$0.00	
510-ASW24		600	LF	Pipe, 24 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	157.00	\$94,200.00	improve drainage around pool site
510-ASW30		400	LF	Pipe, 30 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	249.00	\$99,600.00	to SD outfall
510-ASW36			LF	Pipe, 36 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	311.00	\$0.00	
510-ASW48			LF	Pipe, 48 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	351.00	\$0.00	
510-ASW54			LF	Pipe, 54 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	368.00	\$0.00	
510-ASW66			LF	Pipe, 66 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	403.00	\$0.00	
510-AWW6			LF	Pipe, 6" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	114.00	\$0.00	

510-AWW8	400	400	LF	Pipe, 8" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	125.00	\$50,000.00	Wastewater
510-AWW12			LF	Pipe, 12" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	159.00	\$0.00	
510-AWW21			LF	Pipe, 21" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	299.00	\$0.00	
510-BW8×2		1	EA	Connecting New 8" Water Service to 2" Private Service	\$	4,600.00	\$4,600.00	imigation service connection
510-BW8×4		1	EA	Connecting New 8" Water Service to 4"Private Service	\$	6,200.00	\$6,200.00	domestic service connection
SP510-BW-M2	1	1	EA	New Water Meter, 2 Inch Meter and W Capital Recover Fee	\$	55,000.00	\$55,000.00	imigation meter/tap fee
SP510-BW-M4	1	1	EA	New Water Meter, 4 Inch Meter and W/WW Capital Recover Fee	\$	321,000.00	\$321,000.00	domestic meter/tap fee
SP510-BW-RM2			EA	Relocate Existing Water Meter, 2 Inch Tap Fee	\$	2,000.00	\$0.00	
$510-\mathrm{BWW} \times \times 6$		1	EA	Connecting New 8"Wastewater Service to Existing Private Service	\$	4,600.00	\$4,600.00	connect to WW main in Parker
510-J W6X6			EA	Wet Connections, 6" Dia. $\times 6^{\prime \prime}$ Dia.	\$	3,100.00	$\$ 0.00$	
510-J W8x8		1	EA	Wet Connections, $8^{\prime \prime}$ Dia. $\times 8^{\prime \prime}$ Dia.	\$	3,300.00	\$3,300.00	connect to W main in Parker
$510-\mathrm{JW} 16 \times 16$			EA	Wet Connections, $16^{\prime \prime}$ Dia. $\times 16^{\prime \prime}$ Dia.	\$	4,600.00	\$0.00	
510-KW		2	TON	Ductile Iron Fittings	\$	11,500.00	\$23,000.00	$5 \mathrm{lb} / \mathrm{t}$
511S-A2		2	EA	Valves, Gate Type, 2" Diameter	\$	1,000.00	\$2,000.00	
5115-A3			EA	Valves, Gate Type, 3" Diameter	\$	1,200.00	\$0.00	
511S-A4	1.6	2	EA	Valves, Gate Type, 4" Diameter	\$	1,500.00	\$3,000.00	1 each/250 ft
511S-A6		2	EA	Valves, Gate Type, 6" Diameter	\$	1,900.00	\$3,800.00	for fire hydrants
511S-A8	1.8	2	EA	Valves, Gate Type, 8" Diameter	\$	2,300.00	\$4,600.00	1 each/250 ft
5115-B	2	2	EA	Fire Hydrant	\$	5,200.00	\$10,400.00	
511S-C2		1	EA	Pressure or Flow Control Valve Assemblies (2 Inch Backflow Preventer)	\$	4,000.00	\$4,000.00	for irrigation service
511s-C8	1	1	EA	Pressure or Flow Control Valve Assemblies (8 Inch Double Check Valve Backflow Preventer)	\$	16,000.00	\$16,000.00	For fire line
551			LF	Pipe Underdrains (for Tree Wells)	\$	50.00	\$0.00	
5915-B		8	SY	Dry-Riprap	\$	140.00	\$1,120.00	SD outfall
$5945-\mathrm{C}$			CY	Revet Mattresses, Twisted Woven Wire	\$	320.00	\$0.00	
602S-D			SY	Grass Sodding, General	\$	7.00	\$0.00	
6045-A			SY	Non-Native Seeding for Erosion Control Method	\$	6.00	\$0.00	
6045-E			SY	Mulch, Hardwood	\$	23.00	\$0.00	
605S-A		300	SY	Soil Retention Blanket	\$	24.00	\$7,200.00	
6085-1			EA	Plantings, Type BMP Native Grasses, Sedges, Woody Shrubs	\$	23.00	\$0.00	1 ft spacing in Rain Garden
6085-1	16.66666667	17	EA	Trees, 20 Gal	\$	600.00	\$10,200.00	30ft apart along sidewalk
6085-1			EA	Plants, 5 Gal	\$	50.00	\$0.00	
6085-2		1	LS	Irrigation System	\$	10,000.00	\$10,000.00	
6095-C			SY	Native Seeding for Erosion Control	\$	7.00	\$0.00	
610S-A		1,000	LF	Tree Protective Fencing Type A Chain Link Fence	\$	4.00	\$4,000.00	
610S-R		10	EA	Removal of Existing Trees	\$	570.00	\$5,700.00	
SP6285-C		4	EA	Filter Curb Inlet Protection	\$	120.00	\$480.00	
6285-B		100	LF	Sediment Containment Dikes with Filter Fabric	\$	9.00	\$900.00	Triangular dike on pavement
6395		80	LF	Rock Berm	\$	39.00	\$3,120.00	
6405			SF	Mortared Rock Wall	\$	50.00	\$0.00	
6415		1	EA	Stabilized Construction Entrance	\$	1,700.00	\$1,700.00	
6425		3,000	LF	Silt Fence for Erosion Control	\$	4.00	\$12,000.00	
6605			CY	Bio-Filtration Media	\$	114.00	\$0.00	
700S-TM		1	LS	Total Mobilization Payment	\$	95,000.00	\$95,000.00	5\% of all costs excluding Mob cost
7015-A6			LF	Chain Link Fence, 6 -Ft	\$	20.00	\$0.00	
7015-BS			EA	Chain Link Pedestrian Single Swing Gate ($6 \mathrm{Ft} \times 4 \mathrm{Ft}$)	\$	1,000.00	\$0.00	
701S-CD			EA	Chain Link Vehicular Double Swing Gate ($6 \mathrm{Ft} \times 20 \mathrm{Ft}$)	\$	2,300.00	\$0.00	
802S-BBond		1	EA	Bond Project Sign	\$	700.00	\$700.00	
8035-SF			LF	Safety Fence	\$	3.00	\$0.00	
SP803S-BAS			EA	Project Sign for Access	\$	400.00	\$0.00	
SP803S-CD		80	CD	Baricades, Signs, and Traffic Handling.	\$	600.00	\$48,000.00	$160 \mathrm{CD} / \mathrm{Block}$
SP803S-PS		35	CD	Portable Changeable Message Signs	\$	120.00	\$4,200.00	70 CD/Block
8245		10	EA	Traffic Signs	\$	400.00	\$4,000.00	

Aquatic Master Plan
Martin
Doucet + Chan, a Division of Doucet \& Associates, Inc.
Texas Registration No. 3937

435S			LF	P.C. Concrete Steps	\$	160.00	\$0.00	
4395			EA	Parking Lot Bumper Curbs	\$	120.00	\$0.00	
504S-3W			EA	Adjusting Water Valve Boxes to Grade	\$	950.00	\$0.00	
505S-B20			LF	Encasement Pipe, Split 20 Inch Dia., Type Steel, 0.375 Inch Minimum Thickness	\$	243.00	\$0.00	
506-ABSW			EA	Abandonment of Exisitng Manholes, Storm Water	\$	2,200.00	\$0.00	
506-ABWW			EA	Abandonment of Exisitng Manholes, Wastewater	\$	2,200.00	\$0.00	
506-ABE			EA	Abandonment of Existing Manholes, Electrical and Telecommunications	\$	2,200.00	\$0.00	
506-BSW4×4			EA.	Box Manhole, $4 \mathrm{ft} \times 4 \mathrm{ft}$	\$	6,600.00	\$0.00	
506-CNSW		1	EA	Connection of Storm Water Pipe to Existing System	\$	2,300.00	\$2,300.00	
506-CNWW		1	EA	Connection of Wastewater Pipe to Existing System	\$	2,300.00	\$2,300.00	connect to WW main on Chalmers
506-EDMSSW48			LVF	Extra Depth Special Storm Water Manhole, 48 In . Dia.	\$	340.00	\$0.00	
506-MSW48		1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 48 In. Dia.	\$	5,700.00	\$5,700.00	connect to SD system
506-MSW60			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 60 In. Dia.	\$	7,400.00	\$0.00	
506-MWW48		1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 4 Ft Dia.	\$	6,300.00	\$6,300.00	connect to WW main on Chalmers
506-MWW60			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 5 Ft. Dia.	\$	8,000.00	\$0.00	
SP506-M		1	EA	By-Pass Pumping at Each Connection to Existing Manhole	\$	5,200.00	\$5,200.00	at connection at WW main on Chalmers
508S-H18			EA	Headwalls for 18" Pipe	\$	3,000.00	\$0.00	
508S-H24		1	EA	Headwalls for 24" Pipe	\$	3,200.00	\$3,200.00	SD outfall
508S-H48			EA	Headwalls for 48" Pipe	\$	6,400.00	\$0.00	
508S-IG		3	EA	Inlet, Grate (Area Inlet)	\$	5,600.00	\$16,800.00	improve drainage around pool site
508S-I10S		1	EA.	Inlet, Standard 10 Foot	\$	5,400.00	\$5,400.00	at ADA parking
509S-1		1,440	LF	Trench Excavation Safety Protective Systems (all depths)	\$	2.00	\$2,880.00	
510-AW2C		50	LF	Pipe, 2" Dia. Copper (all depths), including Excavation and Backfill	\$	91.00	\$4,550.00	irigation service
510-AW-4-350		50	LF	Pipe, 4" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	140.00	\$7,000.00	domestic service
510-AW-6-350		80	LF	Pipe, 6" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	159.00	\$12,720.00	fire hydrant leads
510-AW-8-350		160	LF	Pipe, 8" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	193.00	\$30,880.00	main service
510-ASW18	650	700	LF	Pipe, 18 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	136.00	\$95,200.00	improve drainage around pool site
510-ASW24		200	LF	Pipe, 24 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	157.00	\$31,400.00	to SD outfall
510-ASW30			LF	Pipe, 30 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	249.00	\$0.00	
510-ASW36			LF	Pipe, 36 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	311.00	\$0.00	
510-ASW48			LF	Pipe, 48 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	351.00	\$0.00	
510-ASW54			LF	Pipe, 54 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	368.00	\$0.00	
510-ASW66			LF	Pipe, 66 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	403.00	\$0.00	
510-AWW6			LF	Pipe, 6" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	114.00	\$0.00	

510-AWW8		200	LF	Pipe, 8" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	125.00	\$25,000.00	WW service to main on Chalmers
510-AWW12			LF	Pipe, 12" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	159.00	\$0.00	
510-AWW21			LF	Pipe, 21" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	299.00	\$0.00	
510-BW8×2		1	EA	Connecting New 8" Water Service to 2" Private Service	\$	4,600.00	\$4,600.00	irigation service connection
510-BW8×4		1	EA	Connecting New 8" Water Service to 4"Private Service	\$	6,200.00	\$6,200.00	domestic service connection
SP510-BW-M2		1	EA	New Water Meter, 2 Inch Meter and W Capital Recover Fee	\$	55,000.00	\$55,000.00	imigation meter/tap fee
SP510-BW-M4		1	EA	New Water Meter, 4 Inch Meter and W/WW Capital Recover Fee	\$	321,000.00	\$321,000.00	domestic meter/tap fee
SP510-BW-RM2			EA	Relocate Existing Water Meter, 2 Inch Tap Fee	\$	2,000.00	\$0.00	
510-BWW8x6		1	EA	Connecting New 8 " Wastewater Service to Existing Private Service	\$	4,600.00	\$4,600.00	connect to WW main on Chalmers
510-J W6X6			EA	Wet Connections, $\mathrm{6}^{\prime \prime}$ Dia. $\times 6^{\prime \prime}$ Dia.	\$	3,100.00	\$0.00	
510-3 W8x8		1	EA	Wet Connections, 8" Dia. $\times 8$ " Dia.	\$	3,300.00	\$3,300.00	connect to W main on Nash Hernandez
$510-\mathrm{JW16} \mathrm{\times 16}$			EA	Wet Connections, $16^{\prime \prime}$ Dia. $\times 16^{\prime \prime}$ Dia.	\$	4,600.00	\$0.00	
510-KW		3	TON	Ductile Iron Fittings	\$	11,500.00	\$34,500.00	$5 \mathrm{lb} / \mathrm{t}$
511S-A2		1	EA	Valves, Gate Type, 2" Diameter	\$	1,000.00	\$1,000.00	
511S-A3			EA	Valves, Gate Type, 3" Diameter	\$	1,200.00	\$0.00	
511S-A4	0	1	EA	Valves, Gate Type, 4" Diameter	\$	1,500.00	\$1,500.00	1 each/250 ft
511S-A6		2	EA	Valves, Gate Type, $6^{\prime \prime}$ Diameter	\$	1,900.00	\$3,800.00	for fire hydrants
511S-A8	0	1	EA	Valves, Gate Type, 8" Diameter	\$	2,300.00	\$2,300.00	1 each/250 ft
511S-B		2	EA	Fire Hydrant	\$	5,200.00	\$10,400.00	
511s-C2		1	EA	Pressure or Flow Control Valve Assemblies (2 Inch Backflow Preventer)	\$	4,000.00	\$4,000.00	for irrigation service
511S-C8	1	1	EA	Pressure or Flow Control Valve Assemblies (8 Inch Couble Check Valve Backflow Preventer)	\$	16,000.00	\$16,000.00	For fire line
551			LF	Pipe Underdrains (for Tree Wells)	\$	50.00	\$0.00	
591S-B		4	SY	Dry-Riprap	\$	140.00	\$560.00	SD outfall
$594 \mathrm{~S}-\mathrm{C}$			CY	Revet Mattresses, Twisted Woven Wire	\$	320.00	\$0.00	
602S-D			SY	Grass Sodding, General	\$	7.00	\$0.00	
604S-A			SY	Non-Native Seeding for Erosion Control Method	\$	6.00	\$0.00	
604S-E			SY	Mulch, Hardwood	\$	23.00	\$0.00	
605S-A		300	SY	Soil Retention Blanket	\$	24.00	\$7,200.00	
6085-1			EA	Plantings, Type BMP Native Grasses, Sedges, Woody Shrubs	\$	23.00	\$0.00	1 ft spacing in Rain Garden
6085-1	115.6666667	35	EA	Trees, 20 Gal	\$	600.00	\$21,000.00	30 ft apart along sidewalk
6085-1			EA	Plants, 5 Gal	\$	50.00	\$0.00	
6085-2		1	LS	Irrigation System	\$	10,000.00	\$10,000.00	
6095-C		2,000	SY	Native Seeding for Erosion Control	\$	7.00	\$14,000.00	
610S-A		100	LF	Tree Protective Fencing Type A Chain Link Fence	\$	4.00	\$400.00	
$6105-\mathrm{R}$		10	EA	Removal of Existing Trees	\$	570.00	\$5,700.00	
SP6285-C		2	EA	Filter Curb Inlet Protection	\$	120.00	\$240.00	
6285-B		100	LF	Sediment Containment Dikes with Filter F abric	\$	9.00	\$900.00	Triangular dike on pavement
6395		40	LF	Rock Berm	\$	39.00	\$1,560.00	
6405			SF	Mortared Rock Wall	\$	50.00	\$0.00	
6415		1	EA	Stabilized Construction Entrance	\$	1,700.00	\$1,700.00	
6425		2,000	LF	Silt Fence for Erosion Control	\$	4.00	\$8,000.00	
6605			CY	Bio-Filtration Media	\$	114.00	\$0.00	
700S-TM		1	LS	Total Mobilization Payment	\$	75,000.00	\$75,000.00	5\% of all costs excluding Mob cost
7015-A6			LF	Chain Link Fence, 6 -Ft	\$	20.00	\$0.00	
7015-BS			EA	Chain Link Pedestrian Single Swing Gate ($6 \mathrm{Ft} \times 4 \mathrm{Ft}$)	\$	1,000.00	\$0.00	
7015-CD			EA	Chain Link Vehicular Double Swing Gate ($6 \mathrm{Ft} \times 20 \mathrm{Ft}$)	\$	2,300.00	\$0.00	
802S-BBond		1	EA	Bond Project Sign	\$	700.00	\$700.00	
8035-SF			LF	Safety Fence	\$	3.00	\$0.00	
SP803S-BAS			EA	Project Sign for Access	\$	400.00	\$0.00	
SP803S-CD		80	CD	Barricades, Signs, and Traffic Handling.	\$	600.00	\$48,000.00	$160 \mathrm{CD} / \mathrm{Block}$
SP803S-PS		35	CD	Portable Changeable Message Signs	\$	120.00	\$4,200.00	70 CD/Block

Aquatic Master Plan
Doucet + Chan, a Division of Doucet \& Associates, Inc.
Texas Registration No. 3937

510-AWW8		150	LF	Pipe, 8" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	125.00	\$18,750.00	WW service to main on Canterbury
510-AWW12			LF	Pipe, 12" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	159.00	\$0.00	
510-AWW21			LF	Pipe, 21" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	299.00	\$0.00	
510-BW8×2		1	EA	Connecting New 8"Water Service to 2" Private Service	\$	4,600.00	\$4,600.00	irrigation service connection
510-BW8×4		1	EA	Connecting New 8" Water Service to 4" Private Service	\$	6,200.00	\$6,200.00	domestic service connection
SP510-BW-M2		1	EA	New Water Meter, 2 Inch Meter and W Capital Recover Fee	\$	55,000.00	\$55,000.00	irrigation meter/tap fee
SP510-BW-M4		1	EA	New Water Meter, 4 Inch Meter and W/WW Capital Recover Fee	\$	321,000.00	\$321,000.00	domestic meter/tap fee
SP510-BW-RM2			EA	Relocate Existing Water Meter, 2 Inch Tap Fee	\$	2,000.00	\$0.00	
510-BWW8×6		1	EA	Connecting New $8^{\prime \prime}$ Wastewater Service to Existing Private Service	\$	4,600.00	\$4,600.00	connect to WW main on Canterbury
510-J W6x6			EA	Wet Connections, $6^{\prime \prime}$ Dia. $\times 6^{\prime \prime}$ Dia.	\$	3,100.00	\$0.00	
510-J W8x8		1	EA	Wet Connections, 8" Dia. $\times 8^{\prime \prime}$ Dia.	\$	3,300.00	\$3,300.00	connect to W main on Canterbury
$510-\mathrm{JW16} \mathrm{\times 16}$			EA	Wet Connections, 16 " Dia. $\times 16^{\prime \prime}$ Dia.	\$	4,600.00	\$0.00	
$510-\mathrm{KW}$		2	TON	Ductile Iron Fittings	\$	11,500.00	\$23,000.00	$5 \mathrm{lb} / \mathrm{t}$
$511 \mathrm{~S}-\mathrm{A} 2$		1	EA	Valves, Gate Type, 2" Diameter	\$	1,000.00	\$1,000.00	
511S-A3			EA	Valves, Gate Type, 3" Diameter	\$	1,200.00	\$0.00	
5115-A4	0	1	EA	Valves, Gate Type, 4" Diameter	\$	1,500.00	\$1,500.00	1 each/250 ft
511S-A6		2	EA	Valves, Gate Type, 6" Diameter	\$	1,900.00	\$3,800.00	for fire hydrants
5115-A8	0	1	EA	Valves, Gate Type, 8" Diameter	\$	2,300.00	\$2,300.00	1 each/250 ft
511s-B		2	EA	Fire Hydrant (see Deatil No. 5115-17)	\$	5,200.00	\$10,400.00	
511S-C2		1	EA	Pressure or Flow Control Valve Assemblies (2 Inch Backflow Preventer)	\$	4,000.00	\$4,000.00	for irrigation service
511S-C8	1	1	EA	Pressure or Flow Control Valve Assemblies (8 Inch Double Check Valve Backflow Preventer)	\$	16,000.00	\$16,000.00	For fire line
551			LF	Pipe Underdrains (for Tree Wells)	\$	50.00	\$0.00	
5915-B		4	SY	Dry-Riprap	\$	140.00	\$560.00	SD outfall
594s-C			CY	Revet Mattresses, Twisted Woven Wire	\$	320.00	\$0.00	
602S-D			SY	Grass Sodding, General	\$	7.00	\$0.00	
604S-A			SY	Non-Native Seeding for Erosion Control Method	\$	6.00	\$0.00	
604S-E			SY	Mulch, Hardwood	\$	23.00	\$0.00	
605s-A		300	SY	Soil Retention Blanket	\$	24.00	\$7,200.00	
6085-1			EA	Plantings, Type BMP Native Grasses, Sedges, Woody Shrubs	\$	23.00	\$0.00	1 ft spacing in Rain Garden
6085-1	75.33333333	35	EA	Trees, 20 Gal	\$	600.00	\$21,000.00	30ft apart along sidewalk
6085-1			EA	Plants, 5 Gal	\$	50.00	\$0.00	
6085-2		1	LS	Irrigation System	\$	10,000.00	\$10,000.00	
6095-C		1,300	SY	Native Seeding for Erosion Control	+	7.00	\$9,100.00	
610S-A		1,000	LF	Tree Protective Fencing Type A Chain Link Fence	\$	4.00	\$4,000.00	
610S-R		10	EA	Removal of Existing Trees	\$	570.00	\$5,700.00	
SP628S-C		2	EA	Fitter Curb Inlet Protection	\$	120.00	\$240.00	
6285-B		100	LF	Sediment Containment Dikes with Filter Fabric	\$	9.00	\$900.00	Triangular dike on pavement
6395		40	LF	Rock Berm	\$	39.00	\$1,560.00	
6405			SF	Mortared Rock Wall	\$	50.00	\$0.00	
6415		1	EA	Stabilized Construction Entrance	\$	1,700.00	\$1,700.00	
6425		2,000	LF	Silt Fence for Erosion Control	\$	4.00	\$8,000.00	
6605			CY	Bio-Filtration Media	\$	114.00	\$0.00	
700S-TM		1	LS	Total Mobilization Payment	\$	66,000.00	\$66,000.00	5\% of all costs excluding Mob cost
7015-A6			LF	Chain Link Fence, 6 -Ft	\$	20.00	\$0.00	
7015-BS			EA	Chain Link Pedestrian Single Swing Gate ($6 \mathrm{Ft} \times 4 \mathrm{Ft}$)	\$	1,000.00	\$0.00	
7015-CD			EA	Chain Link Vehicular Double Swing Gate ($6 \mathrm{Ft} \times 20 \mathrm{Ft}$)	\$	2,300.00	\$0.00	
802S-BBond		1	EA	Bond Project Sign	\$	700.00	\$700.00	
8035-SF			LF	Safety Fence	\$	3.00	\$0.00	
SP803S-BAS			EA	Project Sign for Access	\$	400.00	\$0.00	
SP803S-CD		80	CD	Barricades, Signs, and Traffic Handling.	\$	600.00	\$48,000.00	$160 \mathrm{CD} / \mathrm{Block}$
SP803S-PS		35	CD	Portable Changeable Message Signs	5	120.00	\$4,200.00	$70 \mathrm{CD} /$ Block
8245		4	EA	Traffic Signs	\$	400.00	\$1,600.00	

827S	3	EA	Bicycle Lane Signage	\$	400.00	\$1,200.00	
8295	1,000	LF	Bicycle Lane Markings	\$	8.00	\$8,000.00	
871S-A4W	150	LF	Reflectorized Type 1 Thermoplastic Pavement Markings, 4 Inches in Width, 100 Mils in Thickness, White in Color	\$	3.00	\$450.00	
871S-A24W		LF	Reflectorized Type 1 Thermoplastic Pavement Markings, 24 Inches in Width, 100 Mils in Thickness, White in Color	\$	16.00	\$0.00	
871S-D-SYMBOL-W	2	EA	Reflectorized Type 1 Pavement Marking, Symbol, 100 Mils in Thickness, White in Color	\$	400.00	\$800.00	
874S-A	150	LF	Eliminating Existing Pavement Markings, 4 Inches to 12 Inches in Width	\$	12.00	\$1,800.00	
1301S-B	700	SY	Granite Gravel Hike \& Bike Trail	\$	21.00	\$14,700.00	10' wide connect to surrounding streets
16550S	2	EA	Street Light Standard Foundation, Including Pole Base and Conduit Stub Up	\$	1,600.00	\$3,200.00	
	2	EA	Light Pole and LED Light	\$	3,700.00	\$7,400.00	
	1	EA	Electrical Panel Enclosure	\$	21,000.00	\$21,000.00	
	2	EA	Electrical Pull Box	\$	1,200.00	\$2,400.00	
	200	LF	Electrical Trenching, Conduits, Conductors for Lighting	\$	123.00	\$24,600.00	100' per light pole
$\begin{array}{lr}\text { SUBTOTAL } & \\ \text { CONTINGENCY } \\ \\ \text { TOTAL } & \$ 368,409.00 \\ \end{array}$							

Aquatic Master Plan
Montopolis
Doucet + Chan, a Division of Doucet \& Associates, Inc.
Texas Registration No. 3937

433S-C			SF	Type II P.C. Concrete Driveway	\$	11.00	\$0.00	
435 S			LF	P.C. Concrete Steps	\$	160.00	\$0.00	
4395		2	EA	Parking Lot Bumper Curbs	\$	120.00	\$240.00	
504S-3W			EA	Adjusting Water Valve Boxes to Grade	\$	950.00	\$0.00	
505S-B20			LF	Encasement Pipe, Split 20 Inch Dia., Type Steel, 0.375 Inch Minimum Thickness	\$	243.00	\$0.00	
506-ABSW			EA	Abandonment of Exisitng Manholes, Storm Water	\$	2,200.00	\$0.00	
506-ABWW			EA	Abandonment of Exisitng Manholes, Wastewater	\$	2,200.00	\$0.00	
506-ABE			EA	Abandonment of Existing Manholes, Electrical and Telecommunications	\$	2,200.00	\$0.00	
506-BSW4×4			EA.	Box Manhole, $4 \mathrm{ft} \times 4 \mathrm{ft}$	\$	6,600.00	\$0.00	
506-CNSW		1	EA	Connection of Storm Water Pipe to Existing System	\$	2,300.00	\$2,300.00	
506-CNWW		1	EA	Connection of Wastewater Pipe to Existing System	\$	2,300.00	\$2,300.00	connect to WW main on Montopolis
506-EDMSSW48			LVF	Extra Depth Special Storm Water Manhole, 48 In . Dia.	\$	340.00	\$0.00	
506-MSW48		1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 48 In . Dia.	\$	5,700.00	\$5,700.00	connect to SD system
506-MSW60			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 60 In. Dia.	\$	7,400.00	\$0.00	
506-MWW48		1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 4 Ft Dia.	\$	6,300.00	\$6,300.00	connect to WW main on Montopolis
506-MWW60			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 5 Ft Dia.	\$	8,000.00	\$0.00	
SP506-M		1	EA	By-Pass Pumping at Each Connection to Existing Manhole	\$	5,200.00	\$5,200.00	at connection to WW main on Montopolis
508S-H18			EA	Headwalls for 18" Pipe	\$	3,000.00	\$0.00	
508S-H24		1	EA	Headwalls for 24" Pipe	\$	3,200.00	\$3,200.00	SD outfall
508S-H48			EA	Headwalls for 48" Pipe	\$	6,400.00	\$0.00	
508S-IG		3	EA	Inlet, Grate (Area Inlet)	\$	5,600.00	\$16,800.00	improve drainage around pool site
508S-110S		2	EA.	Inlet, Standard 10 Foot	\$	5,400.00	\$10,800.00	parking expansion and ADA parking
509S-1		2,005	LF	Trench Excavation Safety Protective Systems (all depths)	\$	2.00	\$4,010.00	
510-AW2C		150	LF	Pipe, 2" Dia. Copper (all depths), including Excavation and Backfill	\$	91.00	\$13,650.00	irrigation service
510-AW-4-350		100	LF	Pipe, 4" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	140.00	\$14,000.00	domestic service
510-AW-6-350		80	LF	Pipe, 6" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	159.00	\$12,720.00	fire hydrant leads
510-AW-8-350		375	LF	Pipe, 8" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	193.00	\$72,375.00	main service
510-ASW18		700	LF	Pipe, 18 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	136.00	\$95,200.00	improve drainage around pool site
510-ASW24		200	LF	Pipe, 24 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	157.00	\$31,400.00	to SD outfall
510-ASW30			LF	Pipe, 30 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	249.00	\$0.00	
510-ASW36			LF	Pipe, 36 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	311.00	\$0.00	
510-ASW48			LF	Pipe, 48 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	351.00	\$0.00	
510-ASW54			LF	Pipe, 54 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	368.00	\$0.00	
510-ASW66			LF	Pipe, 66 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	403.00	\$0.00	

510-AWW6			LF	Pipe, 6" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	114.00	\$0.00	
510-AWW8		400	LF	Pipe, 8" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	125.00	\$50,000.00	WW service to main on Montopolis
510-AWW12			LF	Pipe, 12" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	159.00	\$0.00	
510-AWW21			LF	Pipe, 21" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	299.00	\$0.00	
$510-\mathrm{BW} 8 \times 2$		1	EA	Connecting New 8" Water Service to 2" Private Service	\$	4,600.00	\$4,600.00	irrigation service connection
$510-\mathrm{BW} 8 \times 4$		1	EA	Connecting New 8" Water Service to 4" Private Service	\$	6,200.00	\$6,200.00	domestic service connection
SP510-BW-M2		1	EA	New Water Meter, 2 Inch Meter and W Capital Recover Fee	\$	55,000.00	\$55,000.00	irrigation meter/tap fee
SP510-BW-M4		1	EA	New Water Meter, 4 Inch Meter and W/WW Capital Recover Fee	\$	321,000.00	\$321,000.00	domestic meter/tap fee
SP510-BW-RM2			EA	Relocate Existing Water Meter, 2 Inch Tap Fee	\$	2,000.00	\$0.00	
$510-\mathrm{BWW} \times 66$		1	EA	Connecting New $8^{\prime \prime}$ Wastewater Service to Existing Private Service	\$	4,600.00	\$4,600.00	connect to WW main on Montopolis
510-J W6x6			EA	Wet Connections, $6^{\prime \prime}$ Dia. $\times 6^{\prime \prime}$ Dia.	\$	3,100.00	\$0.00	
510-J W8x8		1	EA	Wet Connections, $8^{\prime \prime}$ Dia. $\times 8^{\prime \prime}$ Dia.	\$	3,300.00	\$3,300.00	connect to W main on Montopolis
$510-\mathrm{JW} 16 \times 16$			EA	Wet Connections, $16^{\text {" Dia. } \times 16^{\prime \prime} \text { Dia. }}$	\$	4,600.00	\$0.00	
510-KW		3	TON	Ductile Iron Fittings	\$	11,500.00	\$34,500.00	$5 \mathrm{lb} / \mathrm{t}$
511S-A2		1	EA	Valves, Gate Type, 2" Diameter	\$	1,000.00	\$1,000.00	
511S-A3			EA	Valves, Gate Type, 3" Diameter	\$	1,200.00	\$0.00	
511S-A4	0	1	EA	Valves, Gate Type, 4" Diameter	\$	1,500.00	\$1,500.00	1 each/250 ft
5115-A6		2	EA	Valves, Gate Type, 6" Diameter	\$	1,900.00	\$3,800.00	for fire hydrants
511S-A8	0	1	EA	Valves, Gate Type, 8" Diameter	\$	2,300.00	\$2,300.00	1 each/250 ft
5115-B		2	EA	Fire Hydrant	\$	5,200.00	\$10,400.00	
511S-C2		1	EA	Pressure or Flow Control Valve Assemblies (2 Inch Backflow Preventer)	\$	4,000.00	\$4,000.00	for irigation senvice
511s-C8	1	1	EA	Pressure or Flow Control Valve Assemblies (8 Inch Double Check Valve Backflow Preventer)	\$	16,000.00	\$16,000.00	For fire line
551			LF	Pipe Underdrains (for Tree Wells)	\$	50.00	\$0.00	
5915-B		4	SY	Dry-Riprap	\$	140.00	\$560.00	SD outfall
594s-C			CY	Revet Mattresses, Twisted Woven Wire	\$	320.00	\$0.00	
602S-D			SY	Grass Sodding, General	\$	7.00	\$0.00	
604S-A			SY	Non-Native Seeding for Erosion Control Method	\$	6.00	\$0.00	
604S-E			SY	Mulch, Hardwood	\$	23.00	\$0.00	
605S-A		300	SY	Soil Retention Blanket	\$	24.00	\$7,200.00	
6085-1			EA	Plantings, Type BMP Native Grasses, Sedges, Woody Shrubs	\$	23.00	\$0.00	1 ft spacing in Rain Garden
6085-1	0	30	EA	Trees, 20 Gal	\$	600.00	\$18,000.00	30ft apart along sidewalk
6085-1			EA	Plants, 5 Gal	\$	50.00	\$0.00	
6085-2		1	LS	Irrigation System	\$	10,000.00	\$10,000.00	
6095-C			SY	Native Seeding for Erosion Control	\$	7.00	\$0.00	
610S-A		400	LF	Tree Protective Fencing Type A Chain Link Fence	\$	4.00	\$1,600.00	
610S-R		3	EA	Removal of Existing Trees	\$	570.00	\$1,710.00	
SP628S-C		3	EA	Fitter Curb Inlet Protection	\$	120.00	\$360.00	
6285-B		100	LF	Sediment Containment Dikes with Filter Fabric	\$	9.00	\$900.00	Triangular dike on pavement
6395		40	LF	Rock Berm	\$	39.00	\$1,560.00	
6405			SF	Mortared Rock Wall	\$	50.00	\$0.00	
6415		1	EA	Stabilized Construction Entrance	\$	1,700.00	\$1,700.00	
6425		2,000	LF	Silt Fence for Erosion Control	\$	4.00	\$8,000.00	
6605			CY	Bio-Filtration Media	\$	114.00	\$0.00	
700S-TM		1	LS	Total Mobilization Payment	\$	83,000.00	\$83,000.00	5\% of all costs excluding Mob cost
7015-A6			LF	Chain Link Fence, 6-Ft	\$	20.00	\$0.00	
7015-BS			EA	Chain Link Pedestrian Single Swing Gate ($6 \mathrm{Ft} \times 4 \mathrm{Ft}$)	\$	1,000.00	\$0.00	
7015-CD			EA	Chain Link Vehicular Double Swing Gate ($6 \mathrm{Ft} \times 20 \mathrm{Ft}$)	\$	2,300.00	\$0.00	
802S-BBond		1	EA	Bond Project Sign	\$	700.00	\$700.00	
8035-SF			LF	Safety Fence	\$	3.00	\$0.00	
SP803S-BAS			EA	Project Sign for Access	\$	400.00	\$0.00	

Aquatic Master Plan
Doucet + Chan, a Division of Doucet \& Associates, Inc.
Texas Registration No. 3937

435 S			LF	P.C. Concrete Steps	\$	160.00	\$0.00	
439S		2	EA	Parking Lot Bumper Curbs	\$	120.00	\$240.00	
504S-3W			EA	Adjusting Water Valve Boxes to Grade	\$	950.00	\$0.00	
505S-B20			LF	Encasement Pipe, Split 20 Inch Dia., Type Steel, 0.375 Inch Minimum Thickness	\$	243.00	\$0.00	
506-ABSW			EA	Abandonment of Exisitng Manholes, Storm Water	\$	2,200.00	\$0.00	
506-ABWW			EA	Abandonment of Exisitng Manholes, Wastewater	\$	2,200.00	\$0.00	
506-ABE			EA	Abandonment of Existing Manholes, Electrical and Telecommunications	\$	2,200.00	\$0.00	
506-BSW4×4			EA.	Box Manhole, 4ft $\times 4 \mathrm{ft}$	\$	6,600.00	\$0.00	
506-CNSW		1	EA	Connection of Storm Water Pipe to Existing System	\$	2,300.00	\$2,300.00	
506-CNWW		1	EA	Connection of Wastewater Pipe to Existing System	\$	2,300.00	\$2,300.00	connect to WW main on Hart
506-EDMSSW48			LVF	Extra Depth Special Storm Water Manhole, 48 In . Dia.	\$	340.00	\$0.00	
506-MSW48		1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 48 In . Dia.	\$	5,700.00	\$5,700.00	connect to SD system
506-MSW60			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 60 In. Dia.	\$	7,400.00	\$0.00	
506-MWW48		1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 4 Ft. Dia.	\$	6,300.00	\$6,300.00	connect to WW main on Hart
506-MWW60			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 5 Ft Dia.	\$	8,000.00	\$0.00	
SP 506-M		1	EA	By-Pass Pumping at Each Connection to Existing Manhole	\$	5,200.00	\$5,200.00	at connection to WW main on Hart
508S-H18			EA	Headwalls for 18" Pipe	\$	3,000.00	\$0.00	
508S-H24		1	EA	Headwalls for 24" Pipe	\$	3,200.00	\$3,200.00	SD outfall
508S-H48			EA	Headwalls for 48" Pipe	\$	6,400.00	\$0.00	
508S-IG		3	EA	Inlet, Grate (Area Inlet)	\$	5,600.00	\$16,800.00	improve drainage around pool site
508S-110S		1	EA.	Inlet, Standard 10 Foot	\$	5,400.00	\$5,400.00	at ADA parking
509S-1		1,090	LF	Trench Excavation Safety P rotective Systems (all depths)	\$	2.00	\$2,180.00	
510-AW2C		50	LF	Pipe, 2" Dia. Copper (all depths), including Excavation and Backfill	\$	91.00	\$4,550.00	irrigation service
510-AW-4-350		50	LF	Pipe, 4" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	140.00	\$7,000.00	domestic service
510-AW-6-350		80	LF	Pipe, 6" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	159.00	\$12,720.00	fire hydrant leads
510-AW-8-350		110	LF	Pipe, 8" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	193.00	\$21,230.00	main service
510-ASW18	490	500	LF	Pipe, 18 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	136.00	\$68,000.00	improve drainage around pool site
510-ASW24		200	LF	Pipe, 24 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	157.00	\$31,400.00	to SD outfall
510-ASW30			LF	Pipe, 30 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	249.00	\$0.00	
510-ASW36			LF	Pipe, 36 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	311.00	\$0.00	
510-ASW48			LF	Pipe, 48 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	351.00	\$0.00	
510-ASW54			LF	Pipe, 54 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	368.00	\$0.00	
510-ASW66			LF	Pipe, 66 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	403.00	\$0.00	
510-AWW6			LF	Pipe, 6" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	114.00	\$0.00	

510-AWW8		100	LF	Pipe, 8" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	125.00	\$12,500.00	WW service to main on Hart
510-AWW12			LF	Pipe, 12" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	159.00	\$0.00	
510-AWW21			LF	Pipe, 21" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	299.00	\$0.00	
510-BW8×2		1	EA	Connecting New 8" Water Service to 2" Private Service	\$	4,600.00	\$4,600.00	imigation service connection
510-BW8×4		1	EA	Connecting New 8" Water Service to 4" Private Service	\$	6,200.00	\$6,200.00	domestic service connection
SP510-BW-M2		1	EA	New Water Meter, 2 Inch Meter and W Capital Recove Fee	\$	55,000.00	\$55,000.00	irigation metertap fee
SP510-BW-M4		1	EA	New Water Meter, 4 Inch Meter and W/WW Capital Recover Fee	\$	321,000.00	\$321,000.00	domestic meter/tap fee
SP510-BW-RM2			EA	Relocate Existing Water Meter, 2 Inch Tap Fee	\$	2,000.00	\$0.00	
510-BWW8×6		1	EA	Connecting New 8 " Wastewater Service to Existing Private Service	\$	4,600.00	\$4,600.00	connect to WW main on Hart
510-J W6X6			EA	Wet Connections, $6^{\prime \prime}$ Dia. $\times 6^{\prime \prime}$ Dia.	\$	3,100.00	\$0.00	
510-J W8x8		1	EA	Wet Connections, $8^{\prime \prime}$ Dia. $\times 8^{\prime \prime}$ Dia.	\$	3,300.00	\$3,300.00	connect to W main on Hart
510-J W16x16			EA	Wet Connections, $16^{\prime \prime}$ Dia. $\times 16^{\prime \prime}$ Dia.	\$	4,600.00	\$0.00	
510-KW		2	TON	Ductile Iron Fittings	\$	11,500.00	\$23,000.00	$5 \mathrm{lb} / \mathrm{t}$
511S-A2		1	EA	Valves, Gate Type, 2" Diameter	\$	1,000.00	\$1,000.00	
5115-A3			EA	Valves, Gate Type, 3" Diameter	\$	1,200.00	\$0.00	
511S-A4	0	1	EA	Valves, Gate Type, 4" Diameter	\$	1,500.00	\$1,500.00	1 each/250 ft
5115-A6		2	EA	Valves, Gate Type, 6" Diameter	\$	1,900.00	\$3,800.00	for fire hydrants
511S-A8	0	1	EA	Valves, Gate Type, 8" Diameter	\$	2,300.00	\$2,300.00	1 each/250 ft
511s-B		2	EA	Fire Hydrant	\$	5,200.00	\$10,400.00	
511S-C2		1	EA	Pressure or Flow Control Valve Assemblies (2 Inch Backflow Preventer)	\$	4,000.00	\$4,000.00	for irrigation service
511S-C8	1	1	EA	Pressure or Flow Control Valve Assemblies (8 Inch Double Check Valve Backflow Preventer)	\$	16,000.00	\$16,000.00	For fire line
551			LF	Pipe Underdrains (for Tree Wells)	\$	50.00	\$0.00	
5915-B		4	SY	Dry-Riprap	\$	140.00	\$560.00	SD outfall
5945-C			CY	Revet Mattresses, Twisted Woven Wire	\$	320.00	\$0.00	
602S-D			SY	Grass Sodding, General	\$	7.00	\$0.00	
604S-A			SY	Non-Native Seeding for Erosion Control Method	\$	6.00	\$0.00	
604S-E			SY	Mulch, Hardwood	\$	23.00	\$0.00	
605S-A		300	SY	Soil Retention Blanket	\$	24.00	\$7,200.00	
6085-1			EA	Plantings, Type BMP Native Grasses, Sedges, Woody Shrubs	\$	23.00	\$0.00	1 ft spacing in Rain Garden
6085-1	4.666666667	5	EA	Trees, 20 Gal	\$	600.00	\$3,000.00	30ft apart along sidewalk
6085-1			EA	Plants, 5 Gal	\$	50.00	\$0.00	
6085-2		1	LS	Irrigation System	\$	10,000.00	\$10,000.00	
6095-C		100	SY	Native Seeding for Erosion Control	\$	7.00	\$700.00	
610S-A		250	LF	Tree Protective Fencing Type A Chain Link Fence	\$	4.00	\$1,000.00	
610S-R		5	EA	Removal of Existing Trees	\$	570.00	\$2,850.00	
SP6285-C		2	EA	Filter Curb Inlet Protection	\$	120.00	\$240.00	
6285-B		100	LF	Sediment Containment Dikes with Filter Fabric	\$	9.00	\$900.00	Triangular dike on pavement
6395		40	LF	Rock Berm	\$	39.00	\$1,560.00	
6405			SF	Mortared Rock Wall	\$	50.00	\$0.00	
6415		1	EA	Stabilized Construction Entrance	\$	1,700.00	\$1,700.00	
6425		2,000	LF	Silt Fence for Erosion Control	\$	4.00	\$8,000.00	
6605			CY	Bio-Filtration Media	\$	114.00	\$0.00	
700S-TM		1	LS	Total Mobilization Payment	\$	47,000.00	\$47,000.00	5\% of all costs excluding Mob cost
7015-A6			LF	Chain Link Fence, 6 -Ft	\$	20.00	\$0.00	
7015-BS			EA	Chain Link Pedestrian Single Swing Gate ($6 \mathrm{Ft} \times 4 \mathrm{Ft}$)	\$	1,000.00	\$0.00	
701S-CD			EA	Chain Link Vehicular Double Swing Gate ($6 \mathrm{Ft} \times 20 \mathrm{Ft}$)	\$	2,300.00	\$0.00	
802S-BBond		1	EA	Bond Project Sign		700.00	\$700.00	
8035-SF			LF	Safety Fence	\$	3.00	\$0.00	
SP803S-BAS			EA	Project Sign for Access	\$	400.00	\$0.00	
SP803S-CD		80	CD	Barricades, Signs, and Traffic Handling.	\$	600.00	\$48,000.00	$160 \mathrm{CD} / \mathrm{Block}$
SP803S-PS		35	CD	Portable Changeable Message Signs	\$	120.00	\$4,200.00	$70 \mathrm{CD} /$ Block
8245		4	EA	Traffic Signs	\$	400.00	\$1,600.00	

Aquatic Master Plan
Northwest
Doucet + Chan, a Division of Doucet \& Associates, Inc.
Texas Registration No. 3937

435S			LF	P.C. Concrete Steps	\$	160.00	\$0.00	
4395	5	5	EA	Parking Lot Bumper Curbs	\$	120.00	\$600.00	for accessible parking spaces
504S-3W			EA	Adjusting Water Valve Boxes to Grade	\$	950.00	\$0.00	
505S-B20			LF	Encasement Pipe, Split 20 Inch Dia., Type Steel, 0.375 Inch Minimum Thickness	\$	243.00	\$0.00	
506-ABSW			EA	Abandonment of Exisitng Manholes, Storm Water	\$	2,200.00	\$0.00	
506-ABWW			EA	Abandonment of Exisitng Manholes, Wastewater	\$	2,200.00	\$0.00	
506-ABE			EA	Abandonment of Existing Manholes, Electrical and Telecommunications	\$	2,200.00	\$0.00	
506-BSW4×4			EA.	Box Manhole, 4ft $\times 4 \mathrm{ft}$	\$	6,600.00	\$0.00	
506-CNSW		1	EA	Connection of Storm Water Pipe to Existing System	\$	2,300.00	\$2,300.00	
506-CNWW	1	1	EA	Connection of Wastewater Pipe to Existing System	\$	2,300.00	\$2,300.00	connect to WW main on Ardath
506-EDMSSW48			LVF	Extra Depth Special Storm Water Manhole, 48 In . Dia.	\$	340.00	\$0.00	
506-MSW48	1	1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 48 In. Dia.	\$	5,700.00	\$5,700.00	connect to SD system
506-MSW60			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 60 In. Dia.	\$	7,400.00	\$0.00	
506-MWW48		1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 4 Ft Dia.	\$	6,300.00	\$6,300.00	connect to WW main on Ardath
506-MWW60			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 5 Ft. Dia.	\$	8,000.00	\$0.00	
SP 506-M		1	EA	By-Pass Pumping at Each Connection to Existing Manhole	\$	5,200.00	\$5,200.00	at connection to WW main on Ardath
508S-H18			EA	Headwalls for 18" Pipe	\$	3,000.00	\$0.00	
508S-H24			EA	Headwalls for 24" Pipe	\$	3,200.00	\$0.00	
508S-H48		1	EA	Headwalls for 48" Pipe	\$	6,400.00	\$6,400.00	SD outfall
508S-IG		6	EA	Inlet, Grate (Area Inlet)	\$	5,600.00	\$33,600.00	improve drainage around pool site
508S-I10S		4	EA.	Inlet, Standard 10 Foot	\$	5,400.00	\$21,600.00	around parking lot
509S-1		3,680	LF	Trench Excavation Safety Protective Systems (all depths)	\$	2.00	\$7,360.00	
510-AW2C		100	LF	Pipe, 2" Dia. Copper (all depths), including Excavation and Backfill	\$	91.00	\$9,100.00	irrigation service
510-AW-4-350	250	300	LF	Pipe, 4" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	140.00	\$42,000.00	domestic service
510-AW-6-350		80	LF	\qquad	\$	159.00	\$12,720.00	fire hydrant leads
510-AW-8-350	500	800	LF	Pipe, 8" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	193.00	\$154,400.00	main service
510-ASW18			LF	Pipe, 18 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	136.00	\$0.00	
510-ASW24		1,600	LF	Pipe, 24 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	157.00	\$251,200.00	improve drainage around pool site
510-ASW30		300	LF	Pipe, 30 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	249.00	\$74,700.00	to SD outfall
510-ASW36			LF	Pipe, 36 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	311.00	\$0.00	
510-ASW48			LF	Pipe, 48 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	351.00	\$0.00	
510-ASW54			LF	Pipe, 54 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	368.00	\$0.00	
510-ASW66			LF	Pipe, 66 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	403.00	\$0.00	
510-AWW6			LF	Pipe, 6" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	114.00	\$0.00	

510-AWW8	350	500	LF	Pipe, 8" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	125.00	\$62,500.00	WW service to main on Ardath
510-AWW12			LF	Pipe, 12" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	159.00	\$0.00	
510-AWW21			LF	Pipe, 21" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	299.00	\$0.00	
510-BW8×2		1	EA	Connecting New 8" Water Service to 2" Private Service	\$	4,600.00	\$4,600.00	imigation service connection
510-BW8×4		1	EA	Connecting New 8" Water Service to 4"Private Service	\$	6,200.00	\$6,200.00	domestic service connection
SP510-BW-M2		1	EA	New Water Meter, 2 Inch Meter and W Cpaital Recover Fee	\$	55,000.00	\$55,000.00	inigation meter/tap fee
SP510-BW-M4		1	EA	New Water Meter, 4 Inch Meter and W/WW Capital Recover Fee	\$	321,000.00	\$321,000.00	domestic meter/tap fee
SP510-BW-RM2			EA	Relocate Existing Water Meter, 2 Inch Tap Fee	\$	2,000.00	\$0.00	
$510-\mathrm{BWW} \times \times 6$		1	EA	Connecting New 8"Wastewater Service to Existing Private Service	\$	4,600.00	\$4,600.00	connect to WW main on Ardath
510-J W6x6			EA	Wet Connections, 6 $^{\prime \prime}$ Dia. $\times 6^{\prime \prime}$ Dia.	\$	3,100.00	\$0.00	
510-J W8x8		1	EA	Wet Connections, $8^{\prime \prime}$ Dia. $\times 8^{\prime \prime}$ Dia.	\$	3,300.00	\$3,300.00	connect to W main on Ardath
$510-\mathrm{JW} 16 \times 16$			EA	Wet Connections, $16{ }^{\text {" Dia. } \times 16 \text { " Dia. }}$	\$	4,600.00	\$0.00	
510-KW		3	TON	Ductile Iron Fittings	\$	11,500.00	\$36,800.00	$5 \mathrm{lb} / \mathrm{t}$
511S-A2		2	EA	Valves, Gate Type, 2" Diameter	\$	1,000.00	\$2,000.00	
511S-A3			EA	Valves, Gate Type, 3" Diameter	\$	1,200.00	\$0.00	
511S-A4	1	2	EA	Valves, Gate Type, 4" Diameter	\$	1,500.00	\$3,000.00	1 each/250 ft
511S-A6		2	EA	Valves, Gate Type, 6" Diameter	\$	1,900.00	\$3,800.00	for fire hydrants
511S-A8	2	3	EA	Valves, Gate Type, 8" Diameter	\$	2,300.00	\$6,900.00	1 each/250 ft
511s-B	2	2	EA	Fire Hydrant	\$	5,200.00	\$10,400.00	
511S-C2		1	EA	Pressure or Flow Control Valve Assemblies (2 Inch Backflow Preventer)	\$	4,000.00	\$4,000.00	for irrigation service
5115-C8	1	1	EA	Pressure or Flow Control Valve Assemblies (8 Inch Double Check Valve Backflow Preventer)	\$	16,000.00	\$16,000.00	for fire line
551			LF	Pipe Underdrains (for Tree Wells)	\$	50.00	\$0.00	
5915-B		8	SY	Dry-Riprap	\$	140.00	\$1,120.00	SD outfall
594s-C			CY	Revet Mattresses, Twisted Woven Wire	\$	320.00	\$0.00	
602S-D			SY	Grass Sodding, General	\$	7.00	\$0.00	
604S-A			SY	Non-Native Seeding for Erosion Control Method	\$	6.00	\$0.00	
604S-E			SY	Mulch, Hardwood	\$	23.00	\$0.00	
605S-A		300	SY	Soil Retention Blanket	\$	24.00	\$7,200.00	
6085-1			EA	Plantings, Type BMP Native Grasses, Sedges, Woody Shrubs	\$	23.00	\$0.00	1 ft spacing in Rain Garden
6085-1	16.66666667	20	EA	Trees, 20 Gal	\$	600.00	\$12,000.00	30ft apart along sidewalk / there are quite a few of existing trees
6085-1			EA	Plants, 5 Gal	\$	50.00	\$0.00	
6085-2		1	LS	Irrigation System	\$	10,000.00	\$10,000.00	
6095-C		50	SY	Native Seeding for Erosion Control	\$	7.00	\$350.00	
610S-A		1,000	LF	Tree Protective Fencing Type A Chain Link Fence	\$	4.00	\$4,000.00	
$6105-\mathrm{R}$		2	EA	Removal of Existing Trees	\$	570.00	\$1,140.00	
SP628S-C		4	EA	Filter Curb Inlet Protection	\$	120.00	\$480.00	
6285-B		100	LF	Sediment Containment Dikes with Filter Fabric	\$	9.00	\$900.00	Triangular dike on pavement
6395		200	LF	Rock Berm	\$	39.00	\$7,800.00	
6405			SF	Mortared Rock Wall	\$	50.00	\$0.00	
6415		2	EA	Stabilized Construction Entrance	\$	1,700.00	\$3,400.00	
6425		3,000	LF	Silt Fence for Erosion Control	\$	4.00	\$12,000.00	
6605			CY	Bio-Filtration Media	\$	114.00	\$0.00	
700S-TM		1	LS	Total Mobilization Payment	\$	100,000.00	\$100,000.00	5\% of all costs excluding Mob cost
7015-A6			LF	Chain Link Fence, 6 -Ft	\$	20.00	\$0.00	
7015-BS			EA	Chain Link Pedestrian Single Swing Gate ($6 \mathrm{Ft} \times 4 \mathrm{Ft}$)	\$	1,000.00	\$0.00	
701S-CD			EA	Chain Link Vehicular Double Swing Gate ($6 \mathrm{Ft} \times 20 \mathrm{Ft}$)	\$	2,300.00	\$0.00	
802S-BBond		1	EA	Bond Project Sign	\$	700.00	\$700.00	
8035-SF			LF	Safety Fence	\$	3.00	\$0.00	
SP803S-BAS			EA	Project Sign for Access	\$	400.00	\$0.00	
SP803S-CD		160	CD	Barricades, Signs, and Traffic Handling.	\$	600.00	\$96,000.00	$160 \mathrm{CD} / \mathrm{Block}$
SP803S-PS		70	CD	Portable Changeable Message Signs	\$	120.00	\$8,400.00	$70 \mathrm{CD} /$ Block

Aquatic Master Plan
Doucet + Chan, a Division of Doucet \& Associates, Inc.
Texas Registration No. 3937

4355			LF	P.C. Concrete Steps	\$	160.00	\$0.00	
4395		1	EA	Parking Lot Bumper Curbs	\$	120.00	\$120.00	
504S-3W			EA	Adjusting Water Valve Boxes to Grade	\$	950.00	\$0.00	
505S-B20			LF	Encasement Pipe, Split 20 Inch Dia., Type Steel, 0.375 Inch Minimum Thickness	\$	243.00	\$0.00	
506-ABSW			EA	Abandonment of Exisitng Manholes, Storm Water	\$	2,200.00	\$0.00	
506-ABWW			EA	Abandonment of Exisitng Manholes, Wastewater	\$	2,200.00	\$0.00	
506-ABE			EA	Abandonment of Existing Manholes, Electrical and Telecommunications	\$	2,200.00	\$0.00	
506-BSW4×4			EA.	Box Manhole, $4 \mathrm{ft} \times 4 \mathrm{ft}$	\$	6,600.00	\$0.00	
506-CNSW		1	EA	Connection of Storm Water Pipe to Existing System	\$	2,300.00	\$2,300.00	
506-CNWW		1	EA	Connection of Wastewater Pipe to Existing System	\$	2,300.00	\$2,300.00	connect to WW main on Francisco
506-EDMSSW48			LVF	Extra Depth Special Storm Water Manhole, 48 In . Dia.	\$	340.00	\$0.00	
506-MSW48		1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 48 In . Dia.	\$	5,700.00	\$5,700.00	connect to SD system
506-MSW60			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 60 In. Dia.	\$	7,400.00	\$0.00	
506-MWW48		1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 4 Ft. Dia.	\$	6,300.00	\$6,300.00	connect to WW main on Francisco
506-MWW60			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 5 Ft. Dia.	\$	8,000.00	\$0.00	
SP 506-M		1	EA	By-Pass Pumping at Each Connection to Existing Manhole	\$	5,200.00	\$5,200.00	at connection to WW main on Francisco
508S-H18			EA	Headwalls for 18" Pipe	\$	3,000.00	\$0.00	
508S-H24		1	EA	Headwalls for 24" Pipe	\$	3,200.00	\$3,200.00	SD outfall
508S-H48			EA	Headwalls for 48" Pipe	\$	6,400.00	\$0.00	
5085-IG		3	EA	Inlet, Grate (Area Inlet)	\$	5,600.00	\$16,800.00	improve drainage around pool site
5085-110S		1	EA.	Inlet, Standard 10 Foot	\$	5,400.00	\$5,400.00	at ADA parking
509S-1		1,380	LF	Trench Excavation Safety Protective Systems (all depths)	\$	2.00	\$2,760.00	
510-AW2C		50	LF	Pipe, 2" Dia. Copper (all depths), including Excavation and Backfill	\$	91.00	\$4,550.00	irigation service
510-AW-4-350		100	LF	Pipe, 4" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	140.00	\$14,000.00	domestic service
510-AW-6-350		80	LF	Pipe, 6" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	159.00	\$12,720.00	fire hydrant leads
510-AW-8-350		300	LF	Pipe, 8" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	193.00	\$57,900.00	main service
510-ASW18		300	LF	Pipe, 18 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	136.00	\$40,800.00	improve drainage around pool site
510-ASW24		200	LF	Pipe, 24 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	157.00	\$31,400.00	to SD outfall
510-ASW30			LF	Pipe, 30 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	249.00	\$0.00	
510-ASW36			LF	Pipe, 36 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	311.00	\$0.00	
510-ASW48			LF	Pipe, 48 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	351.00	\$0.00	
510-ASW54			LF	Pipe, 54 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	368.00	\$0.00	
510-ASW66			LF	Pipe, 66 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	403.00	\$0.00	
510-AWW6			LF	Pipe, 6" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	114.00	\$0.00	

510-AWW8	350	350	LF	Pipe, 8" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	125.00	\$43,750.00	WW service to main on Francisco
510-AWW12			LF	Pipe, 12" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	159.00	\$0.00	
510-AWW21			LF	Pipe, 21" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	299.00	\$0.00	
510-BW8×2		1	EA	Connecting New 8" Water Service to 2" Private Service	\$	4,600.00	\$4,600.00	imigation service connection
510-BW8×4		1	EA	Connecting New 8" Water Service to 4" Private Service	\$	6,200.00	\$6,200.00	domestic service connection
SP510-BW-M2		1	EA	New Water Meter, 2 Inch Meter and W Capital Recover Fee	\$	55,000.00	\$55,000.00	inigation meter/tap fee
SP510-BW-M4		1	EA	New Water Meter, 4 Inch Meter and W/WW Capital Recover Fee	\$	321,000.00	\$321,000.00	domestic meter/tap fee
SP510-BW-RM2			EA	Relocate Existing Water Meter, 2 Inch Tap Fee	\$	2,000.00	\$0.00	
$510-\mathrm{BWW} \times \times 6$		1	EA	Connecting New $8^{\prime \prime}$ Wastewater Service to Existing Private Service	\$	4,600.00	\$4,600.00	connect to WW main on Francisco
510-J W6x6			EA	Wet Connections, 6" Dia. $\times 6^{\prime \prime}$ Dia.	\$	3,100.00	\$0.00	
510-J W8x8		1	EA	Wet Connections, $8^{\prime \prime}$ Dia. $\times 8^{\prime \prime}$ Dia.	\$	3,300.00	\$3,300.00	connect to W main on Webberville
$510-\mathrm{JW} 16 \times 16$			EA	Wet Connections, 16 " Dia. $\times 16^{\prime \prime}$ Dia.	\$	4,600.00	\$0.00	
510-KW		3	TON	Ductile Iron Fittings	\$	11,500.00	\$34,500.00	$5 \mathrm{lb} / \mathrm{t}$
511S-A2		1	EA	Valves, Gate Type, 2" Diameter	\$	1,000.00	\$1,000.00	
511S-A3			EA	Valves, Gate Type, 3" Diameter	\$	1,200.00	\$0.00	
511S-A4	0	1	EA	Valves, Gate Type, 4" Diameter	\$	1,500.00	\$1,500.00	1 each/250 ft
511S-A6		2	EA	Valves, Gate Type, 6" Diameter	\$	1,900.00	\$3,800.00	for fire hydrants
511S-A8	0	1	EA	Valves, Gate Type, 8" Diameter	\$	2,300.00	\$2,300.00	1 each/250 ft
511s-B		2	EA	Fire Hydrant (see Deatil No. 5115-17)	\$	5,200.00	\$10,400.00	
511S-C2		1	EA	Pressure or Flow Control Valve Assemblies (2 Inch Backflow Preventer)	\$	4,000.00	\$4,000.00	for irrigation service
5115-C8	1	1	EA	Pressure or Flow Control Valve Assemblies (8 Inch Double Check Valve Backflow Preventer)	\$	16,000.00	\$16,000.00	For fire line
551			LF	Pipe Underdrains (for Tree Wells)	\$	50.00	\$0.00	
5915-B		4	SY	Dry-Riprap	\$	140.00	\$560.00	
594s-C			CY	Revet Mattresses, Twisted Woven Wire	\$	320.00	\$0.00	
602S-D			SY	Grass Sodding, General	\$	7.00	\$0.00	
604S-A			SY	Non-Native Seeding for Erosion Control Method	\$	6.00	\$0.00	
604S-E			SY	Mulch, Hardwood	\$	23.00	\$0.00	
605s-A		300	SY	Soil Retention Blanket	\$	24.00	\$7,200.00	
6085-1			EA	Plantings, Type BMP Native Grasses, Sedges, Woody Shrubs	\$	23.00	\$0.00	1 ft spacing in Rain Garden
6085-1	93	35	EA	Trees, 20 Gal	\$	600.00	\$21,000.00	30ft apart along sidewalk
6085-1			EA	Plants, 5 Gal	\$	50.00	\$0.00	
6085-2		1	LS	Irigation System	\$	10,000.00	\$10,000.00	
6095-C		1,700	SY	Native Seeding for Erosion Control	\$	7.00	\$11,900.00	
610S-A		500	LF	Tree Protective Fencing Type A Chain Link Fence	\$	4.00	\$2,000.00	
610S-R		2	EA	Removal of Existing Trees	\$	570.00	\$1,140.00	
SP628S-C		2	EA	Filter Curb Inlet Protection	\$	120.00	\$240.00	
6285-B		100	LF	Sediment Containment Dikes with Filter Fabric	\$	9.00	\$900.00	Triangular dike on pavement
6395		40	LF	Rock Berm	\$	39.00	\$1,560.00	
6405			SF	Mortared Rock Wall	\$	50.00	\$0.00	
6415		1	EA	Stabilized Construction Entrance	\$	1,700.00	\$1,700.00	
6425	1410	2,000	LF	Silt Fence for Erosion Control	\$	4.00	\$8,000.00	
6605			Cr	Bio-Filtration Media	\$	114.00	\$0.00	
700S-TM		1	LS	Total Mobilization Payment	\$	71,000.00	\$71,000.00	5\% of all costs excluding Mob cost
7015-A6			LF	Chain Link Fence, 6-Ft	\$	20.00	\$0.00	
7015-BS			EA	Chain Link Pedestrian Single Swing Gate ($6 \mathrm{Ft} \times 4 \mathrm{Ft}$)	\$	1,000.00	\$0.00	
701S-CD			EA	Chain Link Vehicular Double Swing Gate ($6 \mathrm{Ft} \times 20 \mathrm{Ft}$)	\$	2,300.00	\$0.00	
802S-BBond		1	EA	Bond Project Sign	\$	700.00	\$700.00	
8035-SF			LF	Safety Fence	\$	3.00	\$0.00	
SP803S-BAS			EA	Project Sign for Access	\$	400.00	\$0.00	
SP803S-CD		80	CD	Baricades, Signs, and Traffic Handling.	\$	600.00	\$48,000.00	160 CD/Block
SP803S-PS		35	CD	Portable Changeable Message Signs	\$	120.00	\$4,200.00	$70 \mathrm{CD} /$ Block
8245		4	EA	Traffic Signs	\$	400.00	\$1,600.00	

Aquatic Master Plan
Patterson
Doucet + Chan, a Division of Doucet \& Associates, Inc.
Texas Registration No. 3937

4355			LF	P.C. Concrete Steps	\$	160.00	\$0.00	
4395		1	EA	Parking Lot Bumper Curbs	\$	120.00	\$120.00	
504S-3W			EA	Adjusting Water Valve Boxes to Grade	\$	950.00	\$0.00	
505S-B20			LF	Encasement Pipe, Split 20 Inch Dia., Type Steel, 0.375 Inch Minimum Thickness	\$	243.00	\$0.00	
506-ABSW			EA	Abandonment of Exisitng Manholes, Storm Water	\$	2,200.00	\$0.00	
506-ABWW			EA	Abandonment of Exisitng Manholes, Wastewater	\$	2,200.00	\$0.00	
506-ABE			EA	Abandonment of Existing Manholes, Electrical and Telecommunications	\$	2,200.00	\$0.00	
506-BSW4×4			EA.	Box Manhole, 4ft $\times 4 \mathrm{ft}$	\$	6,600.00	\$0.00	
506-CNSW		1	EA	Connection of Storm Water Pipe to Existing System	\$	2,300.00	\$2,300.00	
506-CNWW		1	EA	Connection of Wastewater Pipe to Existing System	\$	2,300.00	\$2,300.00	connect to WW main on Wilshire
506-EDMSSW48			LVF	Extra Depth Special Storm Water Manhole, 48 In . Dia.	\$	340.00	\$0.00	
506-MSW48		1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 48 In . Dia.	\$	5,700.00	\$5,700.00	connect to SD system
506-MSW60			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 60 In . Dia.	\$	7,400.00	\$0.00	
506-MWW48		1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 4 Ft. Dia.	\$	6,300.00	\$6,300.00	connect to WW main on Wilshire
506-MWW60			EA	Standard Pre-Cast Manhole w/Pre-Cast Base, 5 Ft. Dia.	\$	8,000.00	\$0.00	
SP506-M		1	EA	By-Pass Pumping at Each Connection to Existing Manhole	\$	5,200.00	\$5,200.00	at connection to WW main on Wilshire
508S-H18			EA	Headwalls for 18"P Pipe	\$	3,000.00	\$0.00	
508S-H24		1	EA	Headwalls for 24" Pipe	\$	3,200.00	\$3,200.00	SD outfall
508S-H48			EA	Headwalls for 48" Pipe	\$	6,400.00	\$0.00	
508S-IG		3	EA	Inlet, Grate (Area Inlet)	\$	5,600.00	\$16,800.00	improve drainage around pool site
508S-110S		1	EA.	Inlet, Standard 10 Foot	\$	5,400.00	\$5,400.00	at ADA parking
5095-1		2,230	LF	Trench Excavation Safety Protective Systems (all depths)	\$	2.00	\$4,460.00	
510-AW2C		150	LF	Pipe, 2" Dia. Copper (all depths), including Excavation and Backfill	\$	91.00	\$13,650.00	irigation service
510-AW-4-350	200	200	LF	Pipe, 4" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	140.00	\$28,000.00	domestic service
510-AW-6-350		80	LF	Pipe, 6" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	159.00	\$12,720.00	fire hydrant leads
510-AW-8-350	650	700	LF	Pipe, 8" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	193.00	\$135,100.00	main service
510-ASW18		500	LF	Pipe, 18 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	136.00	\$68,000.00	improve drainage around pool site
510-ASW24		200	LF	Pipe, 24 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	157.00	\$31,400.00	to SD outfall
510-ASW30			LF	Pipe, 30 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	249.00	\$0.00	
510-ASW36			LF	Pipe, 36 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	311.00	\$0.00	
510-ASW48			LF	Pipe, 48 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	351.00	\$0.00	
510-ASW54			LF	Pipe, 54 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	368.00	\$0.00	
510-ASW66			LF	Pipe, 66 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	403.00	\$0.00	
510-AWW6			LF	Pipe, 6" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	114.00	\$0.00	

510-AWW8		400	LF	Pipe, 8" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	125.00	\$50,000.00	WW service to main on Wilshire
510-AWW12			LF	Pipe, 12" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	159.00	\$0.00	
510-AWW21			LF	Pipe, 21" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	299.00	\$0.00	
510-BW8×2		1	EA	Connecting New 8" Water Service to 2" Private Service	\$	4,600.00	\$4,600.00	irigation service connection
510-BW8×4		1	EA	Connecting New 8" Water Service to 4" Private Service	\$	6,200.00	\$6,200.00	domestic service connection
SP510-BW-M2		1	EA	New Water Meter, 2 Inch Meter and W Capital Recover Fee	\$	55,000.00	\$55,000.00	Irrigation meter/tap fee
SP510-BW-M4		1	EA	New Water Meter, 4 Inch Meter and W/WW Capital Recover Fee	\$	321,000.00	\$321,000.00	domestic meter/tap fee
SP510-BW-RM2			EA	Relocate Existing Water Meter, 2 Inch Tap Fee	\$	2,000.00	\$0.00	
510-BWW8×6		1	EA	Connecting New 8 " Wastewater Service to Existing Private Service	\$	4,600.00	\$4,600.00	connect to WW main on Wishire
510-J W6X6			EA	Wet Connections, 6 " Dia. $\times 6$ " Dia.	\$	3,100.00	\$0.00	
510-J W8X8		1	EA	Wet Connections, $8^{\prime \prime}$ Dia. $\times 8^{\prime \prime}$ Dia.	\$	3,300.00	\$3,300.00	connect to W main on Schieffer
$510-\mathrm{JW} 16 \times 16$			EA	Wet Connections, $16^{\prime \prime}$ Dia. $\times 16^{\prime \prime}$ Dia.	\$	4,600.00	\$0.00	
510-KW		3	TON	Ductile Iron Fittings	\$	11,500.00	\$34,500.00	$5 \mathrm{lb} / \mathrm{t}$
511S-A2		1	EA	Valves, Gate Type, 2" Diameter	\$	1,000.00	\$1,000.00	
511S-A3			EA	Valves, Gate Type, 3" Diameter	\$	1,200.00	\$0.00	
511S-A4	0.8	1	EA	Valves, Gate Type, 4" Diameter	\$	1,500.00	\$1,500.00	1 each/250 ft
511S-A6		2	EA	Valves, Gate Type, 6" Diameter	\$	1,900.00	\$3,800.00	for fire hydrants
511S-A8	2.6	3	EA	Valves, Gate Type, 8" Diameter	\$	2,300.00	\$6,900.00	1 each/250 ft
5115-B		2	EA	Fire Hydrant	\$	5,200.00	\$10,400.00	
511S-C2		1	EA	Pressure or Flow Control Valve Assemblies (2 Inch Backflow Preventer)	\$	4,000.00	\$4,000.00	for irrigation service
511S-C8	1	1	EA	Pressure or Flow Control Valve Assemblies (8 Inch Couble Check Valve Backflow Preventer)	\$	16,000.00	\$16,000.00	For fire line
551			LF	Pipe Underdrains (for Tree Wells)	\$	50.00	\$0.00	
5915-B		4	SY	Dry-Riprap	\$	140.00	\$560.00	SD outfall
594s-C			CY	Revet Mattresses, Twisted Woven Wire	\$	320.00	\$0.00	
602S-D			SY	Grass Sodding, General	\$	7.00	\$0.00	
604S-A			SY	Non-Native Seeding for Erosion Control Method	\$	6.00	\$0.00	
604S-E			SY	Mulch, Hardwood	\$	23.00	\$0.00	
605s-A		300	SY	Soil Retention Blanket	\$	24.00	\$7,200.00	
6085-1			EA	Plantings, Type BMP Native Grasses, Sedges, Woody Shrubs	\$	23.00	\$0.00	1 ft spacing in Rain Garden
6085-1	132.3333333	35	EA	Trees, 20 Gal	\$	600.00	\$21,000.00	30ft apart along sidewalk
6085-1			EA	Plants, 5 Gal	\$	50.00	\$0.00	
6085-2		1	LS	Irrigation System	\$	10,000.00	\$10,000.00	
6095-C		2,700	SY	Native Seeding for Erosion Control	\$	7.00	\$18,900.00	
610S-A		1,000	LF	Tree Protective Fencing Type A Chain Link Fence	\$	4.00	\$4,000.00	
610S-R		2	EA	Removal of Existing Trees	\$	570.00	\$1,140.00	
SP6285-C		2	EA	Filter Curb Inlet P rotection	\$	120.00	\$240.00	
6285-B		100	LF	Sediment Containment Dikes with Filter Fabric	\$	9.00	\$900.00	Triangular dike on pavement
6395		40	LF	Rock Berm	\$	39.00	\$1,560.00	
6405			SF	Mortared Rock Wall	\$	50.00	\$0.00	
6415		1	EA	Stabilized Construction Entrance	\$	1,700.00	\$1,700.00	
6425		1,500	LF	Silt Fence for Erosion Control	\$	4.00	\$6,000.00	
6605			CY	Bio-Filtration Media	\$	114.00	\$0.00	
700S-TM		1	LS	Total Mobilization Payment	\$	85,000.00	\$85,000.00	5\% of all costs excluding Mob cost
7015-A6			LF	Chain Link Fence, 6 -Ft	\$	20.00	\$0.00	
7015-BS			EA	Chain Link Pedestrian Single Swing Gate ($6 \mathrm{Ft} \times 4 \mathrm{Ft}$)	\$	1,000.00	\$0.00	
701S-CD			EA	Chain Link Vehicular Double Swing Gate ($6 \mathrm{Ft} \times 20 \mathrm{Ft}$)	\$	2,300.00	\$0.00	
802S-BBond		1	EA	Bond Project Sign	\$	700.00	\$700.00	
803S-SF			LF	Safety Fence	\$	3.00	\$0.00	
SP803S-BAS			EA	Project Sign for Access	\$	400.00	\$0.00	
SP803S-CD		80	CD	Baricades, Signs, and Traffic Handling.	\$	600.00	\$48,000.00	$160 \mathrm{CD} / \mathrm{Block}$
SP803S-PS		35	CD	Portable Changeable Message Signs	\$	120.00	\$4,200.00	$70 \mathrm{CD} /$ Block
8245		4	EA	Traffic Signs	\$	400.00	\$1,600.00	

Aquatic Master Plan
Ramsey
Doucet + Chan, a Division of Doucet \& Associates, Inc.
Texas Registration No. 3937

435S			LF	P.C. Concrete Steps	\$	160.00	\$0.00	
4395			EA	Parking Lot Bumper Curbs	\$	120.00	\$0.00	
504S-3W			EA	Adjusting Water Valve Boxes to Grade	\$	950.00	\$0.00	
505S-B20			LF	Encasement Pipe, Split 20 Inch Dia., Type Steel, 0.375 Inch Minimum Thickness	\$	243.00	\$0.00	
506-ABSW			EA	Abandonment of Exisitng Manholes, Storm Water	\$	2,200.00	\$0.00	
506-ABWW			EA	Abandonment of Exisitng Manholes, Wastewater	\$	2,200.00	\$0.00	
506-ABE			EA	Abandonment of Existing Manholes, Electrical and Telecommunications	\$	2,200.00	\$0.00	
506-BSW4×4			EA.	Box Manhole, 4ft $\times 4 \mathrm{ft}$	\$	6,600.00	\$0.00	
506-CNSW		1	EA	Connection of Storm Water Pipe to Existing System	\$	2,300.00	\$2,300.00	
506-CNWW		1	EA	Connection of Wastewater Pipe to Existing System	\$	2,300.00	\$2,300.00	connect to WW main on Rosedale
506-EDMSSW48			LVF	Extra Depth Special Storm Water Manhole, 48 In . Dia.	\$	340.00	\$0.00	
506-MSW48		1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 48 In. Dia.	\$	5,700.00	\$5,700.00	connect to SD system
506-MSW60			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 60 In. Dia.	\$	7,400.00	\$0.00	
506-MWW48		1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 4 Ft Dia.	\$	6,300.00	\$6,300.00	connect to WW main on Rosedale
506-MWW60			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 5 Ft. Dia.	\$	8,000.00	\$0.00	
SP506-M		1	EA	By-Pass Pumping at Each Connection to Existing Manhole	\$	5,200.00	\$5,200.00	at connection to WW main on Rosedale
508S-H18			EA	Headwalls for 18" Pipe	\$	3,000.00	\$0.00	
508S-H24		1	EA	Headwalls for 24" Pipe	\$	3,200.00	\$3,200.00	SD outfall
508S-H48			EA	Headwalls for 48" Pipe	\$	6,400.00	\$0.00	
508S-IG		3	EA	Inlet, Grate (Area Inlet)	\$	5,600.00	\$16,800.00	improve drainage around pool site
508S-I10S		1	EA.	Inlet, Standard 10 Foot	\$	5,400.00	\$5,400.00	at ADA parking
509S-1		1,480	LF	Trench Excavation Safety P rotective Systems (all depths)	\$	2.00	\$2,960.00	
510-AW2C		50	LF	Pipe, 2" Dia. Copper (all depths), including Excavation and Backfill	\$	91.00	\$4,550.00	irigation service
510-AW-4-350		50	LF	Pipe, 4" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	140.00	\$7,000.00	domestic service
510-AW-6-350		80	LF	Pipe, 6" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	159.00	\$12,720.00	fire hydrant leads
510-AW-8-350		300	LF	Pipe, 8" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	193.00	\$57,900.00	main service
510-ASW18		400	LF	Pipe, 18 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	136.00	\$54,400.00	improve drainage around pool site
510-ASW24		200	LF	Pipe, 24 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	157.00	\$31,400.00	to SD outfall
510-ASW30			LF	Pipe, 30 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	249.00	\$0.00	
510-ASW36			LF	Pipe, 36 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	311.00	\$0.00	
510-ASW48			LF	Pipe, 48 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	351.00	\$0.00	
510-ASW54			LF	Pipe, 54 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	368.00	\$0.00	
510-ASW66			LF	Pipe, 66 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	403.00	\$0.00	
510-AWW6			LF	Pipe, 6" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	114.00	\$0.00	

510-AWW8		400	LF	Pipe, 8" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	125.00	\$50,000.00	WW service to main on Rosedale
510-AWW12			LF	Pipe, 12" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	159.00	\$0.00	
510-AWW21			LF	Pipe, 21" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	299.00	\$0.00	
510-BW8×2		1	EA	Connecting New 8" Water Service to 2" Private Service	\$	4,600.00	\$4,600.00	imigation service connection
510-BW8×4		1	EA	Connecting New 8" Water Service to 4" Private Service	\$	6,200.00	\$6,200.00	domestic service connection
SP510-BW-M2		1	EA	New Water Meter, 2 Inch Meter and W Capital Recover Fee	\$	55,000.00	\$55,000.00	inigation meter/tap fee
SP510-BW-M4		1	EA	New Water Meter, 4 Inch Meter and W/WW Capital Recover Fee	\$	321,000.00	\$321,000.00	domestic meter/tap fee
SP510-BW-RM2			EA	Relocate Existing Water Meter, 2 Inch Tap Fee	\$	2,000.00	\$0.00	
$510-\mathrm{BWW} \times \times 6$		1	EA	Connecting New $8^{\prime \prime}$ Wastewater Service to Existing Private Service	\$	4,600.00	\$4,600.00	connect to WW main on Rosedale
510-J W6x6			EA	Wet Connections, 6" Dia. $\times 6^{\prime \prime}$ Dia.	\$	3,100.00	\$0.00	
510-J W8x8		1	EA	Wet Connections, 8" Dia. $\times 8^{\prime \prime}$ Dia.	\$	3,300.00	\$3,300.00	connect to W mai on 42nd
$510-\mathrm{JW} 16 \times 16$			EA	Wet Connections, 16 " Dia. $\times 16^{\prime \prime}$ Dia.	\$	4,600.00	\$0.00	
510-KW		3	TON	Ductile Iron Fittings	\$	11,500.00	\$34,500.00	$5 \mathrm{lb} / \mathrm{t}$
511S-A2		1	EA	Valves, Gate Type, 2" Diameter	\$	1,000.00	\$1,000.00	
511S-A3		2	EA	Valves, Gate Type, 3" Diameter	\$	1,200.00	\$2,400.00	for fire hydrants
5115-A4	0	1	EA	Valves, Gate Type, 4" Diameter	\$	1,500.00	\$1,500.00	1 each/250 ft
511S-A6		2	EA	Valves, Gate Type, 6" Diameter	\$	1,900.00	\$3,800.00	for fire hydrants
511S-A8	0	1	EA	Valves, Gate Type, 8" Diameter	\$	2,300.00	\$2,300.00	1 each/250 ft
511s-B		2	EA	Fire Hydrant	\$	5,200.00	\$10,400.00	
511S-C2		1	EA	Pressure or Flow Control Valve Assemblies (2 Inch Backflow Preventer)	\$	4,000.00	\$4,000.00	for irrigation service
5115-C8	1	1	EA	Pressure or Flow Control Valve Assemblies (8 Inch Double Check Valve Backflow Preventer)	\$	16,000.00	\$16,000.00	For fire line
551			LF	Pipe Underdrains (for Tree Wells)	\$	50.00	\$0.00	
5915-B		4	SY	Dry-Riprap	\$	140.00	\$560.00	SD outfall
594s-C			CY	Revet Mattresses, Twisted Woven Wire	\$	320.00	\$0.00	
602S-D			SY	Grass Sodding, General	\$	7.00	\$0.00	
604S-A			SY	Non-Native Seeding for Erosion Control Method	\$	6.00	\$0.00	
604S-E			SY	Mulch, Hardwood	\$	23.00	\$0.00	
605S-A		300	SY	Soil Retention Blanket	\$	24.00	\$7,200.00	
6085-1			EA	Plantings, Type BMP Native Grasses, Sedges, Woody Shrubs	\$	23.00	\$0.00	1 ft spacing in Rain Garden
6085-1	85.5	35	EA	Trees, 20 Gal	\$	600.00	\$21,000.00	30ft apart along sidewalk
6085-1			EA	Plants, 5 Gal	\$	50.00	\$0.00	
6085-2		1	LS	Irigation System	\$	10,000.00	\$10,000.00	
6095-C		400	SY	Native Seeding for Erosion Control	\$	7.00	\$2,800.00	
610S-A			LF	Tree Protective Fencing Type A Chain Link Fence	\$	4.00	\$0.00	
610S-R		10	EA	Removal of Existing Trees	\$	570.00	\$5,700.00	
SP628S-C		2	EA	Filter Curb Inlet Protection	\$	120.00	\$240.00	
6285-B		100	LF	Sediment Containment Dikes with Filter Fabric	\$	9.00	\$900.00	Triangular dike on pavement
6395		40	LF	Rock Berm	\$	39.00	\$1,560.00	
6405			SF	Mortared Rock Wall	\$	50.00	\$0.00	
6415		1	EA	Stabilized Construction Entrance	\$	1,700.00	\$1,700.00	
6425		2,000	LF	Silt Fence for Erosion Control	\$	4.00	\$8,000.00	
6605			Cr	Bio-Filtration Media	\$	114.00	\$0.00	
700S-TM		1	LS	Total Mobilization Payment	\$	71,000.00	\$71,000.00	5\% of all costs excluding Mob cost
7015-A6			LF	Chain Link Fence, 6-Ft	\$	20.00	\$0.00	
7015-BS			EA	Chain Link Pedestrian Single Swing Gate ($6 \mathrm{Ft} \times 4 \mathrm{Ft}$)	\$	1,000.00	\$0.00	
701S-CD			EA	Chain Link Vehicular Double Swing Gate ($6 \mathrm{Ft} \times 20 \mathrm{Ft}$)	\$	2,300.00	\$0.00	
802S-BBond		1	EA	Bond Project Sign	\$	700.00	\$700.00	
8035-SF			LF	Safety Fence	\$	3.00	\$0.00	
SP803S-BAS			EA	Project Sign for Access	\$	400.00	\$0.00	
SP803S-CD		80	CD	Baricades, Signs, and Traffic Handling.	\$	600.00	\$48,000.00	160 CD/Block
SP803S-PS		35	CD	Portable Changeable Message Signs	\$	120.00	\$4,200.00	$70 \mathrm{CD} /$ Block
8245		4	EA	Traffic Signs	\$	400.00	\$1,600.00	

Aquatic Master Plan
Reed

435S			LF	P.C. Concrete Steps	\$	160.00	\$0.00	
4395			EA	Parking Lot Bumper Curbs	\$	120.00	\$0.00	
504S-3W			EA	Adjusting Water Valve Boxes to Grade	\$	950.00	\$0.00	
505S-B20			LF	Encasement Pipe, Split 20 Inch Dia., Type Steel, 0.375 Inch Minimum Thickness	\$	243.00	\$0.00	
506-ABSW			EA	Abandonment of Exisitng Manholes, Storm Water	\$	2,200.00	\$0.00	
506-ABWW			EA	Abandonment of Exisitng Manholes, Wastewater	\$	2,200.00	\$0.00	
506-ABE			EA	Abandonment of Existing Manholes, Electrical and Telecommunications	\$	2,200.00	\$0.00	
506-BSW4×4			EA.	Box Manhole, $4 \mathrm{ft} \times 4 \mathrm{ft}$	\$	6,600.00	\$0.00	
506-CNSW		1	EA	Connection of Storm Water P ipe to Existing System	\$	2,300.00	\$2,300.00	
506-CNWW		1	EA	Connection of Wastewater P ipe to Existing System	\$	2,300.00	\$2,300.00	connect to WW main on Pecos
506-EDMSSW48			LVF	Extra Depth Special Storm Water Manhole, 48 In . Dia.	\$	340.00	\$0.00	
506-MSW48		1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 48 In. Dia.	\$	5,700.00	\$5,700.00	connect to SD system
506-MSW60			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 60 In . Dia.	\$	7,400.00	\$0.00	
506-MWW48		1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 4 Ft. Dia.	\$	6,300.00	\$6,300.00	connect to WW main on Pecos
506-MWW60			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 5 Ft. Dia.	\$	8,000.00	\$0.00	
SP 506-M		1	EA	By-Pass Pumping at Each Connection to Existing Manhole	\$	5,200.00	\$5,200.00	at connection to WW main on Pecos
508S-H18			EA	Headwalls for 18" Pipe	\$	3,000.00	\$0.00	
508S-H24		1	EA	Headwalls for 24" Pipe	\$	3,200.00	\$3,200.00	SD outfall
508S-H48			EA	Headwalls for 48" Pipe	\$	6,400.00	\$0.00	
508S-IG		3	EA	Inlet, Grate (Area Inlet)	\$	5,600.00	\$16,800.00	improve drainage around pool site
508S-I10S		1	EA.	Inlet, Standard 10 Foot	\$	5,400.00	\$5,400.00	at ADA parking
509S-1		1,580	LF	Trench Excavation Safety Protective Systems (all depths)	\$	2.00	\$3,160.00	
510-AW2C		80	LF	Pipe, 2" Dia. Copper (all depths), including Excavation and Backfill	\$	91.00	\$7,280.00	irrigation service
510-AW-4-350		50	LF	Pipe, 4" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	140.00	\$7,000.00	domestic service
510-AW-6-350		80	LF	Pipe, 6 " Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	159.00	\$12,720.00	fire hydrant leads
510-AW-8-350		400	LF	Pipe, 8" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	193.00	\$77,200.00	main service
510-ASW18	300	400	LF	Pipe, 18 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	136.00	\$54,400.00	improve drainage around pool site
510-ASW24		200	LF	Pipe, 24 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	157.00	\$31,400.00	to SD outfall
510-ASW30			LF	Pipe, 30 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	249.00	\$0.00	
510-ASW36			LF	Pipe, 36 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	311.00	\$0.00	
510-ASW48			LF	Pipe, 48 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	351.00	\$0.00	
510-ASW54			LF	Pipe, 54 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	368.00	\$0.00	
510-ASW66			LF	Pipe, 66 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	403.00	\$0.00	
510-AWW6			LF	Pipe, 6" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	114.00	\$0.00	

510-AWW8		370	LF	Pipe, 8" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	125.00	\$46,250.00	WW service to main on Pecos
510-AWW12			LF	Pipe, 12" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	159.00	\$0.00	
510-AWW21			LF	Pipe, 21" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	299.00	\$0.00	
510-BW8×2		1	EA	Connecting New 8" Water Service to 2" Private Service	\$	4,600.00	\$4,600.00	imigation service connection
510-BW8x4		1	EA	Connecting New 8" Water Service to 4" Private Service	\$	6,200.00	\$6,200.00	domestic service connection
SP510-BW-M2		1	EA	New Water Meter, 2 Inch Meter and W Capital Recover Fee	\$	55,000.00	\$55,000.00	imigation meter/tap fee
SP510-BW-M4		1	EA	New Water Meter, 4 Inch Meter and W/WW Capital Recover Fee	\$	321,000.00	\$321,000.00	domestic meter/tap fee
SP510-BW-RM2			EA	Relocate Existing Water Meter, 2 Inch Tap Fee	\$	2,000.00	\$0.00	
510-BWW8×6		1	EA	Connecting New 8"Wastewater Service to Existing Private Service	\$	4,600.00	\$4,600.00	connect to WW main on Pecos
510-J W6x6			EA	Wet Connections, $6^{\prime \prime}$ Dia. $\times 6^{\prime \prime}$ Dia.	\$	3,100.00	\$0.00	
510-J W8x8		1	EA	Wet Connections, $8^{\text {" }}$ Dia. $\times 8^{\prime \prime}$ Dia.	\$	3,300.00	\$3,300.00	connect to W main on Pecos
$510-\mathrm{JW16} \mathrm{\times 16}$			EA	Wet Connections, $16{ }^{\text {" Dia. } \times 16 \text { " Dia. }}$	\$	4,600.00	\$0.00	
510-KW		2	TON	Ductile Iron Fittings	\$	11,500.00	\$23,000.00	$5 \mathrm{lb} / \mathrm{t}$
511S-A2		1	EA	Valves, Gate Type, 2" Diameter	\$	1,000.00	\$1,000.00	
511S-A3			EA	Valves, Gate Type, 3" Diameter	\$	1,200.00	\$0.00	
511S-A4	0	1	EA	Valves, Gate Type, 4" Diameter	\$	1,500.00	\$1,500.00	1 each/250 ft
511S-A6		2	EA	Valves, Gate Type, 6" Diameter	\$	1,900.00	\$3,800.00	for fire hydrants
511S-A8	0	1	EA	Valves, Gate Type, 8" Diameter	\$	2,300.00	\$2,300.00	1 each/250 ft
511s-B		2	EA	Fire Hydrant (see Deatil No. 5115-17)	\$	5,200.00	\$10,400.00	
511S-C2		1	EA	Pressure or Flow Control Valve Assemblies (2 Inch Backflow Preventer)	\$	4,000.00	\$4,000.00	for irrigation service
511S-C8	1	1	EA	Pressure or Flow Control Valve Assemblies (8 Inch Double Check Valve Backflow Preventer)	\$	16,000.00	\$16,000.00	For fire line
551			LF	Pipe Underdrains (for Tree Wells)	\$	50.00	\$0.00	
5915-B		4	SY	Dry-Riprap	\$	140.00	\$560.00	SD outfall
$5945-\mathrm{C}$			CY	Revet Mattresses, Twisted Woven Wire	\$	320.00	\$0.00	
602S-D			SY	Grass Sodding, General	\$	7.00	\$0.00	
604S-A			SY	Non-Native Seeding for Erosion Control Method	\$	6.00	\$0.00	
604S-E			SY	Mulch, Hardwood	\$	23.00	\$0.00	
605S-A		300	SY	Soil Retention Blanket	\$	24.00	\$7,200.00	
6085-1			EA	Plantings, Type BMP Native Grasses, Sedges, Woody Shrubs	\$	23.00	\$0.00	1 ft spacing in Rain Garden
6085-1	173.3333333	35	EA	Trees, 20 Gal	\$	600.00	\$21,000.00	30ft apart along sidewalk
6085-1			EA	Plants, 5 Gal	\$	50.00	\$0.00	
6085-2		1	LS	Irrigation System	\$	10,000.00	\$10,000.00	
6095-C		2,600	SY	Native Seeding for Erosion Control	\$	7.00	\$18,200.00	
6105-A		2,000	LF	Tree Protective Fencing Type A Chain Link Fence	\$	4.00	\$8,000.00	
610S-R		4	EA	Removal of Existing Trees	\$	570.00	\$2,280.00	
SP628S-C		2	EA	Filter Curb Inlet Protection	\$	120.00	\$240.00	
6285-B		100	LF	Sediment Containment Dikes with Filter Fabric	\$	9.00	\$900.00	Triangular dike on pavement
6395		40	LF	Rock Berm	\$	39.00	\$1,560.00	
6405			SF	Mortared Rock Wall		50.00	\$0.00	
6415		1	EA	Stabilized Construction Entrance	\$	1,700.00	\$1,700.00	
6425		2,500	LF	Silt Fence for Erosion Control	\$	4.00	\$10,000.00	
6605			CY	Bio-Filtration Media	\$	114.00	\$0.00	
700S-TM		1	LS	Total Mobilization Payment	\$	91,000.00	\$91,000.00	5\% of all costs excluding Mob cost
7015-A6			LF	Chain Link Fence, 6 -Ft	\$	20.00	\$0.00	
7015-BS			EA	Chain Link Pedestrian Single Swing Gate ($6 \mathrm{Ft} \times 4 \mathrm{Ft}$)	\$	1,000.00	\$0.00	
7015-CD			EA	Chain Link Vehicular Double Swing Gate ($6 \mathrm{Ft} \times 20 \mathrm{Ft}$)	\$	2,300.00	\$0.00	
802S-BBond		1	EA	Bond Project Sign	\$	700.00	\$700.00	
8035-SF			LF	Safety Fence	\$	3.00	\$0.00	
SP803S-BAS			EA	Project Sign for Access	\$	400.00	\$0.00	
SP803S-CD		80	CD	Barricades, Signs, and Traffic Handling.	\$	600.00	\$48,000.00	$160 \mathrm{CD} / \mathrm{Block}$
SP803S-PS		35	CD	Portable Changeable Message Signs	-	120.00	\$4,200.00	$70 \mathrm{CD} / \mathrm{Block}$
8245		4	EA	Traffic Signs	\$	400.00	\$1,600.00	

827S	3	EA	Bicycle Lane Signage	\$	400.00	\$1,200.00	
8295	2,600	LF	Bicycle Lane Markings	\$	8.00	\$20,800.00	
871S-A4W	200	LF	Reflectorized Type 1 Thermoplastic Pavement Markings, 4 Inches in Width, 100 Mils in Thickness, White in Color	\$	3.00	\$600.00	
871S-A24W		LF	Reflectorized Type 1 Thermoplastic Pavement Markings, 24 Inches in Width, 100 Mils in Thickness, White in Color	\$	16.00	\$0.00	
871S-D-SYMBOL-W	1	EA	Reflectorized Type 1 Pavement Marking, Symbol, 100 Mils in Thickness, White in Color	\$	400.00	\$400.00	
874S-A	200	LF	Eliminating Existing Pavement Markings, 4 Inches to 12 Inches in Width	\$	12.00	\$2,400.00	
1301S-B		SY	Granite Gravel Hike \& Bike Trail	\$	21.00	\$0.00	10^{\prime} wide connect to surrounding streets
16550 S	1	EA	Street Light Standard Foundation, Including Pole Base and Conduit Stub Up	\$	1,600.00	\$1,600.00	
	1	EA	Light Pole and LED Light	\$	3,700.00	\$3,700.00	
	1	EA	Electrical Panel Enclosure	\$	21,000.00	\$21,000.00	
	1	EA	Electrical Pull Box	\$	1,200.00	\$1,200.00	
	100	LF	Electrical Trenching, Conduits, Conductors for Lighting	\$	123.00	\$12,300.00	100' per light pole
SUBTOTAL CONTINGENCY $\$ 1,909,632.00$ TOTAL $\$ 477,408.00$							

Aquatic Master Plan
Doucet + Chan, a Division of Doucet \& Associates, Inc.
Texas Registration No. 3937

435S		LF	P.C. Concrete Steps	\$	160.00	\$0.00	
439S	3	EA	Parking Lot Bumper Curbs	\$	120.00	\$360.00	
504S-3W		EA	Adjusting Water Valve Boxes to Grade	\$	950.00	\$0.00	
505S-B20		LF	Encasement Pipe, Split 20 Inch Dia., Type Steel, 0.375 Inch Minimum Thickness	\$	243.00	\$0.00	
506-ABSW		EA	Abandonment of Exisitng Manholes, Storm Water	\$	2,200.00	\$0.00	
506-ABWW		EA	Abandonment of Exisitng Manholes, Wastewater	\$	2,200.00	\$0.00	
506-ABE		EA	Abandonment of Existing Manholes, Electrical and Telecommunications	\$	2,200.00	\$0.00	
506-BSW4×4		EA.	Box Manhole, 4ft $\times 4 \mathrm{ft}$	\$	6,600.00	\$0.00	
506-CNSW	1	EA	Connection of Storm Water Pipe to Existing System	\$	2,300.00	\$2,300.00	
506-CNWW	1	EA	Connection of Wastewater Pipe to Existing System	\$	2,300.00	\$2,300.00	connect to WW main on Chestnut
506-EDMSSW48		LVF	Extra Depth Special Storm Water Manhole, 48 In . Dia.	\$	340.00	\$0.00	
506-MSW48	1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 48 In. Dia.	\$	5,700.00	\$5,700.00	connect to SD system
506-MSW60		EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 60 In. Dia.	\$	7,400.00	\$0.00	
506-MWW48	1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 4 Ft Dia.	\$	6,300.00	\$6,300.00	connect to WW main on Chestnut
506-MWW60		EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 5 Ft. Dia.	\$	8,000.00	\$0.00	
SP 506-M	1	EA	By-Pass Pumping at Each Connection to Existing Manhole	\$	5,200.00	\$5,200.00	at connection to WW main on Chestnut
508S-H18		EA	Headwalls for 18" Pipe	\$	3,000.00	\$0.00	
508S-H24	1	EA	Headwalls for 24" Pipe	\$	3,200.00	\$3,200.00	SD outfall
508S-H48		EA	Headwalls for 48" Pipe	\$	6,400.00	\$0.00	
508S-IG	3	EA	Inlet, Grate (Area Inlet)	\$	5,600.00	\$16,800.00	improve drainage around pool site
508S-110S	1	EA.	Inlet, Standard 10 Foot	\$	5,400.00	\$5,400.00	at ADA parking
509S-1	1,940	LF	Trench Excavation Safety P rotective Systems (all depths)	\$	2.00	\$3,880.00	
510-AW2C	40	LF	Pipe, 2" Dia. Copper (all depths), including Excavation and Backfill	\$	91.00	\$3,640.00	irigation service
510-AW-4-350	50	LF	Pipe, 4" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	140.00	\$7,000.00	domestic service
510-AW-6-350	80	LF	Pipe, 6" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	159.00	\$12,720.00	fire hydrant leads
510-AW-8-350	340	LF	Pipe, 8" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	193.00	\$65,620.00	main service
510-ASW18	800	LF	Pipe, 18 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	136.00	\$108,800.00	improve drainage around pool site
510-ASW24	200	LF	Pipe, 24 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	157.00	\$31,400.00	to SD outfall
510-ASW30		LF	Pipe, 30 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	249.00	\$0.00	
510-ASW36		LF	Pipe, 36 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	311.00	\$0.00	
510-ASW48		LF	Pipe, 48 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	351.00	\$0.00	
510-ASW54		LF	Pipe, 54 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	368.00	\$0.00	
510-ASW66		LF	Pipe, 66 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	403.00	\$0.00	
510-AWW6		LF	Pipe, 6" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	114.00	\$0.00	

510-AWW8		430	LF	Pipe, 8" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	125.00	\$53,750.00	WW service to main on Chestrut
510-AWW12			LF	Pipe, 12" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	159.00	\$0.00	
510-AWW21			LF	Pipe, 21" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	299.00	\$0.00	
510-BW8×2		1	EA	Connecting New 8" Water Service to 2" Private Service	\$	4,600.00	\$4,600.00	irigation service connection
510-BW8×4		1	EA	Connecting New 8" Water Service to 4" Private Service	\$	6,200.00	\$6,200.00	domestic service connection
SP510-BW-M2		1	EA	New Water Meter, 2 Inch Meter and W Capital Recover Fee	\$	55,000.00	\$55,000.00	irigation meter/tap fee
SP510-BW-M4		1	EA	New Water Meter, 4 Inch Meter and W/WW Capital Recover Fee	\$	321,000.00	\$321,000.00	domestic meter/tap fee
SP510-BW-RM2			EA	Relocate Existing Water Meter, 2 Inch Tap Fee	\$	2,000.00	\$0.00	
$510-\mathrm{BWW} \times \times 6$		1	EA	Connecting New $8^{\prime \prime}$ Wastewater Service to Existing Private Service	\$	4,600.00	\$4,600.00	connect to WW main on Chestrut
510-J W6x6			EA	Wet Connections, 6" Dia. $\times 6^{\prime \prime}$ Dia.	\$	3,100.00	\$0.00	
510-J W8x8		1	EA	Wet Connections, 8" Dia. $\times 8^{\prime \prime}$ Dia.	\$	3,300.00	\$3,300.00	connect to W main on Rosewood
$510-\mathrm{JW} 16 \times 16$			EA	Wet Connections, 16 " Dia. $\times 16^{\prime \prime}$ Dia.	\$	4,600.00	\$0.00	
510-KW		3	TON	Ductile Iron Fittings	\$	11,500.00	\$34,500.00	$5 \mathrm{lb} / \mathrm{t}$
511S-A2		1	EA	Valves, Gate Type, 2" Diameter	\$	1,000.00	\$1,000.00	
511S-A3			EA	Valves, Gate Type, 3" Diameter	\$	1,200.00	\$0.00	
511S-A4	0	1	EA	Valves, Gate Type, 4" Diameter	\$	1,500.00	\$1,500.00	1 each/250 ft
511S-A6		2	EA	Valves, Gate Type, 6" Diameter	\$	1,900.00	\$3,800.00	for fire hydrants
511S-A8	0	1	EA	Valves, Gate Type, 8" Diameter	\$	2,300.00	\$2,300.00	1 each/250 ft
511s-B		2	EA	Fire Hydrant	\$	5,200.00	\$10,400.00	
511S-C2		1	EA	Pressure or Flow Control Valve Assemblies (2 Inch Backflow Preventer)	\$	4,000.00	\$4,000.00	for irrigation service
5115-C8	1	1	EA	Pressure or Flow Control Valve Assemblies (8 Inch Double Check Valve Backflow Preventer)	\$	16,000.00	\$16,000.00	For fire line
551			LF	Pipe Underdrains (for Tree Wells)	\$	50.00	\$0.00	
5915-B		4	SY	Dry-Riprap	\$	140.00	\$560.00	SD outfall
594s-C			CY	Revet Mattresses, Twisted Woven Wire	\$	320.00	\$0.00	
602S-D			SY	Grass Sodding, General	\$	7.00	\$0.00	
604S-A			SY	Non-Native Seeding for Erosion Control Method	\$	6.00	\$0.00	
604S-E			SY	Mulch, Hardwood	\$	23.00	\$0.00	
605S-A		300	SY	Soil Retention Blanket	\$	24.00	\$7,200.00	
6085-1			EA	Plantings, Type BMP Native Grasses, Sedges, Woody Shrubs	\$	23.00	\$0.00	1 ft spacing in Rain Garden
6085-1	49.46666667	50	EA	Trees, 20 Gal	\$	600.00	\$30,000.00	30ft apart along sidewalk
6085-1			EA	Plants, 5 Gal	\$	50.00	\$0.00	
6085-2		1	LS	Irigation System	\$	10,000.00	\$10,000.00	
6095-C		1,200	SY	Native Seeding for Erosion Control	\$	7.00	\$8,400.00	
610S-A		250	LF	Tree Protective Fencing Type A Chain Link Fence	\$	4.00	\$1,000.00	
610S-R		10	EA	Removal of Existing Trees	\$	570.00	\$5,700.00	
SP628S-C		2	EA	Filter Curb Inlet Protection	\$	120.00	\$240.00	
6285-B		100	LF	Sediment Containment Dikes with Filter Fabric	\$	9.00	\$900.00	Triangular dike on pavement
6395		40	LF	Rock Berm	\$	39.00	\$1,560.00	
6405			SF	Mortared Rock Wall	\$	50.00	\$0.00	
6415		1	EA	Stabilized Construction Entrance	\$	1,700.00	\$1,700.00	
6425		2,000	LF	Silt Fence for Erosion Control	\$	4.00	\$8,000.00	
6605			Cr	Bio-Filtration Media	\$	114.00	\$0.00	
700S-TM		1	LS	Total Mobilization Payment	\$	67,000.00	\$67,000.00	5\% of all costs excluding Mob cost
7015-A6			LF	Chain Link Fence, 6-Ft	\$	20.00	\$0.00	
7015-BS			EA	Chain Link Pedestrian Single Swing Gate ($6 \mathrm{Ft} \times 4 \mathrm{Ft}$)	\$	1,000.00	\$0.00	
701S-CD			EA	Chain Link Vehicular Double Swing Gate ($6 \mathrm{Ft} \times 20 \mathrm{Ft}$)	\$	2,300.00	\$0.00	
802S-BBond		1	EA	Bond Project Sign	\$	700.00	\$700.00	
8035-SF			LF	Safety Fence	\$	3.00	\$0.00	
SP803S-BAS			EA	Project Sign for Access	\$	400.00	\$0.00	
SP803S-CD		80	CD	Baricades, Signs, and Traffic Handling.	\$	600.00	\$48,000.00	160 CD/Block
SP803S-PS		35	CD	Portable Changeable Message Signs	\$	120.00	\$4,200.00	$70 \mathrm{CD} /$ Block
8245		4	EA	Traffic Signs	\$	400.00	\$1,600.00	

Aquatic Master Plan
Doucet + Chan, a Division of Doucet \& Associates, Inc.
Texas Registration No. 3937

Item No.	Quantity Calculation	Quantity	Unit	Item Description		Unit Price	Amount	Notes
104S-A		100	LF	Remove P.C. Concrete Curb	\$	20.00	\$2,000.00	parking expansion + curb ramp reconstruction
104S-B			SF	Remove P.C. Concrete Slab	\$	20.00	\$0.00	
104S-C		350	SF	Remove P.C. Concrete Sidewalks \& Driveways	\$	20.00	\$7,000.00	
SP104S			SF	Demolition, Buildings	\$	10.00	\$0.00	
SP104S-UB			EA	Demolition, Utility Boxes	\$	2,700.00	\$0.00	
			CF	Demolition, Masonry Walls, Stone with Mortar	\$	8.00	\$0.00	12" thick
			LF	Demolition, Water/Wastewater Pipe, 6 Inch to 12 Inch Dia.	\$	29.00	\$0.00	
			LF	Demolition, Electric Conduits	\$	7.00	\$0.00	
			EA	Demolition, Light Pole	\$	600.00	\$0.00	
			LF	Demolition, Chain Link Fence	\$	7.00	\$0.00	
			CY	Demolition Disposal, Loading and 5 Mile Haul to Dump (Non-Hazardous)	\$	22.00	\$0.00	
			CY-Mi	Demolition, Disposal Haul, Per Mile over 5 Miles	\$	2.00	\$0.00	
			TON	Demolition, Dump Charge	\$	110.00	\$0.00	
111S-A	633.0864198	820	CY	Excavation, Unclassified	\$	52.00	\$42,640.00	$12420 s f+4000 s f=16420 s f \times 16^{\prime \prime}$
120S-A			CY	Channel Excavation	\$	90.00	\$0.00	
130S-A			CY	Class A (Select Borrow)	\$	59.00	\$0.00	
130S-T			CY	Class C (Topsoil)	\$	44.00	\$0.00	
132S-A			CY	Embankment (Fill)	\$	29.00	\$0.00	
2015	1424.444444	1,830	SY	Sub-Grade Preparation	\$	9.00	\$16,470.00	16420sf
2035-A8		1,830	SY	Lime Treated Subgrade, 8 Inch Thickness	\$	15.30	\$27,999.00	
210S-A8	316.5432099	410	CY	Flexible Base, 8 Inch Thickness	\$	42.00	\$17,220.00	16420sf x 8'
340S-B-C3			SY	Hot Mix Asphaltic Concrete Pavement, 3 Inches, Type C	\$	22.00	\$0.00	
340S-B-C2		1,380	SY	Hot Mix Asphaltic Concrete Pavement, 2 Inches, Type C	\$	17.00	\$23,460.00	12420sf
340S-B-C1.5			SY	Hot Mix Asphaltic Concrete Pavement, 1-1/2 Inches, Type C	\$	15.00	\$0.00	
360S-A			SY	7 Inch Concrete Pavement	\$	108.00	\$0.00	
403S-CY			CY	Concrete Structure,	\$	720.00	\$0.00	
403S-EA-D		1	EA	Concrete Structure, Storm Water Detention	\$	12,000.00	\$12,000.00	\$3/sf $\times 4000 \mathrm{sf} \mathrm{IC}$
403S-EA-WQ		1	EA	Concrete Structure, Storm Water Quality Treatment	\$	17,200.00	\$17,200.00	\$4.20/sf $\times 4000$ sf IC
414S-C			SF	Cast in Place Portland Cement Concrete Retaining Wall, Including Reinforcement	\$	61.00	\$0.00	
430S-A		550	LF	P.C. Concrete Curb and Gutter (Excavation)	\$	18.00	\$9,900.00	
430S-E			LF	P.C. Concrete Laydown Curb (Excavation)	\$	22.00	\$0.00	
432S-5	3900	4,000	SF	New P.C. Concrete Sidewalks, 5 Inch thickness	\$	12.00	\$48,000.00	
432S-6			SF	New P.C. Concrete Sidewalks, 6 Inch thickness	\$	14.00	\$0.00	
432S-RP-1		4	EA	P.C. Sidewalk Curb Ramp with Pavers (Type I)	\$	1,800.00	\$7,200.00	
432S-SAC-1			EA	Streetscape Bench (5ft with Back)	\$	3,800.00	\$0.00	
432S-SAC-1			EA	Streetscape Bench (5ft without Back)	\$	2,300.00	\$0.00	
432S-SAC-2			EA	Streetscape Chair (2 ft)	\$	2,300.00	\$0.00	
432S-SAC-3			EA	Streetscape Bicycle Rack	\$	800.00	\$0.00	
432S-SAC-4			EA	Streetscape Trash Receptacle	\$	2,900.00	\$0.00	
432S-SAC-7C			EA	Streetscape Tree Well \& Grate	\$	6,600.00	\$0.00	
432S-PRC-1		150	LF	Pedestrian ADA Railing	\$	102.00	\$15,300.00	
SP432S-K			EA	Art Kiosks	\$	25,000.00	\$0.00	
433S-C			SF	Type II P.C. Concrete Driveway	\$	11.00	\$0.00	

435S		LF	P.C. Concrete Steps	\$	160.00	\$0.00	
4395	2	EA	Parking Lot Bumper Curbs	\$	120.00	\$240.00	
504S-3W		EA	Adjusting Water Valve Boxes to Grade	\$	950.00	\$0.00	
505S-B20		LF	Encasement Pipe, Split 20 Inch Dia., Type Steel, 0.375 Inch Minimum Thickness	\$	243.00	\$0.00	
506-ABSW		EA	Abandonment of Exisitng Manholes, Storm Water	\$	2,200.00	\$0.00	
506-ABWW		EA	Abandonment of Exisitng Manholes, Wastewater	\$	2,200.00	\$0.00	
506-ABE		EA	Abandonment of Existing Manholes, Electrical and Telecommunications	\$	2,200.00	\$0.00	
506-BSW4×4		EA.	Box Manhole, 4ft $\times 4 \mathrm{ft}$	\$	6,600.00	\$0.00	
506-CNSW	1	EA	Connection of Storm Water Pipe to Existing System	\$	2,300.00	\$2,300.00	
506-CNWW	1	EA	Connection of Wastewater P ipe to Existing System	\$	2,300.00	\$2,300.00	connect to WW main on Lyndhurst
506-EDMSSW48		LVF	Extra Depth Special Storm Water Manhole, 48 In . Dia.	\$	340.00	\$0.00	
506-MSW48	1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 48 In . Dia.	\$	5,700.00	\$5,700.00	connect to SD system
506-MSW60		EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 60 In. Dia.	\$	7,400.00	\$0.00	
506-MWW48	1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 4 Ft Dia.	\$	6,300.00	\$6,300.00	connect to WW main on Lyndhurst
506-MWW60		EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 5 Ft. Dia.	\$	8,000.00	\$0.00	
SP506-M	1	EA	By-Pass Pumping at Each Connection to Existing Manhole	\$	5,200.00	\$5,200.00	at connection to WW main on Lyndhurst
508S-H18		EA	Headwalls for 18" Pipe	\$	3,000.00	\$0.00	
508S-H24	1	EA	Headwalls for 24" Pipe	\$	3,200.00	\$3,200.00	SD outfall
508S-H48		EA	Headwalls for 48" Pipe	\$	6,400.00	\$0.00	
508S-IG	3	EA	Inlet, Grate (Area Inlet)	\$	5,600.00	\$16,800.00	improve drainage around pool site
508S-110S	2	EA.	Inlet, Standard 10 Foot	\$	5,400.00	\$10,800.00	at ADA parking and parking expansion
509S-1	980	LF	Trench Excavation Safety Protective Systems (all depths)	\$	2.00	\$1,960.00	
510-AW2C	100	LF	Pipe, 2" Dia. Copper (all depths), including Excavation and Backfill	\$	91.00	\$9,100.00	irrigation service
510-AW-4-350	100	LF	Pipe, 4" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	140.00	\$14,000.00	domestic service
510-AW-6-350	80	LF	Pipe, 6" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	159.00	\$12,720.00	fire hydrant leads
510-AW-8-350	100	LF	Pipe, 8" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	193.00	\$19,300.00	main service
510-ASW18	300	LF	Pipe, 18 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	136.00	\$40,800.00	improve drainage around pool site
510-ASW24	200	LF	Pipe, 24 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	157.00	\$31,400.00	to SD outfall
510-ASW30		LF	Pipe, 30 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	249.00	\$0.00	
510-ASW36		LF	Pipe, 36 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	311.00	\$0.00	
510-ASW48		LF	Pipe, 48 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	351.00	\$0.00	
510-ASW54		LF	Pipe, 54 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	368.00	\$0.00	
510-ASW66		LF	Pipe, 66 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	403.00	\$0.00	
510-AWW6		LF	Pipe, 6" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	114.00	\$0.00	

510-AWW8		100	LF	Pipe, 8" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	125.00	\$12,500.00	WW service to main on Lyndhurst
510-AWW12			LF	Pipe, 12" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	159.00	\$0.00	
510-AWW21			LF	Pipe, 21" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	299.00	\$0.00	
510-BW8×2		1	EA	Connecting New 8" Water Service to 2" Private Service	\$	4,600.00	\$4,600.00	imigation service connection
510-BW8×4		1	EA	Connecting New 8" Water Service to 4" Private Service	\$	6,200.00	\$6,200.00	domestic service connection
SP510-BW-M2		1	EA	New Water Meter, 2 Inch Meter and W Capital Recover Fee	\$	55,000.00	\$55,000.00	irigation meter/tap fee
SP510-BW-M4		1	EA	New Water Meter, 4 Inch Meter and W/WW Capital Recover Fee	\$	321,000.00	\$321,000.00	domestic meter/tap fee
SP510-BW-RM2			EA	Relocate Existing Water Meter, 2 Inch Tap Fee	\$	2,000.00	\$0.00	
$510-\mathrm{BWW} \times \times 6$		1	EA	Connecting New $8^{\prime \prime}$ Wastewater Service to Existing Private Service	\$	4,600.00	\$4,600.00	connect to WW main on Lyndhurst
510-J W6x6			EA	Wet Connections, 6" Dia. $\times 6^{\prime \prime}$ Dia.	\$	3,100.00	\$0.00	
510-J W8x8		1	EA	Wet Connections, 8" Dia. $\times 8^{\prime \prime}$ Dia.	\$	3,300.00	\$3,300.00	connect to W main on Lyndhurst
$510-\mathrm{JW} 16 \times 16$			EA	Wet Connections, 16 " Dia. $\times 16^{\prime \prime}$ Dia.	\$	4,600.00	\$0.00	
510-KW		3	TON	Ductile Iron Fittings	\$	11,500.00	\$34,500.00	$5 \mathrm{lb} / \mathrm{t}$
511S-A2		1	EA	Valves, Gate Type, 2" Diameter	\$	1,000.00	\$1,000.00	
511S-A3			EA	Valves, Gate Type, 3" Diameter	\$	1,200.00	\$0.00	
511S-A4	0	1	EA	Valves, Gate Type, 4" Diameter	\$	1,500.00	\$1,500.00	1 each/250 ft
511S-A6		2	EA	Valves, Gate Type, 6" Diameter	\$	1,900.00	\$3,800.00	for fire hydrants
511S-A8	0	1	EA	Valves, Gate Type, 8" Diameter	\$	2,300.00	\$2,300.00	1 each/250 ft
511s-B		2	EA	Fire Hydrant	\$	5,200.00	\$10,400.00	
511S-C2		1	EA	Pressure or Flow Control Valve Assemblies (2 Inch Backflow Preventer)	\$	4,000.00	\$4,000.00	for irrigation service
5115-C8	1	1	EA	Pressure or Flow Control Valve Assemblies (8 Inch Double Check Valve Backflow Preventer)	\$	16,000.00	\$16,000.00	For fire line
551			LF	Pipe Underdrains (for Tree Wells)	\$	50.00	\$0.00	
5915-B		4	SY	Dry-Riprap	\$	140.00	\$560.00	SD outfall
594s-C			CY	Revet Mattresses, Twisted Woven Wire	\$	320.00	\$0.00	
602S-D			SY	Grass Sodding, General	\$	7.00	\$0.00	
604S-A			SY	Non-Native Seeding for Erosion Control Method	\$	6.00	\$0.00	
604S-E			SY	Mulch, Hardwood	\$	23.00	\$0.00	
605S-A		300	SY	Soil Retention Blanket	\$	24.00	\$7,200.00	
6085-1			EA	Plantings, Type BMP Native Grasses, Sedges, Woody Shrubs	\$	23.00	\$0.00	1 ft spacing in Rain Garden
6085-1	26	26	EA	Trees, 20 Gal	\$	600.00	\$15,600.00	30ft apart along sidewalk
6085-1			EA	Plants, 5 Gal	\$	50.00	\$0.00	
6085-2		1	LS	Irrigation System	\$	10,000.00	\$10,000.00	
6095-C	1424.444444	1,500	SY	Native Seeding for Erosion Control	\$	7.00	\$10,500.00	
610S-A		300	LF	Tree Protective Fencing Type A Chain Link Fence	\$	4.00	\$1,200.00	
610S-R		1	EA	Removal of Existing Trees	\$	570.00	\$570.00	
SP628S-C		2	EA	Filter Curb Inlet Protection	\$	120.00	\$240.00	
6285-B		150	LF	Sediment Containment Dikes with Filter Fabric	\$	9.00	\$1,350.00	Triangular dike on pavement
6395		40	LF	Rock Berm	\$	39.00	\$1,560.00	
6405			SF	Mortared Rock Wall	\$	50.00	\$0.00	
6415		1	EA	Stabilized Construction Entrance	\$	1,700.00	\$1,700.00	
6425		2,000	LF	Silt Fence for Erosion Control	\$	4.00	\$8,000.00	
6605			Cr	Bio-Filtration Media	\$	114.00	\$0.00	
700S-TM		1	LS	Total Mobilization Payment	\$	59,000.00	\$59,000.00	5\% of all costs excluding Mob cost
7015-A6			LF	Chain Link Fence, 6-Ft	\$	20.00	\$0.00	
7015-BS			EA	Chain Link Pedestrian Single Swing Gate ($6 \mathrm{Ft} \times 4 \mathrm{Ft}$)	\$	1,000.00	\$0.00	
701S-CD			EA	Chain Link Vehicular Double Swing Gate ($6 \mathrm{Ft} \times 20 \mathrm{Ft}$)	\$	2,300.00	\$0.00	
802S-BBond		1	EA	Bond Project Sign	\$	700.00	\$700.00	
8035-SF			LF	Safety Fence	\$	3.00	\$0.00	
SP803S-BAS			EA	Project Sign for Access	\$	400.00	\$0.00	
SP803S-CD		160	CD	Baricades, Signs, and Traffic Handling.	\$	600.00	\$96,000.00	160 CD/Block
SP803S-PS		70	CD	Portable Changeable Message Signs	\$	120.00	\$8,400.00	$70 \mathrm{CD} /$ Block
8245		4	EA	Traffic Signs	\$	400.00	\$1,600.00	

Aquatic Master Plan
Doucet + Chan, a Division of Doucet \& Associates, Inc.
Texas Registration No. 3937

Item No.	Quantity Calculation	Quantity	Unit	Item Description		Unit Price	Amount	Notes
104S-A		220	LF	Remove P.C. Concrete Curb	\$	20.00	\$4,400.00	curb ramp reconstruction
104S-B			SF	Remove P.C. Concrete Slab	\$	20.00	\$0.00	
104S-C	2500	2,500	SF	Remove P.C. Concrete Sidewalks \& Driveways	\$	20.00	\$50,000.00	
SP 104S			SF	Demolition, Buildings	\$	10.00	\$0.00	
SP104S-UB			EA	Demolition, Utility Boxes	\$	2,700.00	\$0.00	
			CF	Demolition, Masonry Walls, Stone with Mortar	\$	8.00	\$0.00	12" thick
			LF	Demolition, Water/Wastewater Pipe, 6 Inch to 12 Inch Dia.	\$	29.00	\$0.00	
			LF	Demolition, Electric Conduits	\$	7.00	\$0.00	
			EA	Demolition, Light Pole	\$	600.00	\$0.00	
			LF	Demolition, Chain Link Fence	\$	7.00	\$0.00	
			CY	Demolition Disposal, Loading and 5 Mile Haul to Dump (Non-Hazardous)	\$	22.00	\$0.00	
			CY-Mi	Demolition, Disposal Haul, Per Mile over 5 Miles	\$	2.00	\$0.00	
			TON	Demolition, Dump Charge	\$	110.00	\$0.00	
111S-A	740.7407407	300	CY	Excavation, Unclassified	\$	52.00	\$15,600.00	6000sf $\times 16^{\prime \prime}$
120S-A			CY	Channel Excavation	\$	90.00	\$0.00	
130S-A			CY	Class A (Select Borrow)	\$	59.00	\$0.00	
130S-T			CY	Class C (Topsoil)	\$	44.00	\$0.00	
132S-A			CY	Embankment (Fill)	\$	29.00	\$0.00	
201S	1666.666667	670	SY	Sub-Grade Preparation	\$	9.00	\$6,030.00	6000sf
203S-A8		670	SY	Lime Treated Subgrade, 8 Inch Thickness	\$	15.30	\$10,251.00	
210S-A8	370.3703704	150	CY	Flexible Base, 8 Inch Thickness	\$	42.00	\$6,300.00	6000sf $\times 8$ 8'
340S-B-C3			SY	Hot Mix Asphaltic Concrete Pavement, 3 Inches, Type C	\$	22.00	\$0.00	
340S-B-C2			SY	Hot Mix Asphaltic Concrete Pavement, 2 Inches, Type C	\$	17.00	\$0.00	
340S-B-C1.5			SY	Hot Mix Asphaltic Concrete P avement, 1-1/2 Inches, Type C	\$	15.00	\$0.00	
360S-A			SY	7 Inch Concrete Pavement	\$	108.00	\$0.00	
403S-CY			CY	Concrete Structure,	\$	720.00	\$0.00	
403S-EA-D		1	EA	Concrete Structure, Storm Water Detention	\$	56,400.00	\$56,400.00	\$3/sf $\times 18800$ sf IC
403S-EA-WQ		1	EA	Concrete Structure, Storm Water Quality Treatment	\$	80,840.00	\$80,840.00	\$4.30/sf $\times 18800$ sd IC
414S-C			SF	Cast in Place Portland Cement Concrete Retaining Wall, Including Reinforcement	\$	61.00	\$0.00	
430S-A		220	LF	P.C. Concrete Curb and Gutter (Excavation)	\$	18.00	\$3,960.00	
430S-E			LF	P.C. Concrete Laydown Curb (Excavation)	\$	22.00	\$0.00	
432S-5	6000	6,000	SF	New P.C. Concrete Sidewalks, 5 Inch thickness	\$	12.00	\$72,000.00	
432S-6			SF	New P.C. Concrete Sidewalks, 6 Inch thickness	\$	14.00	\$0.00	
432S-RP-1		11	EA	P.C. Sidewalk Curb Ramp with Pavers (Type I)	\$	1,800.00	\$19,800.00	
432S-SAC-1			EA	Streetscape Bench (5ft with Back)	\$	3,800.00	\$0.00	
432S-SAC-1			EA	Streetscape Bench (5ft without Back)	\$	2,300.00	\$0.00	
432S-SAC-2			EA	Streetscape Chair (2 f)	\$	2,300.00	\$0.00	
432S-SAC-3			EA	Streetscape Bicycle Rack	\$	800.00	\$0.00	
432S-SAC-4			EA	Streetscape Trash Receptacle	\$	2,900.00	\$0.00	
432S-SAC-7C			EA	Streetscape Tree Well \& Grate	\$	6,600.00	\$0.00	
432S-PRC-1		100	LF	Pedestrian ADA Railing	\$	102.00	\$10,200.00	
SP432S-K			EA	Art Kiosks	\$	25,000.00	\$0.00	
4335-C			SF	Type II P.C. Concrete Driveway	\$	11.00	\$0.00	

510-AWW6			LF	Pipe, 6" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	114.00	\$0.00	
510-AWW8	160	160	LF	Pipe, 8" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	125.00	\$20,000.00	WW service to main on Wells Branch
510-AWW12			LF	Pipe, 12" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	159.00	\$0.00	
510-AWW21			LF	Pipe, 21" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	299.00	\$0.00	
510-BW8x2		1	EA	Connecting New 8" Water Service to 2" Private Service	\$	4,600.00	\$4,600.00	irrigation service connection
510-BW8×4		1	EA	Connecting New 8" Water Service to 4" Private Service	\$	6,200.00	\$6,200.00	domestic service connection
SP510-BW-M2		1	EA	New Water Meter, 2 Inch Meter and W Capital Recover Fee	\$	55,000.00	\$55,000.00	irrigation meter/tap fee
SP510-BW-M4		1	EA	New Water Meter, 4 Inch Meter and W/WW Capital Recover Fee	\$	321,000.00	\$321,000.00	domestic meter/tap fee
SP510-BW-RM2			EA	Relocate Existing Water Meter, 2 Inch Tap Fee	\$	2,000.00	\$0.00	
510-BWW8x6		1	EA	Connecting New 8" Wastewater Service to Existing Private Service	\$	4,600.00	\$4,600.00	connect to WW main on Wells Branch
510-J W6X6			EA	Wet Connections, 6" Dia. $\times 6^{\prime \prime}$ Dia.	\$	3,100.00	\$0.00	
510-J W8X8		1	EA	Wet Connections, 8" Dia. $\times 8^{\prime \prime}$ Dia.	\$	3,300.00	\$3,300.00	connect to W main on Lamar
510-J W16X16			EA	Wet Connections, 16 " Dia. $\times 16^{\prime \prime}$ Dia.	\$	4,600.00	\$0.00	
510-KW	4.9	5	TON	Ductile Iron Fittings	\$	11,500.00	\$57,500.00	$5 \mathrm{lb} / \mathrm{ft}$
511S-A2	0.48	2	EA	Valves, Gate Type, 2" Diameter	\$	1,000.00	\$2,000.00	1 each/250 ft
511S-A3			EA	Valves, Gate Type, 3" Diameter	\$	1,200.00	\$0.00	
511S-A4	0.84	2	EA	Valves, Gate Type, 4" Diameter	\$	1,500.00	\$3,000.00	1 each/250 ft
511S-A6		2	EA	Valves, Gate Type, 6" Diameter	\$	1,900.00	\$3,800.00	for fire hydrants
511S-A8	7	7	EA	Valves, Gate Type, 8" Diameter	\$	2,300.00	\$16,100.00	1 each/250 ft
511S-B		2	EA	Fire Hydrant	\$	5,200.00	\$10,400.00	
511S-C2	1	1	EA	Pressure or Flow Control Valve Assemblies (2 Inch Backflow Preventer)	\$	4,000.00	\$4,000.00	for irrigation service
511S-C8	1	1	EA	Pressure or F low Control Valve Assemblies (8 Inch Double Check Valve Backflow Preventer)	\$	16,000.00	\$16,000.00	For fire line
551			LF	Pipe Underdrains (for Tree Wells)	\$	50.00	\$0.00	
591S-B		8	SY	Dry-Riprap	\$	140.00	\$1,120.00	
594S-C			CY	Revet Mattresses, Twisted Woven Wire	\$	320.00	\$0.00	
602S-D			SY	Grass Sodding, General	\$	7.00	\$0.00	
604S-A			SY	Non-Native Seeding for Erosion Control Method	\$	6.00	\$0.00	
604S-E			SY	Mulch, Hardwood	\$	23.00	\$0.00	
$605 \mathrm{~S}-\mathrm{A}$		300	SY	Soil Retention Blanket	\$	24.00	\$7,200.00	
608S-1			EA	Plantings, Type BMP Native Grasses, Sedges, Woody Shrubs	\$	23.00	\$0.00	1 ft spacing in Rain Garden
608S-1	40	40	EA	Trees, 20 Gal	\$	600.00	\$24,000.00	30ft apart along sidewalk
608S-1			EA	Plants, 5 Gal	\$	50.00	\$0.00	
608S-2		1	LS	Irrigation System	\$	10,000.00	\$10,000.00	
609S-C		2,000	SY	Native Seeding for Erosion Control	\$	7.00	\$14,000.00	
610S-A		1,500	LF	Tree Protective Fencing Type A Chain Link Fence	\$	4.00	\$6,000.00	
610S-R		10	EA	Removal of Existing Trees	\$	570.00	\$5,700.00	
SP628S-C		2	EA	Filter Curb Inlet Protection	\$	120.00	\$240.00	
628S-B		100	LF	Sediment Containment Dikes with Filter Fabric	\$	9.00	\$900.00	Triangular dike on pavement
6395		80	LF	Rock Berm	\$	39.00	\$3,120.00	
6405			SF	Mortared Rock Wall	\$	50.00	\$0.00	
6415			EA	Stabilized Construction Entrance	\$	1,700.00	\$0.00	
642 S		2,700	LF	Silt Fence for Erosion Control	\$	4.00	\$10,800.00	
6605			CY	Bio-Filtration Media	\$	114.00	\$0.00	
700S-TM		1	LS	Total Mobilization Payment	\$	88,000.00	\$88,000.00	5\% of all costs excluding Mob cost
701S-A6			LF	Chain Link Fence, 6-Ft	\$	20.00	\$0.00	
701S-BS			EA	Chain Link Pedestrian Single Swing Gate ($6 \mathrm{Ft} \times 4 \mathrm{Ft}$)	\$	1,000.00	\$0.00	
701S-CD			EA	Chain Link Vehicular Double Swing Gate ($6 \mathrm{Ft} \times 20 \mathrm{Ft}$)	\$	2,300.00	\$0.00	
802S-BBond		1	EA	Bond Project Sign	\$	700.00	\$700.00	
803S-SF			LF	Safety Fence	\$	3.00	\$0.00	
SP803S-BAS			EA	Project Sign for Access	\$	400.00	\$0.00	

Aquatic Master Plan
Doucet + Chan, a Division of Doucet \& Associates, Inc.
Texas Registration No. 3937

Item No.	Quantity Calculation	Quantity	Unit	Item Description		Unit Price	Amount	Notes
104S-A		120	LF	Remove P.C. Concrete Curb	\$	20.00	\$2,400.00	ADA space + curb ramp reconstruction
104S-B			SF	Remove P.C. Concrete Slab	\$	20.00	\$0.00	
104S-C	975	1000	SF	Remove P.C. Concrete Sidewalks \& Driveways	\$	20.00	\$20,000.00	
SP104S			SF	Demolition, Buildings	\$	10.00	\$0.00	
SP104S-UB			EA	Demolition, Utility Boxes	\$	2,700.00	\$0.00	
			CF	Demolition, Masonry Walls, Stone with Mortar	\$	8.00	\$0.00	12" thick
			LF	Demolition, Water/Wastewater Pipe, 6 Inch to 12 Inch Dia.	\$	29.00	\$0.00	
			LF	Demolition, Electric Conduits	\$	7.00	\$0.00	
			EA	Demolition, Light Pole	\$	600.00	\$0.00	
			LF	Demolition, Chain Link Fence	\$	7.00	\$0.00	
			CY	Demolition Disposal, Loading and 5 Mile Haul to Dump (Non-Hazardous)	\$	22.00	\$0.00	
			CY-Mi	Demolition, Disposal Haul, Per Mile over 5 Miles	\$	2.00	\$0.00	
			TON	Demolition, Dump Charge	\$	110.00	\$0.00	
111S-A	311.1111111	350	CY	Excavation, Unclassified	\$	52.00	\$18,200.00	6300sf $+600 s f=6900 s f \times 16^{\prime \prime}$
120S-A			CY	Channel Excavation	\$	90.00	\$0.00	
130S-A			CY	Class A (Select Borrow)	\$	59.00	\$0.00	
130S-T			CY	Class C (Topsoil)	\$	44.00	\$0.00	
132S-A			CY	Embankment (Fill)	\$	29.00	\$0.00	
2015	700	770	SY	Sub-Grade Preparation	\$	9.00	\$6,930.00	6900sf
203S-A8		770	SY	Lime Treated Subgrade, 8 Inch Thickness	\$	15.30	\$11,781.00	
210S-A8	155.5555556	180	CY	Flexible Base, 8 Inch Thickness	\$	42.00	\$7,560.00	6900sf x 8"
340S-B-C3			SY	Hot Mix Asphaltic Concrete Pavement, 3 Inches, Type C	\$	22.00	\$0.00	
340S-B-C2		70	SY	Hot Mix Asphaltic Concrete Pavement, 2 Inches, Type C	\$	17.00	\$1,190.00	600sf
340S-B-C1.5			SY	Hot Mix Asphaltic Concrete Pavement, 1-1/2 Inches, Type C	\$	15.00	\$0.00	
360S-A			SY	7 Inch Concrete Pavement	\$	108.00	\$0.00	
$4035-C Y$			CY	Concrete Structure,	\$	720.00	\$0.00	
403S-EA-D		1	EA	Concrete Structure, Storm Water Detention	\$	21,900.00	\$21,900.00	\$3/5f $\times 7300$ sf IC
403S-EA-WQ		1	EA	Concrete Structure, Storm Water Quality Treatment	\$	31,390.00	\$31,390.00	\$4.30/sf \times 7300sf IC
414S-C			SF	Cast in Place Portland Cement Concrete Retaining Wall, Including Reinforcement	\$	61.00	\$0.00	
430S-A		120	LF	P.C. Concrete Curb and Gutter (Excavation)	\$	18.00	\$2,160.00	
430S-E			LF	P.C. Concrete Laydown Curb (Excavation)	\$	22.00	\$0.00	
432S-5	6300	6,300	SF	New P.C. Concrete Sidewalks, 5 Inch thickness	\$	12.00	\$75,600.00	
432S-6			SF	New P.C. Concrete Sidewalks, 6 Inch thickness	\$	14.00	\$0.00	
432S-RP-1		4	EA	P.C. Sidewalk Curb Ramp with Pavers (Type I)	\$	1,800.00	\$7,200.00	
432S-SAC-1			EA	Streetscape Bench (5ft with Back)	\$	3,800.00	\$0.00	
432S-SAC-1			EA	Streetscape Bench (5ft without Back)	\$	2,300.00	\$0.00	
432S-SAC-2			EA	Streetscape Chair (2 f)	\$	2,300.00	\$0.00	
432S-SAC-3			EA	Streetscape Bicycle Rack	\$	800.00	\$0.00	
432S-SAC-4			EA	Streetscape Trash Receptacle	\$	2,900.00	\$0.00	
432S-SAC-7C			EA	Streetscape Tree Well \& Grate	\$	6,600.00	\$0.00	
432S-PRC-1		50	LF	Pedestrian ADA Railing	\$	102.00	\$5,100.00	
SP432S-K			EA	Art Kiosks	\$	25,000.00	\$0.00	
433S-C			SF	Type II P.C. Concrete Driveway	\$	11.00	\$0.00	

435S			LF	P.C. Concrete Steps	\$	160.00	\$0.00	
4395		1	EA	Parking Lot Bumper Curbs	\$	120.00	\$120.00	
504S-3W			EA	Adjusting Water Valve Boxes to Grade	\$	950.00	\$0.00	
505S-B20			LF	Encasement Pipe, Split 20 Inch Dia., Type Steel, 0.375 Inch Minimum Thickness	\$	243.00	\$0.00	
506-ABSW			EA	Abandonment of Exisitng Manholes, Storm Water	\$	2,200.00	\$0.00	
506-ABWW			EA	Abandonment of Exisitng Manholes, Wastewater	\$	2,200.00	\$0.00	
506-ABE			EA	Abandonment of Existing Manholes, Electrical and Telecommunications	\$	2,200.00	\$0.00	
506-BSW4×4			EA.	Box Manhole, $4 \mathrm{ft} \times 4 \mathrm{ft}$	\$	6,600.00	\$0.00	
506-CNSW		1	EA	Connection of Storm Water P ipe to Existing System	\$	2,300.00	\$2,300.00	
506-CNWW		1	EA	Connection of Wastewater P ipe to Existing System	\$	2,300.00	\$2,300.00	connect to WW main on W. 10th
506-EDMSSW48			LVF	Extra Depth Special Storm Water Manhole, 48 In . Dia.	\$	340.00	\$0.00	
506-MSW48		1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 48 In. Dia.	\$	5,700.00	\$5,700.00	connect to SD system
506-MSW60			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 60 In . Dia.	\$	7,400.00	\$0.00	
506-MWW48		1	EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 4 Ft Dia.	\$	6,300.00	\$6,300.00	connect to WW main on W. 10th
506-MWW60			EA	Standard Pre-Cast Manhole w/ Pre-Cast Base, 5 Ft. Dia.	\$	8,000.00	\$0.00	
SP506-M		1	EA	By-Pass Pumping at Each Connection to Existing Manhole	\$	5,200.00	\$5,200.00	at connection to WW main on W. 10th
508S-H18			EA	Headwalls for 18" Pipe	\$	3,000.00	\$0.00	
508S-H24		1	EA	Headwalls for 24" Pipe	\$	3,200.00	\$3,200.00	SD outfall
508S-H48			EA	Headwalls for 48" Pipe	\$	6,400.00	\$0.00	
508S-IG		3	EA	Inlet, Grate (Area Inlet)	\$	5,600.00	\$16,800.00	improve drainage around pool site
508S-I10S		1	EA.	Inlet, Standard 10 Foot	\$	5,400.00	\$5,400.00	at ADA parking
509S-1		1,180	LF	Trench Excavation Safety Protective Systems (all depths)	\$	2.00	\$2,360.00	
510-AW2C		100	LF	Pipe, 2" Dia. Copper (all depths), including Excavation and Backfill	\$	91.00	\$9,100.00	irrigation service
510-AW-4-350		100	LF	Pipe, 4" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	140.00	\$14,000.00	domestic service
510-AW-6-350		80	LF	Pipe, 6" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	159.00	\$12,720.00	fire hydrant leads
510-AW-8-350		200	LF	Pipe, 8" Dia. Class 350 Ductile Iron (all depths), including Excavation and Backfill	\$	193.00	\$38,600.00	main service
510-ASW18	250	300	LF	Pipe, 18 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	136.00	\$40,800.00	improve drainage around pool site
510-ASW24		200	LF	Pipe, 24 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	157.00	\$31,400.00	to SD outfall
510-ASW30			LF	Pipe, 30 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	249.00	\$0.00	
510-ASW36			LF	Pipe, 36 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	311.00	\$0.00	
510-ASW48			LF	Pipe, 48 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	351.00	\$0.00	
510-ASW54			LF	Pipe, 54 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	368.00	\$0.00	
510-ASW66			LF	Pipe, 66 - inch R.C.P. Storm Drain (all depths), including Excavation and Backfill	\$	403.00	\$0.00	
510-AWW6			LF	Pipe, 6" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	114.00	\$0.00	

510-AWW8		200	LF	Pipe, 8" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	125.00	\$25,000.00	WW service to main on W. 10th
510-AWW12			LF	Pipe, 12" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	159.00	\$0.00	
510-AWW21			LF	Pipe, 21" Dia. PVC SDR-26 Type (all depths), including Excavation and Backfill	\$	299.00	\$0.00	
510-BW8×2		1	EA	Connecting New 8" Water Service to 2" Private Service	\$	4,600.00	\$4,600.00	imigation service connection
510-BW8×4		1	EA	Connecting New 8" Water Service to 4" Private Service	\$	6,200.00	\$6,200.00	domestic service connection
SP510-BW-M2		1	EA	New Water Meter, 2 Inch Meter and W Capital Recover Fee	\$	55,000.00	\$55,000.00	inigation meter/tap fee
SP510-BW-M4		1	EA	New Water Meter, 4 Inch Meter and W/WW Capital Recover Fee	\$	321,000.00	\$321,000.00	domestic meter/tap fee
SP510-BW-RM2			EA	Relocate Existing Water Meter, 2 Inch Tap Fee	\$	2,000.00	\$0.00	
$510-\mathrm{BWW} \times \times 6$		1	EA	Connecting New $8^{\prime \prime}$ Wastewater Service to Existing Private Service	\$	4,600.00	\$4,600.00	connect to WW main on W. 10th
510-J W6x6			EA	Wet Connections, 6" Dia. $\times 6^{\prime \prime}$ Dia.	\$	3,100.00	\$0.00	
510-J W8x8		1	EA	Wet Connections, 8" Dia. $\times 8^{\prime \prime}$ Dia.	\$	3,300.00	\$3,300.00	connect to W main on W. 10th
$510-\mathrm{JW} 16 \times 16$			EA	Wet Connections, 16 " Dia. $\times 16^{\prime \prime}$ Dia.	\$	4,600.00	\$0.00	
510-KW		2	TON	Ductile Iron Fittings	\$	11,500.00	\$23,000.00	$5 \mathrm{lb} / \mathrm{t}$
511S-A2		1	EA	Valves, Gate Type, 2" Diameter	\$	1,000.00	\$1,000.00	
511S-A3			EA	Valves, Gate Type, 3" Diameter	\$	1,200.00	\$0.00	
511S-A4	0	1	EA	Valves, Gate Type, 4" Diameter	\$	1,500.00	\$1,500.00	1 each/250 ft
511S-A6		2	EA	Valves, Gate Type, 6" Diameter	\$	1,900.00	\$3,800.00	for fire hydrants
511S-A8	0	1	EA	Valves, Gate Type, 8" Diameter	\$	2,300.00	\$2,300.00	1 each/250 ft
511s-B		2	EA	Fire Hydrant (see Deatil No. 5115-17)	\$	5,200.00	\$10,400.00	
511S-C2		1	EA	Pressure or Flow Control Valve Assemblies (2 Inch Backflow Preventer)	\$	4,000.00	\$4,000.00	for irrigation service
5115-C8	1	1	EA	Pressure or Flow Control Valve Assemblies (8 Inch Double Check Valve Backflow Preventer)	\$	16,000.00	\$16,000.00	For fire line
551			LF	Pipe Underdrains (for Tree Wells)	\$	50.00	\$0.00	
5915-B		4	SY	Dry-Riprap	\$	140.00	\$560.00	SD outfall
594s-C			CY	Revet Mattresses, Twisted Woven Wire	\$	320.00	\$0.00	
602S-D			SY	Grass Sodding, General	\$	7.00	\$0.00	
604S-A			SY	Non-Native Seeding for Erosion Control Method	\$	6.00	\$0.00	
604S-E			SY	Mulch, Hardwood	\$	23.00	\$0.00	
605S-A		300	SY	Soil Retention Blanket	\$	24.00	\$7,200.00	
6085-1			EA	Plantings, Type BMP Native Grasses, Sedges, Woody Shrubs	\$	23.00	\$0.00	1 ft spacing in Rain Garden
6085-1	42	42	EA	Trees, 20 Gal	\$	600.00	\$25,200.00	30ft apart along sidewalk
6085-1			EA	Plants, 5 Gal	\$	50.00	\$0.00	
6085-2		1	LS	Irrigation System	\$	10,000.00	\$10,000.00	
6095-C		700	SY	Native Seeding for Erosion Control	\$	7.00	\$4,900.00	
610S-A		200	LF	Tree Protective Fencing Type A Chain Link Fence	\$	4.00	\$800.00	
610S-R		5	EA	Removal of Existing Trees	\$	570.00	\$2,850.00	
SP628S-C		2	EA	Filter Curb Inlet Protection	\$	120.00	\$240.00	
6285-B		100	LF	Sediment Containment Dikes with Filter Fabric	\$	9.00	\$900.00	Triangular dike on pavement
6395		40	LF	Rock Berm	\$	39.00	\$1,560.00	
6405			SF	Mortared Rock Wall	\$	50.00	\$0.00	
6415		1	EA	Stabilized Construction Entrance	\$	1,700.00	\$1,700.00	
6425		2,000	LF	Silt Fence for Erosion Control	\$	4.00	\$8,000.00	
6605			Cr	Bio-Filtration Media	\$	114.00	\$0.00	
700S-TM		1	LS	Total Mobilization Payment	\$	53,000.00	\$53,000.00	5\% of all costs excluding Mob cost
7015-A6			LF	Chain Link Fence, 6-Ft	\$	20.00	\$0.00	
7015-BS			EA	Chain Link Pedestrian Single Swing Gate ($6 \mathrm{Ft} \times 4 \mathrm{Ft}$)	\$	1,000.00	\$0.00	
701S-CD			EA	Chain Link Vehicular Double Swing Gate ($6 \mathrm{Ft} \times 20 \mathrm{Ft}$)	\$	2,300.00	\$0.00	
802S-BBond		1	EA	Bond Project Sign	\$	700.00	\$700.00	
8035-SF			LF	Safety Fence	\$	3.00	\$0.00	
SP803S-BAS			EA	Project Sign for Access	\$	400.00	\$0.00	
SP803S-CD		80	CD	Baricades, Signs, and Traffic Handling.	\$	600.00	\$48,000.00	160 CD/Block
SP803S-PS		35	CD	Portable Changeable Message Signs	\$	120.00	\$4,200.00	$70 \mathrm{CD} /$ Block
8245		4	EA	Traffic Signs	\$	400.00	\$1,600.00	

APPENDIX G - PARKS \& RECREATION TASK FORCE RECOMMENDATIONS

Appendix G wasprepared by the Task Force and inserted in the format provided by Task Force.

City of Austin Aquatic Master Plan Task Force Report

Task Force Members:
Jane Rivera, PARB Chair
Rich DePalma, PARB Vice Chair
Dawn Lewis, Task Force Vice Chair
Rick Cofer, Task Force Chair

INTRODUCTION

As directed by Austin City Council Resolution No. 20170817-052, the City of Austin Aquatic Master Plan Task Force consists of four members of the Parks and Recreation Board selected by the Parks and Recreation Board membership. On August 22, 2017, Board Chair Jane Rivera, Board Vice Chair Rich DePalma, Board Member Rick Cofer, and Board Member Dawn Lewis were unanimously appointed by the Parks and Recreation Board to serve on the Task Force. On September 26, 2017, the Task Force unanimously voted Board Member Rick Cofer as Task Force Chair and Board Member Dawn Lewis as Task Force Vice Chair.

The City Council formed the Task Force to:

1. Conduct public meetings and solicit additional public feedback on the draft planning tool known as the Draft Aquatic Master Plan (Plan).
Action Taken by Task Force:
The Task Force held six public meetings at five different locations, which included citizen communication and input and one formal Community Public Input event. The Task Force held public meetings on September 10, 2017, September 19, 2017, September 26, 2017, October 16, 2017, November 14, 2017, and November 29, 2017. Additionally, the Parks and Recreation Department organized a community input event to collect information and feedback regarding the Aquatic Master Plan on October 23, 2017 at the Gus Garcia Recreation Center. All Task Force members attended this event. Information on meetings held and public feedback collected are attached in Appendix A1.

2. Review the Draft Aquatic Master Plan with consideration for the existing criteria related to:

- Geographic equity and access,
- Environmental sustainability,
- Fiscal sustainability,
- Historical and cultural importance,
- Popularity,
- Residential density and future population projections,
- Access to aquatics, and
- Creative funding sources and partnership opportunities.

Action Taken by Task Force:

Information was reviewed and considered.

Additional information reviewed outside of the Draft Aquatic Master Plan is attached in Appendices B1-B4.
3. Provide policy guidance on:
A. How to prioritize investments,
B. Possible pool closures,
C. Building new aquatics facilities, and
D. Recommendations for potential system funding level options for the 2018 Bond.

Action Taken by Task Force:
Policy guidance is provided in the subsequent pages.

The Task Force thanks the professional staff of the City of Austin Parks and Recreation Department, the Aquatic Advisory Board, and the Austin public for the breadth and depth of the work detailed in the Draft Aquatic Master Plan. We support the recommendations made with the modifications noted in our report. Our recommendations are presented to each of the elements in our charge from the City Council.

A. POLICY GUIDANCE ON HOW TO PRIORITIZE INVESTMENTS

Investment, Not Disinvestment, in City of Austin Aquatic System

The Task Force reviewed the proposed Master Plan and the concerns listed therein. The data is clear that decades of inadequate aquatic infrastructure funding and investment led not only to ongoing maintenance problems but also to an inability to carry out regular upgrades, thus leaving the aquatic system in the current crisis situation. At our engagement event focused solely on public input, we heard loud and clear that the public loves their neighborhood and community pools and the public strongly requests that the City of Austin keep those pools open. The public also prefers fewer large Regional Outdoor Aquatic Centers.

We believe that regional, neighborhood, and community pools are an important part of Austin's health and wellness and must be preserved. A robust aquatic system is aligned with the Imagine Austin plan to keep Austin healthy, compact, and connected. Swimming is a lifelong leisure and wellness activity - one that can be promoted and maintained only through a healthy citywide aquatics system.

We do not consider it appropriate to maintain the status quo-taking pools out of service year after year until the city pool system has fewer, not more, facilities for an ever-growing population. Rather, we believe that every effort should be made to invest in our comprehensive aquatic system through end-of-life replacement for existing pools and adding new facilities to meet the needs of neglected areas of our city.

Why end-of-life replacement instead of continued repairs? A significant investment in a pool may extend the life of an existing pool for a few years, but a full replacement may be necessary to ensure long-term use of a pool. It is frequently more financially responsible to completely replace an existing pool rather than make only some repairs to maintain an existing pool in an inferior condition. Repairs exceeding a certain threshold are characterized as a renovation and require the pool and pool area to be brought up to current code. Meeting current code standards adds cost, but is necessary under Austin ordinance and State law.

Therefore, we recommend the following:

2018 Bond

1. On the November 2018 general election ballot, include a stand-alone bond proposition exclusively for aquatics facilities in the amount of $\$ 124,000,000$.
2. The bond proposition should include all end-of-functional life pool replacements for pools listed in years 0 through 5 within the Draft Aquatic Master Plan.
3. The costs for the pool replacements should be the total cost detailed in the Draft Aquatic Master Plan to bring existing pools up to modern, environmentally sustainable, energy and water efficient, ADA, health, and safety standards.
4. Funding identified by staff to add four additional new pools that would provide public swimming opportunities to populations not currently adequately served by a city pool Colony Park (NE Austin), NW Austin, SE Austin, and SW Austin.
5. Funding needs to be secured, either as M\&O or bond, for capital costs associated with maintenance for pools listed in years 6 through 20 within the Aquatics Master Plan.

Table 1 reflects the pools, pool information, and funding recommended in the Draft Aquatic Master Plan and supported by the Task Force. Infrastructure costs are directly from the Draft Aquatic Master Plan and are not inflation-adjusted. Please note that the Parks and Recreation Department expects that the Colony Park pool will cost closer to \$13,000,000 because of infrastructure challenges outside of the pool area.

Table G.1: Aquatic Master Plan Projects Years 0-5 and System Expansion Projects

Facilities	Square Feet of Pool	Total Pool Capacity	3 Year Avg Attendance	Water Used per 1,000 Gallon Pool Volume		Amount
End-Of-Life Facility Replacement						
Balcones	4,853	324	14,858	3,873	\$	7,423,000
Big Stacy	4,000	217	20,861	11,046	\$	3,250,650
Brentwood	2,731	182	12,058	8,167	\$	3,653,650
Civitan	3,515	160	2,833	30,097	\$	3,705,650
Garrison	14,485	859	25,150	6,161	\$	9,802,000
Gillis	2,550	143	4,014	21,186	\$	3,575,650
Givens	11,920	745	14,009	22,913	\$	5,759,000
Little Stacy	1,590	100	3,708	8,834	\$	3,034,720
Mabel Davis (Natatorium)	11,717	604	11,155	6,832	\$	10,140,000
Martin	4,880	277	12,388	1,975	\$	3,985,150
Montopolis	4,880	277	7,705	5,933	\$	5,258,500
Northwest	15,642	975	36,643	3,555	\$	8,684,000
Walnut Creek	14,951	626	14,977	6,119	\$	5,440,500
					\$	73,712,470
System Expansion						
Central Aquatic Maintenance Facility					\$	2,600,000
Colony Park					\$	13,000,000
NW Austin to replace Canyon Vista					\$	5,000,000
Southeast Austin					\$	5,000,000
Southwest Austin					\$	5,000,000
Funding for Land Acquisition and Civil Engineering to Implement Expansion					\$	20,000,000
					\$	50,600,000
Grand Total					\$	124,312,470

Public Private Partnerships

6. A Request for Information (RFI) and subsequent Request for Proposals (RFP) to be released for a public-private partnership in the creation of a premier indoor aquatic center on city-owned property as identified by the City Manager's office.

Future Maintenance and Operations Funding

7. Additionally, in the event maintenance and operations savings resulting from the renovated pools do not entirely offset the expense of the additional new pools, we recommend that the Parks and Recreation Department annual operating budget be increased by the amount needed to maintain each new pool plus all the existing pools as
each pool is opened to the public. Further, expanded pool hours require new funds for additional staff and operating expenses.

Public Process on Any Future Decommissioning

8. Finally, we recommend that no individual pool ever be decommissioned without an affirmative vote of the Austin City Council. If in the future, if it is ever impossible to repair or renovate an existing facility and permanent closure appears to staff to be the only solution, then staff must present the City Council with a request to hear the pool conditions and public input. Council will then make a decision either to close the pool or will identify and allocate additional funds to keep the pool open.

Additional Rationale

- Modernizing the City of Austin Aquatics System will eliminate emergency closures and pool replacements that came up over the past decade.
- The modernization will reduce maintenance and operations costs while resolving the substantial facility condition issues resulting from long standing unmet maintenance and operational needs of our pools.
- The maintenance savings should be used for operating the new pools.
- A city natatorium is requested by staff to enable staff to train lifeguards year-round so that many pools can be kept open either for extended months of operation or yearround. In fact, Aquatics Division staff note that the natatorium is a pre-condition for any extension of pool hours within the system. Such a facility would be indoor, climatecontrolled, include public access, and open year-round. The facility could include outdoor swimming as well.
- To serve the entire system of pools, a centrally located pool maintenance facility is needed to house standard frequently needed parts and supplies, and where maintenance staff has planning and workspace.
- It will take a comprehensive aquatics bond to win enough support from City of Austin voters and therefore new pools included in years 6-10 are brought forward to gain the support citywide.

B. POLICY GUIDANCE ON EXISTING CRITERIA FOR POOL RANKING

We, the Task Force, as well as members of the public who attended our public input session discussed possible new criteria. We support inclusion of existing criteria:

1. Demographics, including current use, residential density-including future population;
2. Site Conditions, including any local impediments to improving some part of the pool;
3. Location, including distance from any other aquatic facility;
4. Accessibility, including anything that prohibits improving accessibility;
5. Infrastructure, such as the type and age of the pump and the filtering device;
6. Environmental, particularly sustainability;
7. Regulatory, such as zoning and ADA requirements; and
8. Operations, the cost and difficulty of maintaining the pool.

These factors added together result in the Site Suitability Rating Score. This score has been applied to every aquatic facility in the city system, and those with the lowest overall score would be, all other things being equal, those expected to have the lowest chance of continued operation should the facility reach the end of operational life.

We also recommend adding historical and cultural factors as additional criteria for the site suitability score. Staff are adding a new chapter on historic and cultural significance to the Draft Aquatic Master Plan. Additional discussions were held regarding protecting pools originally built to segregate City of Austin residents. It was noted that these pools, although originally created under a discriminatory municipal plan and policies, also reinforced a sense of community and ownership.

Staff recommends the following pools be considered of unique historic and cultural importance:

- Barton Springs
- Deep Eddy
- Big Stacy
- Rosewood
- Parque Zaragosa

Every effort should be made to keep the above pools operational, based on historical and cultural importance and the Task Force concurs. The Site Suitability Index should include historic and cultural factors considered at a higher priority when a pool facility is at point of replacement or decommissioning.

The Task Force recommends that patterns of use and population projections should be reviewed biennially to ensure that planning maintains pace with Austin's rapidly expanding and moving population. Even when Parks and Recreation Department is not actively designing a pool facility, the City should gather data regularly so that that data is available when needed.

C. POLICY GUIDANCE ON ACCESS FOR RESIDENTS WHO DO NOT HAVE ACCESS

The Task Force agrees that current data indicate the most need for new regional pools exists in the following general areas.

- Colony Park (Northeast Austin)
- Northwest Austin
- Southeast Austin
- Southwest Austin

As Austin continues to grow and expand outwards, additional geographically underserved areas may arise, and at some time in the future, the plan may need to be amended to include additional new regional pools. A new maintenance facility in Far East, Southeast, or Northeast, may be required to increase efficiency as traffic grows with the city's population.

If any future consolidation or moving of a regional pool is being considered, accessibility must be considered. (As an example, children close to the St. Johns Pool were expected to transfer to the new Bartholomew Pool, but that would require them to cross $51^{\text {st }}$ Street with no protected crossway, so the effect of the closing of St. Johns was that these children have no pool.)

D. POLICY GUIDANCE ON CREATIVE FUNDING SOURCES

Three items the Task Force discussed would increase pool funding and help offset costs.

1. Since the public pools clearly serve a public interest (providing exercise and cooling during hot summer months), we recommend that Austin Energy \& Austin Water grant "at cost" rates for water and electricity used to run the public pools. Parks and Recreation Department currently pays full rate for utilities at all facilities, and this reduction could result in positive savings for pool expenses that could be diverted to maintenance. New facilities should also include solar panels to reduce electricity use. This will be particularly helpful with the natatorium.
2. Rather than automatically turning over all fees for pool usage to the city's General Fund, return all fees for pool usage to the Park and Recreation Department Aquatics capital improvement fund or for use on pool maintenance or operations. Directing pool fees to the Park and Recreation Department should not be in lieu of any existing funding or future allocation to the Park and Recreation Department.
3. Austinites generally appear willing to pay individual fees for an expanded swim season and for early and late hours at existing pools.

Through the Task Force's public engagement session, and those held during the planning and preparation of the Aquatics Master Plan, some members of the public often said they would prefer to pay a small fee to swim in a public pool than to lose the pools. Others want to keep public pool use free. We clearly heard that Austinites want public pools where their children can learn to swim, and all ages can swim together, rather than swim parks. And although most would prefer to pay a small fee than to lose pools altogether, we believe that the bond is a better idea, and we further believe there is support for a special aquatics bond to keep the neighborhood and community pools running, as well as to expand the number of regional pools.

E. POLICY GUIDANCE ON OPPORTUNTIES FOR PARTNERSHIPS

We the Task Force also support the development of an indoor natatorium to be jointly funded by and shared with some partner(s) such as Dell/Seton Hospital, the University of Texas, Austin Independent School District, or even some private partner(s). Additional City of Austin departments that may share a need for water safety instruction include Austin Police, Emergency Medical Services, and Fire, all of which might be partners. This pool would be open to the public those hours when it is not in use for lifeguard and water safety instruction or the public uses required by the public partner(s).

Finally, we also discussed such funding sources as working with companies or entities that may be interested in helping to build a new pool in an underserved area in exchange for naming rights. We hope this would not result in naming of facilities by brand names, but rather by names of foundations and/or key individuals in such organizations.

APPENDIX G

TASK FORCE RECOMMENDATIONS

APPENDICES

This page intentionally blank.

APPENDIX G

Appendix A1 Public Feedback

This page intentionally blank.

Aquatic Master Plan Task Force Meetings

The Task Force held six (6) public meetings and one (1) formal public input event.

Meeting Dates:

- September 10, 2017
- September 19, 2017
- September 26, 2017
- October 16, 2017
- October 23, 2017 (Community Input Event)
- November 14, 2017
- November 29, 2017

Aquatic Master Plan Task Force

Community Meeting
Monday, October 23, 2017, 6:30-8:00 PM
Gus Garcia Recreation Center
1201 E Rundberg Ln, Austin, TX 78753
53 Attendees (signed-in)
Equity

- I am very opposed to creating pools with water slides and other fancy amenities at the expense of neighborhood pools
- I do not care what the national trends are. Austin needs to be livable by having pools in neighborhoods.
- Prioritizing pools on periphery of city will increase traffic and reduce accessibility of pools to all
- We can solve the tree limb problem at Little Stacy
- Please keep spaces for small children like Little Stacy
- Spend money on free pools in all areas than on weight rooms at some pools. Swimming to cool off and learning to swim and exercise are more important
- Provide safe swimming for

0 Swimming lessons
o Exercise
o Cooling off

- As long as we have free city pools, they provide a simple baseline of swimming opportunities. Let Schliterbahn, etc. provide the fancy slides etc.
- Little Stacy is perfect as is, please keep it for the children.
- Little Stacy is (?) to community in South and East Austin
- Little Stacy is where children from different schools make friends
- Northwest is my neighborhood pool and I support it.

Site Suitability

- Please review the raw data for Ramsey and Reed. I don't believe the \#s can be exactly identical all the way down.
- Ramsey Pool- we're marked down for accessibility- but most people walk, there is not much parking needed
- I was told the demographics looks at the per household income of residences that might use the relevant pool. I don't think it's fair to penalize neighborhoods for having income. We pay taxes too.
- When counting attendance, making clear seasonal and shorter hours vs. year-round facilities.
- Identify year-round pools

Sustainability

- Why we love Stacy: outdoor, early morning (?) high sun, min. lap 33M ok, not heavily chlorinated air (not indoor), year-round
- Need outdoor shaded year-round pools, 1 per large areas with lap availability min $33 \mathrm{~m}, 50 \mathrm{~m}$ better
- More pools open year round that offer decent lap swimming
- Stacy being cost free helps our artists and musicians
- Pools open only 10 weeks out of 52 don't count
- Stacy built by WPA in 1936, historic pool
- Stacy only free heated pool in Austin
- Why do we have PARD employees sitting around rec centers and no children are present
- Little Stacy is a historic pool- a little oasis for tiny people- unique! We are the $3^{\text {rd }}$ generation in our family to swim in and love Little Stacy
- Please save little Stacy- not every pool needs to be a McMansion
- Historic, spring-fed pools like B. Springs, Big Stacy and Deep Eddy ought to be afforded a priority.
- Drive in from onion creek to swim at Stacy 5 days a week
- Honestly I think we have a lot of fun and we just love our austin pools
- We value the diversity of our local pool- Northwest Park and the accessibility. It brings our community together.
- FUN
- Concerned for long-term commitment to providing year round lap swimming options- early morning
- Lap pool= at least 25 meters not 25 feet
- Other factors to consider for ranking, length/use of pool (lap swimming harder to find over wading), accessible year round, accessible early morning hours (6 am), accessible by bus, spring fed, historic interest
- Why do we need an indoor facility? What percentage of population will it serve? What will have to be cut to make it?
- Stacy is thermal heated
- Please add to ranking system-1. Historic 2. Ability to be open year round 3. Non-chlorinated 4. Length (at least 30 m), bus route from downtown (cultural tourist attraction)
- I've been swimming for 40 years, hope to swim 40 more. Right now I can walk to Big Stacy/Deep Eddy. Do you want me behind the wheel at age 80 and drive further away?
- Premier Indoor Aquatic Center should be lowest priority or not even considered. We currently don't need this
- I agree

Funding

- Big Stacy and Deep Eddy
o Historic- Big Stacy built by CCC, Deep Eddy oldest in State
o Lap lanes for la swimmers
o A large regular group of swimmer go there very often and for many years
- Keep older simmers healthy
- Gives kids in neighborhood a chance to learn to swim
- Draws swimmers from all socio-economic groups (no fee)
- Year round (Big Stacy is heated thermally, Deep Eddy constant temp.)
- Northwest Park- historic, diverse
- Serves variety of needs- swim teams, lessons, families, fitness, recreation
- Deep Eddy- fun, kid friendly, AWESOME!
- Mabel Davis Pool- High density of low income apartments with no other opportunities for recreation during hot summer months
- Thanks for not closing Stacy Pool. It is my therapy. The only suggestion I have is on fun pools such as tall waterslides/climbing wall, lazy river, etc is a small fee to ensure salary for lifeguards to protect the lives of our children
- Consider charging realtor fees for profits they make by advertising "near a pool and park" in areas already developed.
- Maybe a 501c3 for realtors can contribute to where they can deduct from federal taxes.
- Keep no fees for neighborhood pools
- Keep Big Stacy open
- Bond should be more substantial for aquatics (pools)
- Aquatic specific bond
- Keep Little Stacy open "think of the children."

APPENDIX G

Appendix B1 Aquatic Facilities Tour

This page intentionally blank.

\square

CIVITAN POOL

- Year Built/Renovated: 1964
- Volume: 72,000 gal
- Current Classification: Neighborhood
- City Council District: District 3
Facility Address: 513 Vargas Rd.
- Recommendations:
Appendix E pg \# E-58

GIVENS POOL \qquad - Year Built/Renovated: 1958
- Volume: 464,450 gal
- Current Classification: Neighborhood
- City Council District: District 1
- Facility Address: 3811 E. $12^{\text {th }}$ St.
- Recommendations:

GOVALLE POOL

(
- Year Built/Renovated:
1954 / 1986 / In Progress
- Volume: 72,000 gal
- Current Classification: Neighborhood
- City Council District: District 3
- Facility Address: 5200 Bolm Rd.
- Recommendations:
Appendix E pg \# E-46

MONTOPOLIS POOL

- Current Classification: Neighborhood

- Year Built/Renovated: 1978
 - Volume: 203,000 gal

- City Council District: District 3
- Facility Address: 1200 Montopolis Dr.
- Recommendations:
Appendix E pg \# E-35

SHIPE POOL

(

(
WESTENFIELD POOL
- Year Built/Renovated: 1931/2013
- Volume: 123,07l gal
- Current Classification: Neighborhood
- City Council District: District 10
Facility Address: 2008 Enfield Rd.
- Recommendations:
Appendix E pg \# E-97

This page intentionally blank.

APPENDIX G

Appendix B2 Geography and Population

Total Population Change: 2010 to 2040 Forecast ZIP Codes, Austin, Texas

	Fewer than 5,000
	5,000 to $\mathbf{1 0 , 0 0 0}$
	10,000 to 20,000
	20,000 to 30,000
	30,000 to 40,000

DTI 2040 Population and Employment Forecast Introduction, Methodology, and Discussion

Introduction

The City of Austin’s "DTI 2040 Population and Employment Forecast" is a long-range, small-polygon-based population and employment forecast produced by the City Demographer in conjunction with other City departments, most notably Austin Water. The close collaboration between the City's Planning Department and the City's Water Utility spans many decades and is responsible for the production of several accurate population and employment forecasts over the years.

DTI is an acronym, standing for Delphi, Trends and Imagine Austin, and 2040 refers to the final year of the forecast, also known as the forecast horizon. The specific influences exerted on the overall forecast by the components of Delphi, Trends, and Imagine Austin are discussed in detail in the methodology sections of this document. DTI 2040 is the first long-range, small-polygon-based forecast to be collectively and collaboratively created by City departments for Austin following the release of Census 2010 data. The fundamental purpose of the forecast is to predict the future total population and employment within each polygon in the study area, for the year 2020 and the horizon year 2040.

Population Forecast Methodology

STEP ONE: Establish the Baseline

To establish a 2010 population baseline, Census 2010 block-level population data were aggregated into 227 proprietary polygons within the DTI 2040 study area (please see map) which is basically the City of Austin's Full and Limited Purpose jurisdictions plus the City's Extra-Territorial jurisdiction. In most cases, census blocks fit neatly within the study area's polygons, thereby creating a solid baseline.

STEP TWO: Determine future population totals for the study area as a whole

A population control total for the DTI 2040 study area for 2020 and 2040 was generated from the longrange population projection for the City of Austin, using an assumed ratio relationship between the study area and the City as a whole. The ratio relationship between the study area and the City has proven to be extremely stable over time. It is considered a viable method of determining what the total population within the study area will be in the future, assuming that the City's forecasted future total populations are closely aligned to the actual trajectory of growth that is realized over the forecast period.

STEP THREE: Disaggregating the 2040 population control total into polygons
Each polygon within the study area was assigned a portion of the projected increment of overall population growth for the entire study area. Estimating each polygon's portion of overall population growth was accomplished by initially assigning a "growth factor" to each polygon. Growth factors determine each polygon's potential population growth from 2010 to 2040. Essentially, the growth factor for each polygon is the result of accuracy calibrations originating from the City’s Smart Growth forecast, a previously produced regional forecast. The calibrated growth factors were used only as initial starting points from which corrections and modifications were made.

STEP FOUR: Adjustments from the "Delphi Team"

The preliminary future populations for 2040 for each polygon-determined by applying the growth factor for each polygon - within the study area were reviewed by the "Delphi Team." This refers to the "Delphi Method," which is an interactive forecasting method that relies on a panel of experts. ${ }^{1,2}$ Each person on the Delphi Team requires a deep knowledge of the study area, knowledge of emerging developments, and the potential for future development within the study area.
The Delphi Team included demographers, engineers, geographers, and planners and represented decades of experience within the greater Austin area.

STEP FIVE: Input data influencing Delphi Team decisions

- Emerging residential and mixed-use developments;
- Position of the polygon within the overall study area, a factor which takes into account roadway accessibility and proximity to other developments;
- Momentum of population growth within the polygon from 2000 to 2010;
- Approved and applied for Water Utility Service Extension Agreements;
- Adjacency to Imagine Austin Activity Centers and Corridors, assessing the viability of growth ranges assigned to these centers and corridors;
- Construction activity and delivered product from 2010 to 2013; and
- Aerial photography and numerous Geographic Information Systems (GIS) land use and environmental constraint layers to determine future potential for development and redevelopment.

It is important not to underestimate the level of analysis and methodological rigor applied to each individual DTI 2040 polygon in terms of the intensity of examination delivered from the Delphi Team. This collaborative, comprehensive and in-depth analysis of each individual polygon on the part of the Delphi Team is what makes the Delphi Method so valuable, basically bringing the complexities and nuances of population and employment forecasting out from within an opaque black box and into the transparent open. Experts debating, persuading and compromising with an end result being superior to a result generated by the blind heavy-hand of an algorithm.

STEP SIX: Create "market timers" for each polygon to determine year 2020 population totals A default value of 33% was set as a market timer for each polygon, meaning that each polygon will gain roughly $1 / 3$ of the total population increment expected between 2010 and 2040 by 2020. The Delphi Team then reviewed each individual polygon's 2020 predicted total population and made adjustments based on the overall consensus of the team.

Employment Forecast Methodology

STEP ONE: Establish the Baseline

To establish a 2010 employment baseline, address-specific total employment data were aggregated into the DTI 2040 study area's 227 polygons. The 2010 base employment data were provided by CAMPO (metropolitan Austin's Municipal Planning Organization). Analysts at CAMPO spent an enormous amount of time and energy scrubbing and perfecting the employment data, working through issues such as all school district employees being assigned to the district central office rather being correctly assigned and distributed to the hundreds of various work sites and schools across the district. Without the valuable efforts from CAMPO staff, the City's DTI 2040 could not have been produced.

[^7]
STEP TWO: Generate an employment control total for the study area

A control total for the number of future jobs expected within the study area was generated by projecting into the future the current ratio between total population and the total number of jobs. This type of projection is standard and in this case assumes an increasing jobs-to-population ratio as the overall commuting shed of metropolitan Austin is assumed to continue to spatially expand. Put another way, in relative terms, the total number of jobs within the study area will begin to slowly approach the total population residing within the study area. In one extreme but illustrative example, the number of jobs within Manhattan greatly outnumbers the number of people living on the island.

STEP THREE: Create study area districts

To facilitate the disaggregation of the employment control total, polygon districts were created by grouping collections of contiguous study area polygons together yielding 20 larger districts, each containing 9 to 13 individual study area polygons.

STEP FOUR: Generate an initial employment growth increment for each district

Each district's share of the total number of study area jobs from the 2010 baseline was used to assume a future potential portion of total study area jobs for each district. For example, using the 2010 data, the study area district covering most of greater downtown Austin has the largest share of total jobs and was assumed to also have the largest share of total study area jobs in 2040. Some districts will experience large gains in overall share (districts in places like North Burnet-Gateway), and some districts will lose overall share (districts that currently include employment centers such as the IRS facility in southeast Austin). The resultant total number of jobs predicted by 2040 for each district was reviewed and adjusted by the Delphi Team.

STEP FIVE: Disaggregate district totals into individual polygons

The Delphi Team examined each district and disaggregated district employment totals into each individual polygon within that district using the current share and future share (relative to the district total) technique for each individual DTI 2040 polygon.

The Delphi Team used the same set of input data employed during the allocation process of population.

- Emerging commercial and mixed-use developments;
- Position of the polygon within the overall study area, a factor which takes into account roadway accessibility and proximity to other developments;
- Momentum of employment growth within the polygon from 2000 to 2010;
- Approved and applied for Water Utility Service Extension Agreements;
- Adjacency to Imagine Austin Activity Centers and Corridors, assessing the viability of growth ranges assigned to these centers and corridors;
- Construction activity and delivered product from 2010 to 2013; and
- Aerial photography and numerous Geographic Information Systems (GIS) land use and environmental constraint layers to determine future potential for development and redevelopment.

STEP SIX: Create "market timers" for each polygon to determine year 2020 population totals A default value of 33% was set as a market timer for each polygon, meaning that each polygon will gain roughly $1 / 3$ of the total employment increment expected between 2010 and 2040 by 2020. The Delphi Team then reviewed each individual polygon's 2020 predicted total employment and made adjustments based on the overall consensus of the team.

Discussion

All population and employment forecasts occupy a position along a continuum of modeling philosophy, with one end of the continuum representing purely policy-driven forecasts and the other end of the continuum representing purely market trends-driven forecasts. Austin's DTI 2040 forecast is positioned towards the end where purely market trends-driven forecasts reside. The DTI 2040 forecast is therefore more of a market trends forecast than a policy forecast. Elements of a policy forecast include potential population and employment growth expected to occur within Imagine Austin activity centers and along mixed-use corridors. These growth expectations were adjusted using knowledge of the trends within current development patterns and practices.

The DTI 2040 forecast incorporates an envisioned urban-centric future of growth and development for Austin and yet also accounts for widely distributed, low-density suburban development that will surely continue to occur. The DTI 2040 forecast explicitly assumes a significant amount of redevelopment within the central urban area along with continued greenfield development where possible across the study area. The DTI 2040 forecast also takes into account that Austin's future employment pattern will be one of increased "multi-nucleation," meaning that while downtown will continue to be the region’s largest employment center, other significant clusters of employment will emerge regionally.

Worthy of mention is the fact that there are parallel yet inferior parcel-level forecast products currently available for the Austin area. Long-range forecasts based on parcel-level modelling notoriously suffer from what is known as aggregation bias. ${ }^{3}$ Aggregation bias can create a forecasting situation in which the predicted land uses of individual parcels cumulatively result in a grossly over-estimated study area total. Whereas the DTI 2040 forecast utilizes a far more reliable technique of beginning with a total increment of growth for the study area, both population and employment, and then distributing these increments into all constituent study area polygons based on attributes that estimate an individual polygon's attractiveness to future growth.

And finally, the Delphi Team studied a wide variety of thematic, analytic maps generated using the newly created forecast data to show overall trends and the relationships between population growth and employment growth across the study area. Qualitative, visual assessments of mapped forecast results were a critical tool in determining the overall viability of the forecast.

[^8]| West Austin | | $\stackrel{\bullet}{\bullet}$ | N | n／ | へ⿵冂 | －${ }_{\sim}^{1}$ | | ${ }^{\text {人，}}$ | กั | $\stackrel{\mathrm{n}}{\sim}$ | $\stackrel{7}{\text { äO }}$ | $\stackrel{\sim}{\sim}$ | $\stackrel{\bullet}{\circ}$ | ñ | $\stackrel{\infty}{\sim}$ | $\stackrel{m}{m}$ | $\stackrel{\sim}{4}$ | $\stackrel{n}{n}$ | $\stackrel{\sim}{n}$ | $\stackrel{7}{6}$ | N̂ | N | ñ | $\stackrel{\sim}{\sim}$ | $\stackrel{m}{m}$ | $\stackrel{\sim}{i}$ | m | － | － | ∞ | | \bigcirc |
| :---: |
| Westenfield | 9 | ก็่ | \bigcirc | \bigcirc | $\stackrel{\sim}{\sim}$ | $\stackrel{\sim}{4} \stackrel{\square}{\circ}$ | － | －n | $\stackrel{\square}{\circ}$ | त̇ | ¢ ${ }^{\text {¢ }}$ | $\stackrel{\sim}{\circ}$ | in | $\stackrel{\sim}{\bullet}$ | $\stackrel{m}{n}$ | $\stackrel{\text { ¢ }}{\text { ¢ }}$ | べ | $\stackrel{7}{\square}$ | － | $\stackrel{\square}{\square}$ | － | － | $\underset{\sim}{\text { ヘ }}$ | ¢ | $\stackrel{m}{m}$ | $\stackrel{\text { ¢ }}{ }$ | n | $\stackrel{\sim}{\square}$ | $\stackrel{\text { ¢ }}{\text { ¢ }}$ | $\stackrel{\text { un }}{\text { a }}$ | | \rightarrow |
| Walnut Creek | $\stackrel{\bullet}{\text { m }}$ | ${ }_{\infty}^{\infty}$ | ${ }_{\infty}^{\infty}$ | $\stackrel{\square}{\infty}$ | $\stackrel{7}{6} \times$ | $\stackrel{\rightharpoonup}{9}$ | | ～ | $\left.\begin{array}{\|c\|} \infty \\ \dot{\sim} \end{array} \right\rvert\,$ | $\stackrel{\sim}{2}$ | | | － | $\left\|\begin{array}{c} 0 \\ -7 \end{array}\right\|$ | $\begin{aligned} & \stackrel{\varphi}{m} \\ & \stackrel{1}{2} \end{aligned}$ | $\underset{\sim}{n}$ | $\begin{array}{\|l\|} \hline 0 \\ \underset{\sim}{\prime} \end{array}$ | $\underset{\sim}{\underset{\sim}{c}}$ | $\underset{\underset{i}{n}}{ }$ | $\begin{array}{\|c\|} \hline 0 \\ -\underset{-1}{ } \end{array}$ | $\|\underset{\infty}{+}\|$ | $\underset{\sim}{7}$ | $\underset{\sim}{9}$ | $\left\|\begin{array}{l} N \\ \infty \end{array}\right\|$ | $\stackrel{\sim}{\sim}$ | $\left\|\begin{array}{l} \text { İ } \end{array}\right\|$ | $\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$ | $\stackrel{\infty}{\infty}$ | $\stackrel{\square}{\square}$ | \bigcirc | | $\underset{\sim}{\sim}$ |
| Springwoods | \wedge | $\underset{\sim}{7}$ | 인 | $\stackrel{\rightharpoonup}{\sim}$ | | \hat{n} | － | $\begin{gathered} 9 \\ \dot{\sim} \end{gathered}$ | $\begin{array}{\|c\|} \hline \stackrel{N}{\mathrm{~N}} \end{array}$ | $\underset{\sim}{\bullet}$ | | $\underset{\mathcal{V}}{\hat{N}}$ | \cdots | $\left\|\begin{array}{c} \varphi \\ \infty \\ \infty \end{array}\right\|$ | $\begin{array}{\|c\|} \hline-7 \\ \overrightarrow{7} \end{array}$ | $\begin{aligned} & \infty \\ & \dot{\alpha} \end{aligned}$ | $\begin{array}{\|c\|} \hline 0 \\ \stackrel{N}{2} \\ \hline \end{array}$ | $\underset{\sim}{\circ}$ | $\stackrel{\infty}{\circ}$ | $\underset{\sim}{i}$ | $\left\lvert\, \begin{aligned} & n \\ & \underset{\sim}{n} \\ & \hline \end{aligned}\right.$ | － | $\begin{aligned} & \dot{\circ} \\ & \dot{\sigma} \end{aligned}$ | $\left\|\begin{array}{l} \infty \\ \dot{n} \end{array}\right\|$ | \checkmark | $\left\|\begin{array}{c} \tilde{N} \\ \end{array}\right\|$ | $\underset{\infty}{\infty}$ | $\left\|\begin{array}{c} \underset{\sim}{j} \\ \underset{\sim}{2} \end{array}\right\|$ | \bigcirc | $\stackrel{\square}{\circ}$ | － | $\stackrel{+}{\square}$ |
| Shipe | へู่ | N | N | n．${ }^{\text {m }}$ | $m \stackrel{\sim n}{\sim}$ | \cdots | $\stackrel{\bullet}{\text { ®n }}$ | \pm | $\left\lvert\, \begin{gathered} \underset{\sim}{\sim} \\ \underset{\sim}{2} \end{gathered}\right.$ | n P | | － | $\stackrel{\bullet}{n}$ | $\stackrel{\text { N }}{\sim}$ | $\stackrel{\infty}{+}$ | $\stackrel{\infty}{\sim}$ | $\stackrel{n}{n}$ | $\stackrel{\infty}{\sim}$ | in | $\stackrel{n}{0}$ | ¢ | $\stackrel{0}{6}$ | $\stackrel{m}{\square}$ | $\underset{\sim}{\text { m }}$ | $\stackrel{m}{i}$ | $\stackrel{0}{\mathrm{~m}}$ | ñ | \bigcirc | $\left\|\begin{array}{c} n \\ \stackrel{n}{\circ} \end{array}\right\|$ | $\stackrel{\mathrm{m}}{\circ}$ | $\stackrel{7}{\square}$ | $\stackrel{m}{+}$ |
| Rosewood | $\|\underset{\sim}{\dot{\sim}}\|$ | N | 守 | $\stackrel{\text { ¢ }}{\text {－}}$ | $$ | | $\stackrel{\sim}{\sim}$ | \cdots | | $\stackrel{\infty}{+} \times$ | ¢ | $\stackrel{\text { ¢ }}{\sim}$ | $\stackrel{N}{i}$ | $\underset{\sim}{\infty}$ | $\stackrel{\text { N }}{ }$ | へ | \cdots | $\stackrel{\infty}{+}$ | $\xrightarrow[\sim]{n}$ | $\stackrel{\infty}{\infty}$ | の | $\stackrel{7}{\square}$ | $\stackrel{\text { 人 }}{0}$ | $\stackrel{\square}{\square}$ | $\stackrel{\infty}{+}$ | in | \bigcirc | $\stackrel{\square}{\text { m }}$ | $\left.\begin{array}{\|c\|} \hline \infty \\ \infty \\ \sim \end{array} \right\rvert\,$ | $\stackrel{9}{7}$ | $\stackrel{ \pm}{\text { m }}$ | \cdots |
| Reed | $\|\hat{\sigma}\|$ | － | ${ }_{0}$ | $\begin{gathered} n \\ 0 \end{gathered}$ | $\begin{array}{l\|l\|} \vec{n} & \infty \\ i \\ \hline \end{array}$ | $\begin{array}{l\|l} \substack{i \\ -1 \\ \infty \\ \infty} \\ \hline \end{array}$ | \bigcirc | $\begin{aligned} & n \\ & \vdots \\ & \end{aligned}$ | $\begin{array}{\|c} \underset{\sim}{\mathrm{A}} \end{array}$ | $\left\|\begin{array}{c} \text { di } \\ \infty \end{array}\right\|$ | $\begin{array}{\|l\|l\|} \hline \Rightarrow & \infty \\ \infty \\ \hline \end{array}$ | ${ }_{0}$ | へู | \wedge | $\stackrel{m}{n}$ | $\stackrel{7}{6}$ | ∞ | へิ | $\stackrel{7}{6}$ | $\stackrel{\text { ¢ }}{ }$ | ¢ | － | io | $\begin{aligned} & 9 \\ & \dot{\sigma} \\ & \hline \end{aligned}$ | $\stackrel{\infty}{\sim}$ | \bigcirc | in | $\stackrel{\infty}{\infty}$ | $\begin{array}{\|l\|} \hline \left.\begin{array}{r} 3 \\ \underset{~ a ~}{2} \\ \hline \end{array} \right\rvert\, \\ \hline \end{array}$ | $\stackrel{\sim}{\sim}$ | へ | $\stackrel{\sim}{n}$ |
| Ramsey | ¢ٌ | $\stackrel{\text { ¢ }}{\sim}$ | $\stackrel{\sim 1}{\sim}$ | $\stackrel{n}{n} \underset{\sim}{n}$ | $\begin{array}{c\|c} n \\ \underset{i}{n} & \underset{i}{i} \\ \hline \end{array}$ | $\underset{\sim}{7}$ | | m | $\begin{array}{\|c\|} \hline \underset{\sim}{n} \\ \hline \end{array}$ | $\mid \stackrel{n}{n}$ | $\underset{\sim}{\text { N }}$ | ¢ | $\mid \underset{\sim}{\circ}$ | $\begin{array}{\|c\|c\|} \hline n \\ n \\ \hline \end{array}$ | $\stackrel{\infty}{\infty}+$ | ヘั่ | $\begin{array}{\|c\|} \hline i n \\ \infty \\ \hline \end{array}$ | へin | へ̇ | $\stackrel{\circ}{\circ}$ | $\underset{m}{9}$ | $\stackrel{\infty}{\sim}$ | Br | $\stackrel{+}{\circ}$ | \bigcirc | $\stackrel{\bigcirc}{\circ}$ | － | $\stackrel{m}{\sim}$ | \bigcirc | $\stackrel{\sim}{n}$ | $\stackrel{m}{m}$ | m |
| Patterson | $\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \end{aligned}$ | $\left\|\begin{array}{c} \infty \\ \rightarrow-1 \end{array}\right\|$ | ${ }^{\circ}$ | $\stackrel{7}{\circ}$ | $$ | $\underset{+}{\infty}$ | | 获 | $\begin{array}{\|c\|} \hline 6 \\ \underset{\sim}{\mid} \end{array}$ | | | $\stackrel{\sim}{0}$ | $\stackrel{\sim}{n}$ | \vec{m} | $\stackrel{\infty}{\sim}$ | $\mathrm{Hz}^{\text {in }}$ | \wedge | $\stackrel{9}{n}$ | $\stackrel{-}{\square}$ | $\left\|\begin{array}{c} n \\ n \end{array}\right\|$ | $\left\|\begin{array}{c} n \\ \stackrel{n}{2} \end{array}\right\|$ | $\stackrel{9}{+}$ | $\stackrel{\square}{i}$ | \bigcirc | $\stackrel{\circ}{\sim}$ | $\stackrel{\circ}{\text { ¢ }}$ | 9 | $\stackrel{m}{i}$ | $\left.\begin{array}{\|c\|} \hline \infty \\ \underset{\sim}{n} \end{array} \right\rvert\,$ | － | ¢ | $\stackrel{\sim}{\sim}$ |
| Parque Zaragoza | \checkmark | $\stackrel{9}{\sim}$ | N | $\stackrel{\bigcirc}{\sim}$ | $\begin{array}{l\|l\|} \hline & \underset{\sim}{\circ} \\ & 0 \\ \hline \end{array}$ | － | $\stackrel{\rightharpoonup}{\text { i }}$ | $\mid \hat{A}$ | \|g்| | ～－ | $\stackrel{\infty}{\sim}$ | $\stackrel{\text { ¢n }}{\sim}$ | $\stackrel{9}{-}$ | $\stackrel{+}{\square}$ | ∞_{∞}^{∞} | $\stackrel{n}{n}$ | $\mid \underset{\sim}{\sigma}$ | | $\stackrel{\infty}{\circ}$ | $\stackrel{-}{2}$ | ${ }^{\text {人े }}$ | N | \bigcirc | N | in | ก็ | － | $\stackrel{\sim}{*}$ | $\begin{array}{\|c\|} \hline m \\ \dot{\sim} \end{array}$ | $\underset{\sim}{\text { n }}$ | ～ | N |
| Northwest | $\left\|\begin{array}{c} n \\ i n \end{array}\right\|$ | ¢ | $\stackrel{\sim}{\circ}$ | $\stackrel{\sim}{0}$ | \cdots | － | － | \mathfrak{c} | $\begin{array}{\|l\|} \hline \infty \\ \stackrel{n}{n} \\ \hline \end{array}$ | ¢ | กิ่ | \cdots | N | $\stackrel{\infty}{\sim}$ | $\underset{\sim}{2}$ | ơં | $\begin{array}{\|c\|} \hline 0 \\ \hline-1 \\ \hline \end{array}$ | へั | in | $\begin{array}{\|r\|} \hline-3 \\ \hline-1 \\ \hline \end{array}$ | \％ | \bigcirc | べ | $\begin{aligned} & 9 \\ & \hline \end{aligned}$ | $\stackrel{\infty}{\sim}$ | ¢ | － | 0 | $\begin{array}{\|c\|} \hline \infty \\ -1 \\ -1 \end{array}$ | ${ }_{0}^{0}$ | べ | $\stackrel{\sim}{6}$ |
| Murchison | $\begin{array}{\|c\|} \hline \text { Nै } \\ \hline \end{array}$ | $\left\|\begin{array}{c} \underset{~}{~} \end{array}\right\|$ | \bigcirc | \bigcirc | $\stackrel{\sim}{n}$ | $\dot{\sim}$ | 子o | or | $\begin{array}{\|c\|} \hline 0 \\ \dot{\sim} \mid \end{array}$ | | | － | \bigcirc | à | $\|\stackrel{\bullet}{\dot{\sigma}}\|$ | ∞ | $\begin{array}{\|c\|} \hline 0 \\ \hline-1 \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \stackrel{n}{\sigma} \\ \hline \end{array}$ | $\stackrel{\infty}{\circ}$ | $\begin{array}{\|c\|} \hline \underset{\sim}{\mathrm{A}} \end{array}$ | \bigcirc | $\underset{\sim}{i}$ | σ_{0} | ت-0 | $\left\lvert\, \begin{array}{\|c\|} \hline 9 \end{array}\right.$ | $\left\lvert\, \begin{gathered} \underset{\sim}{\dot{\sigma}} \end{gathered}\right.$ | － | $\stackrel{\text { ¢ }}{ }$ | $\begin{array}{\|c\|} \hline 0 \\ \hline-1 \\ \hline \end{array}$ | － | べ | べ |
| Montopolis | $\left\|\begin{array}{c} \underset{\sim}{9} \\ \hline \end{array}\right\|$ | へิ | － | －$\underset{\infty}{\infty}$ | | $\begin{gathered} \stackrel{y}{-1} \\ \underset{-1}{\circ} \\ \dot{\circ} \end{gathered}$ | $\dot{\circ} \mid$ | $\begin{aligned} & \infty \\ & \dot{\sim} \end{aligned}$ | $\|\stackrel{\circ}{\dot{\sigma}}\|$ | $\stackrel{7}{\square}$ | $\stackrel{\bullet}{\circ}$ | $\stackrel{-}{\odot}$ | $\stackrel{\square}{\sim}$ | N | $\begin{aligned} & \hline 0 \\ & \\ & \hline \end{aligned}$ | $\stackrel{\infty}{\infty}$ | $\left\|\begin{array}{l} \infty \\ \mathrm{m} \end{array}\right\|$ | － | m | \bigcirc | $\begin{array}{\|l\|l\|} \hline 0 \\ -1 \end{array}$ | $\left\|\begin{array}{c} 9 \\ 9 \end{array}\right\|$ | m | \sim | $\stackrel{\circ}{\stackrel{\circ}{\circ}}$ | $\left\|\begin{array}{c} \stackrel{\circ}{\infty} \end{array}\right\|$ | n | $\stackrel{n}{0}$ | $\|\underset{\mathrm{N}}{ }\|$ | $\left.\begin{aligned} & \stackrel{0}{\sim} \\ & \stackrel{\sim}{2} \end{aligned} \right\rvert\,$ | $\stackrel{7}{\square}$ | －7 |
| Metz | $\underset{\sim}{i}$ | $\left\|\begin{array}{c} m \\ n \end{array}\right\|$ | \cdots | $\stackrel{n}{n} \times$ | $\infty \stackrel{n}{\sim}$ | $\underset{i}{n} \underset{i}{i}$ | －$\%$ | $\stackrel{\mathrm{m}}{\underset{\sim}{2}}$ | \cdots | \bigcirc | \bigcirc | $\stackrel{\sim}{\sim}$ | へ | \sim | 人̀ | $\stackrel{\infty}{\sim}$ | n | \rightarrow | － | $\stackrel{\circ}{\circ}$ | $\left\|\begin{array}{c} \infty \\ \infty \end{array}\right\|$ | in | $\stackrel{\infty}{\circ}$ | $\left\lvert\, \begin{gathered} \dot{m} \\ \hline \end{gathered}\right.$ | －7 | Nิ | － | in | $\stackrel{\text { a }}{ }$ | $\stackrel{\text { N }}{ }$ | 守 | $\stackrel{\text { n }}{ }$ |
| Martin | $\underset{\sim}{7}$ | m | N | $\stackrel{\text { j }}{ } \stackrel{\infty}{\sim}$ | $\stackrel{\infty}{\sim} \stackrel{1}{\sim}$ | $\stackrel{\text { Ne}}{ }$ | | $\underset{7}{ }$ | ${ }^{\wedge}$ | 人 | \cdots | $\stackrel{\mathrm{m}}{\mathrm{m}}$ | $\stackrel{\sim}{\sim}$ | m | －̇ं | $\stackrel{\infty}{+}$ | n | － | \rightarrow | － | $\stackrel{\circ}{\circ}$ | N | $\stackrel{\text { N }}{-}$ | $+\begin{aligned} & \infty \\ & \dot{\sim} \end{aligned}$ | นn | जึ | $\stackrel{\text { İ }}{ }$ | $\stackrel{\infty}{+}$ | $\begin{array}{\|l\|} \hline \stackrel{n}{2} \\ \hline \end{array}$ | $\stackrel{\text { in }}{\sim}$ | $\stackrel{7}{\square}$ | m |
| Mabel Davis | $$ | ∞ | $\stackrel{\text { Ni}}{-}$ | | $$ | $$ | فn | $\stackrel{\circ}{\circ}$ | $\|\stackrel{\varphi}{\circ}\|$ | $\stackrel{\infty}{\circ}{ }_{\sim}^{\circ}$ | $\begin{array}{\|l\|l\|} \hline \vec{m} & \infty \\ \hline \dot{~} \\ \hline \end{array}$ | $\stackrel{\bigcirc}{\sim}$ | $\stackrel{7}{\sim}$ | in | $\begin{array}{\|c\|} \hline 0 \\ \hline-1 \\ \hline \end{array}$ | $\stackrel{\text { i }}{\sim}$ | \bigcirc | n | ก | $\stackrel{\infty}{\infty}$ | $\begin{array}{\|r\|} \hline 0 \\ -1 \end{array}$ | A | $\|\underset{\dot{\sigma}}{\dot{\sigma}}\|$ | \wedge | \sim_{∞}^{\sim} | $\stackrel{9}{\square}$ | F^{H} | $\stackrel{n}{\sim}$ | $\begin{array}{\|c\|} \hline 0 \\ \dot{N} \end{array}$ | $\begin{array}{\|c\|} \hline 0 \\ \underset{\sim}{1} \\ \hline \end{array}$ | N | $\stackrel{\sim}{\text {－}}$ |
| Little Stacy | $\begin{aligned} & 9 \\ & \underset{\sim}{2} \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline \stackrel{\varphi}{\bullet} \end{array}$ | \dot{B} | $\stackrel{\circ}{0} \underset{\infty}{\infty}$ | $\begin{array}{l\|l\|} \hline 0 & 0 \\ \infty & 0 \\ \hline \end{array}$ | | $\stackrel{\sim}{0}$ | 9 | － | No | －¢ ¢ | $\stackrel{-}{0}$ | へิ | $\begin{array}{\|c\|} \hline \bullet \\ \hline \dot{\sigma} \end{array}$ | 9 | － | $\left.\begin{array}{\|c\|} \hline \underset{\sim}{i} \end{array} \right\rvert\,$ | － | $\stackrel{\square}{\sim}$ | $\stackrel{7}{\square}$ | \|ণ்| | $\stackrel{\circ}{\circ}$ | \dot{m} | $\begin{aligned} & 0 \\ & i n \\ & \hline \end{aligned}$ | \wedge | \bigcirc | $\stackrel{m}{\sim}$ | $\stackrel{\infty}{\sim}$ | \bigcirc | \cdots | $\stackrel{9}{m}$ | \cdots |
| Kennemer | $\begin{array}{\|l\|} \hline \infty \\ \dot{\sigma} \end{array}$ | $\|\underset{n}{n}\|$ | $4 \begin{aligned} & 6 \\ & \vdots \\ & 9 \end{aligned}$ | | $$ | 0 | vir | $\begin{gathered} 0 \\ \infty \\ \infty \\ \hline \end{gathered}$ | $\begin{gathered} n \\ \underset{\sim}{n} \\ \hline \end{gathered}$ | | | $\underset{\sim}{n} \hat{\sim}$ | 19 | $\left\|\begin{array}{l\|} i n \\ \infty \\ \infty \end{array}\right\|$ | － | \bigcirc | $\begin{array}{\|l\|} \hline n \\ \\ \hline \end{array}$ | \|ợ| | $\begin{gathered} \mathrm{m} \\ \mathrm{a} \end{gathered}$ | $\begin{aligned} & 0 \\ & \hline-9 \end{aligned}$ | $\underset{\sim}{m}$ | $\stackrel{\sim}{\mathrm{i}}$ | $\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$ | n | $\stackrel{\infty}{+}$ | $\stackrel{\text {－}}{ }$ | $\stackrel{\bigcirc}{\circ}$ | $\stackrel{\infty}{+}$ | $\begin{array}{\|l\|} \hline \left.\begin{array}{l} 7 \\ \vec{~} \end{array} \right\rvert\, \end{array}$ | $\stackrel{\square}{\sim}$ | n | $\stackrel{\infty}{\sim}$ |
| Govalle | $\left\|\begin{array}{c} \sim \\ \sim \\ \sim \end{array}\right\|$ | $\|\hat{m}\|$ | ค | $\underset{\sim}{\circ}$ | O.\| | | $\stackrel{\sim}{0}$ | \pm | $\begin{aligned} & 9 \\ & 7 \\ & \hline \end{aligned}$ | $\left\|\begin{array}{l} \operatorname{nn} \\ \dot{\sigma} \end{array}\right\|$ | $\left\|\begin{array}{c} \infty \\ \dot{\varphi} \end{array}\right\| \underset{\sigma}{\infty}$ | \bigcirc | － | \bigcirc | N | $\left\|\begin{array}{c} m \\ \dot{\gamma} \end{array}\right\|$ | $\|\overrightarrow{i n}\|$ | $\stackrel{\sim}{\mathrm{i}}$ | 9 | ${ }_{\text {i }}$ | न̈ | $\stackrel{\infty}{\sim}$ | $\underset{-}{7}$ | $\|\underset{i}{ }\|$ | ～n | \bigcirc | $\stackrel{\infty}{+}$ | ～ | $\left\|\begin{array}{c} 0 \\ \infty \\ \underset{\sim}{0} \end{array}\right\|$ | $\left\lvert\, \begin{gathered} \underset{~}{7} \\ \underset{\sim}{2} \end{gathered}\right.$ | $\stackrel{\sim}{\circ}$ | N |
| Givens | $\underset{\sim}{n} \mid$ | $\underset{\sim}{\mathrm{i}} \mid$ | Nิ | － | $\begin{array}{l\|l\|} \hline n & 0 \\ 0 & n \\ \end{array}$ | m | m | $\stackrel{\text { ¢ }}{\substack{4 \\-1}}$ | $\mid \underset{\underset{A}{A}}{ }$ | $\stackrel{m}{m}$ | $\stackrel{\sim}{\infty} \times$ | 缶へ | \bigcirc | 令 | $\stackrel{\bullet}{\circ}$ | in | $\stackrel{7}{\square}$ | $\stackrel{0}{n}$ | $\stackrel{\square}{\sim}$ | $\stackrel{\sim}{n}$ | न̈ | ～ | $\stackrel{\square}{-}$ | $\stackrel{\square}{\sim}$ | ¢ | $\stackrel{0}{0}$ | $\stackrel{\infty}{-}$ | $\stackrel{\square}{\mathrm{m}}$ | $\stackrel{\infty}{\sim}$ | | in | $\stackrel{\odot}{-}$ |
| Gillis | $\left\lvert\, \begin{gathered} \text { İ } \\ \hline \end{gathered}\right.$ | $\underset{\sim}{~}$ | － | $-{ }_{\circ}^{\infty}$ | $\begin{array}{l\|l\|} \hline \infty & \underset{1}{c} \\ \hline \end{array}$ | $+\underset{\infty}{1+1}$ | ${ }_{0}$ | ∞ | \bigcirc | \bigcirc | $\stackrel{\text { ci }}{\text {－}}$ | － | $\xrightarrow{7}$ | ¢ | $\begin{aligned} & 0 \\ & -1 \\ & \hline \end{aligned}$ | $\xrightarrow{\text { n }}$ | $\stackrel{\sim}{\text { N }}$ | ñ | $\stackrel{m}{\dot{*}}$ | $\stackrel{\circ}{+}$ | ${ }^{\text {人 }}$ | mi | $\stackrel{\sim}{\text { ¢ }}$ | $\left.\begin{array}{\|c} 9 \\ \dot{\omega} \end{array} \right\rvert\,$ | n | － | － | \wedge | $\begin{array}{\|c\|} \hline 0 \\ \underset{\mathrm{i}}{ } \\ \hline \end{array}$ | $\stackrel{\sim}{\sim}$ | \％ | $\stackrel{m}{*}$ |
| Garrison | $\begin{array}{\|c\|} \hline 0 \\ \stackrel{0}{-1} \\ \hline \end{array}$ | $\begin{aligned} & 9 \\ & \hline \end{aligned}$ | $\begin{gathered} \infty \\ \underset{\sim}{\infty} \\ \dot{\sim} \end{gathered}$ | | $\begin{array}{c\|c\|} \hline & \underset{\sim}{n} \\ \underset{\sim}{c} \\ \hline \end{array}$ | $$ | \sim_{n} | ¢ | m | $\begin{array}{\|c\|} \underset{n}{n} \\ \hline \end{array}$ | ¢ | $\stackrel{7}{7}$ | $\begin{array}{\|c\|} \hline 0 \\ \vdots \\ \hline \end{array}$ | \cdots | $\|\underset{\sim}{n}\|$ | Nn | $\stackrel{\infty}{+}$ | $\stackrel{\sim}{\sim}$ | $\stackrel{\sim}{\infty}$ | $\stackrel{\square}{2}$ | $\begin{array}{\|l\|} \hline \underset{X}{\prime} \\ \hline \end{array}$ | $\left\|\begin{array}{c} \circ \\ \underset{\sim}{4} \end{array}\right\|$ | べ | $\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \end{aligned}$ | － | $\stackrel{\sim}{\infty}$ | へু | $\stackrel{7}{7}$ | $\|\underset{\underset{\sim}{*}}{ }\|$ | － | ¢ู่ | \bigcirc |
| Dove Springs | $\begin{array}{\|c\|c\|} \hline \stackrel{N}{9} \\ \underset{\sim}{2} \end{array}$ | $\left\|\begin{array}{c} A \\ A \end{array}\right\|$ | | | $\begin{array}{\|c\|c\|} \underset{\sim}{\mathrm{J}} & \stackrel{\sim}{N} \\ \hline \end{array}$ | $$ | $\stackrel{\sim}{n}$ mis | ¢ | $\stackrel{\square}{\sim}$ | $\left\lvert\, \begin{aligned} & \operatorname{nn} \\ & \underset{-1}{ } \\ & \hline \end{aligned}\right.$ | － | ¢ | Nั | $\hat{\circ}$ | $\stackrel{\sim}{\wedge}$ | \cdots | $\stackrel{\square}{n}$ | $\stackrel{n}{\sim}$ | $\hat{\circ}$ | $\stackrel{\text { ¢ }}{+}$ | \|rn | － | $\stackrel{ }{\wedge}$ | $\stackrel{\infty}{\circ}$ | $\begin{array}{\|c} \hline \underset{\sim}{9} \\ \hline \end{array}$ | | σ | \bigcirc | \sim | $\stackrel{\infty}{\sim}$ | $\stackrel{\infty}{\circ}$ | नु |
| Dottie Jordan | ～ | $\stackrel{\mathrm{m}}{\mathrm{i}}$ | ons | \cdots | $\sim \stackrel{\rightharpoonup}{\text { n }}$ | $\stackrel{\rightharpoonup}{n} \underset{\sim}{\circ}$ | \bigcirc | 9 | 会 | $\bigcirc \stackrel{\sim}{\sim}$ | $$ | － | \cdots | $\stackrel{\sim}{\sim}$ | へٌ | $\stackrel{\text { N }}{\infty}$ | | \bigcirc | \bigcirc | $\stackrel{\infty}{\circ}$ | N | | in | | $\stackrel{\sim}{n}$ | $\stackrel{-}{\infty}$ | － | in | $\begin{array}{\|c\|} \hline \stackrel{e}{i n} \mid \\ \hline \end{array}$ | － | へ | $\stackrel{n}{n}$ |
| Dittmar | $\begin{gathered} n \\ \stackrel{n}{n} \end{gathered}$ | $\underset{\substack{n \\ \underset{\sim}{n} \\ \hline}}{ }$ | | | $\stackrel{\hat{N}}{\hat{\sim}} \mid \vec{i}$ | $\dot{-i} \underset{\sim}{\infty}$ | | $\stackrel{\sim}{n}$ | － | へิ | $\hat{n}{ }^{\text {m }}$ | ¢ 0 | $\left\lvert\, \begin{aligned} & \underset{\sim}{\dot{\sim}} \end{aligned}\right.$ | $\underset{\sim}{\underset{\sim}{i}}$ | \cdots | $\stackrel{\text { ¢ }}{\substack{0}}$ | $\stackrel{\square}{\circ}$ | न̈ | $\stackrel{\square}{\circ}$ | $\|\stackrel{\varphi}{\sigma}\|$ | $\left\lvert\,\right.$ | $\begin{array}{\|c\|} \hline \stackrel{0}{\dot{-}} \end{array}$ | | $\begin{aligned} & n \\ & \vdots \\ & \underset{\sim}{n} \end{aligned}$ | $\left.\begin{array}{\|c\|} \hat{\sim} \\ \underset{\sim}{n} \end{array} \right\rvert\,$ | $\left\|\begin{array}{l} \infty \\ \vec{A} \end{array}\right\|$ | 7 | $\left\|\begin{array}{l} n \\ \underset{\sim}{n} \end{array}\right\|$ | $\left\|\begin{array}{c} 7 \\ \dot{\sim} \end{array}\right\|$ | \cdots | $\stackrel{\text { No}}{ }$ | N－ |
| Dick Nichols | $\left\|\begin{array}{c} m \\ \stackrel{\rightharpoonup}{2} \end{array}\right\|$ | $\underset{\substack{9 \\ \hline \\ \hline}}{ }$ | $\overbrace{1}^{\infty}$ | $\stackrel{\sim}{-1}$ | $\sim \sim$ | ${ }_{\sim}^{\circ}$ | \cdots | － | in | －${ }_{\sim}^{\circ} \mathrm{j}$ | ¢ ${ }^{\circ}$ | ${ }_{\sim}^{\infty}$ | $\stackrel{\text { J }}{\text {－}}$ | \sim | $\left\|\begin{array}{l} n \\ \infty \\ \infty \end{array}\right\|$ | बू | $\stackrel{\circ}{\circ}$ | N | $\stackrel{\text { へ̃ }}{\text { ̇ }}$ | $\begin{array}{\|l\|l\|} \hline \infty \\ \underset{\sim}{2} \end{array}$ | $\left\lvert\, \begin{aligned} & \infty \\ & \dot{\sim} \end{aligned}\right.$ | $\stackrel{\sim}{n}$ | \cdots | $\binom{m}{\underset{\sim}{2}}$ | \cdots | $\left\lvert\, \begin{aligned} & \text { İ } \\ & \text { In } \end{aligned}\right.$ | \cdots | \pm | $\|\underset{\sim}{\dot{j}}\|$ | N | へু | へิ－ |
| Deep Eddy | | $\left\|\begin{array}{l} \infty \\ \dot{0} \end{array}\right\|$ | $\stackrel{-1}{\text { ¢ }}$ | $\underset{\sim}{7} \underset{\sim}{1}$ | | $\begin{gathered} y \\ \underset{\sim}{2} \\ \hline \end{gathered}$ | \bigcirc | べ | \bigcirc | $\stackrel{\circ}{\infty}$ | | － | ¢ | へ | $\stackrel{\text { ¢ }}{\sim}$ | － | \cdots | ñ | － | $\stackrel{\circ}{\circ}$ | | $\stackrel{\bullet}{\circ}$ | － | $\left\|\begin{array}{l} \infty \\ i \end{array}\right\|$ | \checkmark | $\left\|\begin{array}{c} \tilde{N} \end{array}\right\|$ | $\stackrel{n}{\dot{\sim}}$ | in | $\stackrel{n}{0}$ | $\stackrel{\sim}{\sim}$ | $\underset{\sim}{7}$ | $\underset{\sim}{\text { m }}$ |
| Civitan | $\left\lvert\, \begin{gathered} -1 \\ \underset{\sim}{n} \end{gathered}\right.$ | ¢ | $\stackrel{\text { ¢ }}{\text { ¢ }}$ | － | ${ }_{\sim}^{n} 0$ | \bigcirc | ¢ | $\underset{\substack{0 \\ \dot{C} \\ \hline}}{ }$ | $\hat{\sim}$ | ¢ | in | n | m | $\stackrel{\infty}{\infty}$ | $\begin{aligned} & N \\ & O \\ & \hline \end{aligned}$ | $\stackrel{\circ}{+}$ | $\stackrel{\circ}{+}$ | $\stackrel{0}{\sim}$ | $\stackrel{\bigcirc}{\sim}$ | $\stackrel{\infty}{\circ}$ | － | － | $\stackrel{\square}{\circ}$ | $\stackrel{\square}{\circ}$ | 入 | $\stackrel{\infty}{\circ}$ | m | $\stackrel{\infty}{\infty}$ | $\|\underset{\sim}{\text { in }}\|$ | $\stackrel{\sim}{\sim}$ | \bigcirc | n |
| Canyon Vista | $\stackrel{\bullet}{+}$ | $\left\lvert\, \begin{aligned} & \infty \\ & \underset{\sim}{2} \end{aligned}\right.$ | $\underset{\sim}{\dot{4}} \underset{\sim}{i}$ | $\stackrel{\sim}{\mathrm{N}}{ }_{\mathrm{N}}^{1}$ | Oू○ | $\stackrel{m}{\wedge}$ | ¢ | $\stackrel{n}{i}$ | $\underset{\sim}{\hat{N}}$ | $\begin{aligned} & n \\ & \underset{\sim}{n} \\ & \end{aligned}$ | $\stackrel{n}{n} \stackrel{\underset{\sim}{\lambda}}{\stackrel{\rightharpoonup}{\lambda}}$ | － | $\stackrel{\sim}{\sim}$ | on | $\stackrel{0}{\infty}$ | $\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$ | $\left\lvert\, \begin{gathered} \sim \\ \underset{\sim}{2} \end{gathered}\right.$ | $\left. \right\rvert\,$ | | $\left.\begin{gathered} \infty \\ \infty \\ \cdots \end{gathered} \right\rvert\,$ | $\stackrel{\infty}{\circ}$ | न̈ | $\left\lvert\, \begin{gathered} n \\ \underset{c}{n} \end{gathered}\right.$ | $\underset{\sim}{\hat{\sim}}$ | $\left.\begin{array}{\|c\|} \hline 9 \\ \stackrel{\rightharpoonup}{7} \end{array} \right\rvert\,$ | $\stackrel{\text { c }}{ }$ | $\left\|\begin{array}{l} \infty \\ \underset{\sim}{\infty} \end{array}\right\|$ | $\begin{aligned} & \infty \\ & -1 \\ & -1 \end{aligned}$ | べ | － | $\stackrel{\sim}{\sim}$ | m |
| Brentwood | $\stackrel{\infty}{\bullet}$ | \checkmark | | ก̃o | \bigcirc | $\stackrel{\circ}{\infty}$ | ¢ | $\stackrel{\mathrm{m}}{\sim}$ | $\stackrel{\sim}{n}$ | 会 | $$ | － | ヘ̂ | $\stackrel{\infty}{\circ}$ | ñ | $\stackrel{\square}{\infty}$ | $$ | $\stackrel{9}{\sim}$ | $\underset{\infty}{m}$ | ${ }_{\infty}^{\infty}$ | $\stackrel{9}{9}$ | m | －${ }_{\sim}^{\sim}$ | $\stackrel{9}{\text { n }}$ | $\stackrel{\mathrm{m}}{\mathrm{i}}$ | in | － | m | N | $\stackrel{7}{6}$ | $\stackrel{\bullet}{\bullet}$ | in |
| Big Stacy | $$ | $\stackrel{7}{\square}$ | － | \bigcirc－ | へٌ | 令 | $\stackrel{\text { ¢ }}{\text { ¢ }}$ | 人ें | $\stackrel{0}{\circ}$ | \％${ }^{\circ}$ | $\stackrel{\sim}{\sim}$ | ${ }_{-}$ | ก̃ | $\stackrel{\square}{+}$ | $\stackrel{\text { m }}{\text { ¢ }}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\text { Ni}}{ }$ | $\stackrel{\text { N }}{ }$ | $\stackrel{m}{m}$ | － | 악 | $\stackrel{\circ}{\circ}$ | $\stackrel{\text { ヘ }}{\sim}$ | $\stackrel{7}{6}$ | $\stackrel{\sim}{n}$ | $\stackrel{\ominus}{\circ}$ | ～ | ¢ | $\stackrel{\sim}{2}$ | m | $\stackrel{\circ}{\circ}$ | $\stackrel{\wedge}{\mathrm{m}}$ |
| Bartholomew | | \bigcirc | ๑ู่ | o̧． | $\stackrel{\sim}{\sim}$ | － | $\stackrel{\text { ¢ }}{\sim}$ | $\stackrel{\sim}{n}$ | $\begin{aligned} & 0 \\ & \underset{\sim}{2} \end{aligned}$ | $\stackrel{\sim}{\sim}$ | － | $\stackrel{\square}{-}$ | $\stackrel{\text {－}}{ }$ | $\stackrel{N}{\mathrm{~m}}$ | 寺 | $\stackrel{n}{6}$ | ∞ | $\stackrel{\bullet}{\bullet}$ | in | $\stackrel{\infty}{\sim}$ | | ণ̧寸 | $\stackrel{\text { ¢ }}{\sim}$ | $\stackrel{-}{-}$ | $\stackrel{+}{\square}$ | へ̀ | $\stackrel{\text { n }}{\text { m }}$ | $\stackrel{\wedge}{\mathrm{v}}$ | $\stackrel{\sim}{n}$ | $\underset{\infty}{\infty}$ | กั่ | $\stackrel{\sim}{6}$ |
| Balcones | | \bigcirc | n | $\underset{\sim}{n} \underset{\sim}{c}$ | $$ | $\stackrel{-1}{n} \begin{array}{r} \infty \\ \underset{-1}{\prime} \end{array}$ | $\underset{\sim}{\circ}$ | $$ | $\stackrel{m}{n}$ | $\stackrel{\square}{\square}$ | $\cdots{ }_{-}{ }_{-}^{0}$ | ¢ | $\left\|\begin{array}{c} \underset{\sim}{\mathrm{N}} \end{array}\right\|$ | \cdots | $\stackrel{\infty}{+}$ | $\left\lvert\, \begin{gathered} \underset{\sim}{J} \\ \underset{\sim}{2} \end{gathered}\right.$ | $\left\lvert\, \begin{gathered} \underset{\sim}{n} \\ \hline \end{gathered}\right.$ | \pm | ベ | $\left\|\begin{array}{c} \underset{\sim}{\sim} \\ \underset{\sim}{2} \end{array}\right\|$ | $\stackrel{7}{6}$ | $\stackrel{m}{n}$ | | O | $\stackrel{\sim}{\infty}$ | － | $\underset{\sim}{m}$ | ¢̇ | $\stackrel{\square}{\circ}$ | $\stackrel{\square}{0}$ | － | －1 |
| | $\left\|\begin{array}{c} \tilde{0} \\ \stackrel{0}{0} \\ \frac{0}{\tilde{\omega}} \\ \underset{\sim}{n} \end{array}\right\|$ | | | | | $\begin{array}{\|l\|l\|l\|} \substack{5 \\ \\ \hline} \end{array}$ | | | | | | | | \mathfrak{c} | | | | $\left\|\begin{array}{c} \stackrel{E}{E} \\ \stackrel{E}{0} \end{array}\right\|$ | $\stackrel{N}{\Sigma}$ | | | | | | | | | $\left\|\frac{. ⿳ 亠 口 冋}{\overline{2}}\right\|$ | | | | |

Municipal Pools

180,000
160,000
140,000
120,000
100,000
80,000

$$
p \mathrm{Eddy}
$$

$\square 2015-2016 \square 2017$
Northwest
29,244

$$
9,788
$$

$$
\begin{aligned}
& 0,847 \\
& \hline 0
\end{aligned}
$$

38,017
20,107

POOL		$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$
Neighborhood Pools				
Balcones Neighborhood Pool	14,774	14392	16863	
Big Stacy Neighborhood Pool	57,737	32826	54660	
Brentwood Neighborhood Pool	11,533	11405	13094	
Canyon Vista Neighborhood Pool	8,960	6411	8704	
Civitan Neighborhood Pool	2,508	782	2,832	
Dick Nichols Neighborhood Pool	31,726	27142	33901	
Dittmar Neighborhood Pool	27,401	23559	21777	
Dottie Jordan Neighborhood Pool	7,391	10989	14036	
Dove Springs Neighborhood Pool	28,278	16578	27495	
Gillis Neighborhood Pool	4,051	2861	3326	
Givens Neighborhood Pool	17,267	9770	Closed	
Govalle Neighborhood Pool	4,243	2,396	Closed	
Kennemer Neighborhood Pool	5,059	5404	5507	
Martin Neighborhood Pool	12,703	8,672	11,731	
Metz Neighborhood Pool	7,939	9,756	6,618	
Montopolis Neighborhood Pool	7,756	7,340	11,142	
Murchison Neighborhood Pool	4,262	9,523	11,502	
Parque Zaragoza Neighborhood Pool	3,497	3,464	2,748	
Patterson Neighborhood Pool	7,585	3,753	8,925	
Ramsey Neighborhood Pool	117,178	16,326	19,565	
Reed Neighborhood Pool	5,057	4,269	5,223	
Rosewood Neighborhood Pool	18,505	15,182	14,446	
Shipe Neighborhood Pool	19,429	13,866	Closed	
West Enfield Neighborhood Pool	27,850	14,288	18,973	

Attendance before and after renovations

90000
80000
70000
60000
50000
40000
30000
20000
10000
0
\square Bartholomew
\square West Enfield \square Bartholomew \quad West Enfield

This page intentionally blank.

APPENDIX G

Appendix B3
 Pool Distances

Balcones-12017 Amherst Dr. 78727
Pools that are less than or equal to 1 mile away
$\begin{aligned} & \text { Walnut Creek Municipal (} 3.6 \text { miles) } 5 \text { or less miles away } \\ & \text { Neighborhood Pools } \\ & \text { Canyon Vista (} 4.5 \text { miles) } \\ & \text { Kennemer Neighborhood Pool (4.8 miles) }\end{aligned}$
Bartholomew - 1800 E.51st St. 78723
Pools that are less than or equal to 1 mile away
Northwest Municipal (4.9 miles) Neighborhood Pools
Balcones (10 miles) Balcones (10 miles)
Civitan (5.3 miles)
Gillis (7.4 miles)
Kennemer (5.4 mil Kennemer (5.4 miles)
Martin (5.3 miles)
Metz (5.3 miles) Montopolis (5.7 miles) Murchison (6.4 miles)
Reed (6.1 miles)
Big Stacy (7.1 miles) West Austin (5.6 miles)
 Little Stacy (6.6 miles)
Big Stacy - E. Live Oak St. 78704
Pools 5 or less miles away

Deep Eddy (4.1 miles)
Mabel Davis (1.7 miles)
Walnut Creek (8.3 miles)

Garrison (4.8 miles)
Garrison (4.8 miles)
Northwest (9.8 miles) Neighborhood Pools
Martin (2.7 miles)
Metz (3.3 miles)
West Austin (3.7 miles)
Montopolis (4 miles)
Parque Zaragoza (4.2 miles)
Rosewood (4.4 miles)
Dove Springs (4.5 miles)
Westenfield (4.6 miles)
Civitan (4.7 miles)
Govalle (4.9 miles)
Patterson (6.1 miles)

Neighborhood Pools
Little Stacy (0.6 miles)
Gillis (1 mile)
$\frac{\text { Brentwood - } 6710 \text { Arroyo Seca St. } 78757}{\text { Pools that are less than or equal to } 1 \text { mile away }}$
Bartholomew Municipal (4.1 miles) Northwest Municipal (1.3 miles)

Neighborhood Pools Dottie Jordan (5 miles) Kennemer (3.2 miles) Murchison (3.5 miles) Patterson (4.1 miles) Ramsey (2.3 miles)
Canyon Vista - 8455 Spicewood Spings Rd. 78759
Northwest Municipal (9.1 miles) Springwoods Municipal (5.5 miles) Walnut Creek Municipal (8.7 miles)
Neighborhood Pools
Balcones (5.1 miles) Brentwood Pool (9.9 miles)
Murchison (6.7 miles) Bartholomew Municipal (5.6 miles) Deep Eddy Municipal (6.5 miles)
Garrison Municipal (9.5 miles) Northwest Municipal (9.7) Brentwood (8.4 miles) Dottie Jordan (6.4 miles) Dove Springs (5.3 miles) Gillis (8.1 miles)
Reed (8.3 miles)
Shipe (5.8 miles)
West Austin (6.3 miles)
Westenfield (6.6 miles)

Civitan - 513 Vargas, 78741
Mabel Davis Municipal (4.9 miles) Neighborhood Pools
Big Stacy (4.7)
Givens (3 miles)
Govalle (1.8 miles)
Little Stacy (4.8)
Martin (3.7 miles)
Metz (2.7 miles)
Parque Zaragoza (2.7 miles)
Patterson (4.8 miles)
Rosewood (3.2 miles)
Pools that are less than or equal to 1 mile away

[^9]Deep Eddy - 401 Deep Eddy Ave, 78703
Bartholomew Municipal (7.2 miles)
Garrison Municipal (6.3 miles)
Mabel Davis Municipal (5.9 miles)
Northwest Municipal (6.6 miles)

Pools 5 or less miles away
Garrison Municipal (4.9 miles)

Dick Nichols - 8011 Beckett, 78749
Deep Eddy Municipal (9.2 miles)
Mabel Davis Municipal (9.6 miles)
Neighborhood Pools
Big Stacy (9.7 miles)
Dittmar (5.5 mile)
Dove Springs (8.9 miles)
Gillis (8.9 miles)
Little Stacy (10 miles)
West Austin (9.7 miles)
Westenfield (9.5 miles)
Dittmar-1009 W. Dittmar Rd. 78745
Pools 5 or less miles away
Mabel Davis Municipal (6.6 miles)
Deep Eddy Municipal (10 miles)
Neighborhood Pools
Big Stacy (6.6 miles)
Dick Nichols (5.5 miles)
Dove Springs (5.6 miles)
Gillis (6 miles)
Little Stacy (7 miles)
Martin (9.7 miles)
Metz (9.8 miles)
Montopolis (9.6 miles)
Parque Zaragoza (9.9 miles)
West Austin (9.2 miles)
Pools 10 or less miles away

Deep Eddy Municipal (8.6 miles)	
Northwest Municipal (6.4 miles)	
Walnut Creek Municipal (7.9 miles)	
Mabel Davis (9.8 miles)	
Neighborhood Pools	Neighborhood Pools
Balcones (9.1 miles)	Murchison $(7.9$ miles $)$
Big Stacy (9.3 miles)	Parque Zaragoza (5.1 miles)
Brentwood (5.5 miles)	Ramsey $(5.5$ miles)
Civitan (6.4 miles)	Reed (8.4 miles)
Gillis (10 miles)	West Austin $(7.5$ miles)
Kennemer (5.4 miles)	Westenfield $(7.7$ miles)
Little Stacy (9.2 miles)	
Martin (7 miles)	
Metz (6 miles)	
Montopolis (7.1 miles)	

$\frac{\text { Dottie Jordan - } 2803 \text { Loyola Dr. } 78723}{\text { Pools that are less than or equal to } 1 \text { mile away }}$
Bartholomew Municipal (2.3 miles)
Neighborhood Pools
Givens (3.3 miles)
Govalle (4.5 miles)
Patterson (3.4 miles)
Rosewood (4.8 miles)
Shipe (5 miles)
Dove Springs - 5701 Ainez Dr. 78744
Garrison - 6001 Manchaca Rd. 78745

Deep Eddy Municipal (6.5 miles)
Neighborhood Pools
Neighborhood Pools
Civitan (10 miles)
Govalle (9.8 miles)
Little Stacy (5.5 miles)
Martin (7.2 miles)
Metz (8.3 miles)
Montopolis (7.9 miles)
Parque Zaragoza (9.1 miles)
Ramsey (8.7 mile)
Reed (8.8 miles)
Rosewood (9.4 miles)
West Austin (6 miles)
Westenfield (6.9 miles)
Mabel Davis Municipal (4.8 miles)
Neighborhood Pools
Big Stacy (4.8 miles)
Dittmar (3.3 miles)
Gillis (4.1 miles)
Pools that are less than or equal to 1 mile away
Garrison Municipal (4.7 miles)
Mabel Davis Municipal (3.1 miles)

> Neighborhood Pools Civitan (5.5 miles) Dittmar (5.7 miles) Gillis (5.4 miles) Givens (8.1 miles) Govalle (6.8 miles) Little Stacy (5.6 miles) Martin (5.9 miles) Metz (6.9 miles) Parque Zaragoza (7.8 miles) Patterson (9.5 miles) Rosewood (8.3 miles) Shipe (10 miles) West Austin (9.1 miles)
кеме sәן!u ssop do ot sjood
Mabel Davis Municipal (4.8 miles)
Pools 5 or less miles away
Mabel Davis Municipal (3.1 miles)

Deep Eddy Municipal (8.9 mile
Pools 10 or less miles away
Gillis - 2504 Durwood, 78704

Deep Eddy Municipal (5.9 miles) Mabel Davis Municipal (7.1 miles)
Neighborhood Pools
Big Stacy (6.2 miles)
Brentwood (6.2 miles)
Dove Springs (9.5 miles)
Dove Springs (9.5 miles)
Gillis (6.1 miles)
Kennemer (7.9 miles)

Murchison (10 miles)
Reed (6.5 miles)

Pools 5 or less miles away
Bartholomew Municipal (2.4 miles) Neighborhood Pools
Civitan (3 miles)
Dottie Jordan (3.3 miles)
Govalle (1.4 miles)
Martin (3.6 miles)
Metz (2.7 miles)
Montopolis (3.4 miles)
Parque Zaragoza (1.9 miles)
Patterson (2.5 miles)
Ramsey (4.9 miles)
Rosewood (1.7 miles)
Shipe (3.6 miles)
West Austin (4.6 miles) Westenfield (5 miles) Neighborhood Pools
Civitan (3 miles)
Dottie Jordan (3.3 miles)
Govalle (1.4 miles)
Martin (3.6 miles)
Metz (2.7 miles)
Montopolis (3.4 miles)
Parque Zaragoza (1.9 miles)
Patterson (2.5 miles)
Ramsey (4.9 miles)
Rosewood (1.7 miles)
Shipe (3.6 miles)
West Austin (4.6 miles) Westenfield (5 miles) Neighborhood Pools
Civitan (3 miles)
Dottie Jordan (3.3 miles)
Govalle (1.4 miles)
Martin (3.6 miles)
Metz (2.7 miles)
Montopolis (3.4 miles)
Parque Zaragoza (1.9 miles)
Patterson (2.5 miles)
Ramsey (4.9 miles)
Rosewood (1.7 miles)
Shipe (3.6 miles)
West Austin (4.6 miles) Westenfield (5 miles) Neighborhood Pools
Civitan (3 miles)
Dottie Jordan (3.3 miles)
Govalle (1.4 miles)
Martin (3.6 miles)
Metz (2.7 miles)
Montopolis (3.4 miles)
Parque Zaragoza (1.9 miles)
Patterson (2.5 miles)
Ramsey (4.9 miles)
Rosewood (1.7 miles)
Shipe (3.6 miles)
West Austin (4.6 miles) Westenfield (5 miles) Neighborhood Pools
Civitan (3 miles)
Dottie Jordan (3.3 miles)
Govalle (1.4 miles)
Martin (3.6 miles)
Metz (2.7 miles)
Montopolis (3.4 miles)
Parque Zaragoza (1.9 miles)
Patterson (2.5 miles)
Ramsey (4.9 miles)
Rosewood (1.7 miles)
Shipe (3.6 miles)
West Austin (4.6 miles) Westenfield (5 miles) Neighborhood Pools
Civitan (3 miles)
Dottie Jordan (3.3 miles)
Govalle (1.4 miles)
Martin (3.6 miles)
Metz (2.7 miles)
Montopolis (3.4 miles)
Parque Zaragoza (1.9 miles)
Patterson (2.5 miles)
Ramsey (4.9 miles)
Rosewood (1.7 miles)
Shipe (3.6 miles)
West Austin (4.6 miles) Westenfield (5 miles) Neighborhood Pools
Civitan (3 miles)
Dottie Jordan (3.3 miles)
Govalle (1.4 miles)
Martin (3.6 miles)
Metz (2.7 miles)
Montopolis (3.4 miles)
Parque Zaragoza (1.9 miles)
Patterson (2.5 miles)
Ramsey (4.9 miles)
Rosewood (1.7 miles)
Shipe (3.6 miles)
West Austin (4.6 miles) Westenfield (5 miles) Neighborhood Pools
Civitan (3 miles)
Dottie Jordan (3.3 miles)
Govalle (1.4 miles)
Martin (3.6 miles)
Metz (2.7 miles)
Montopolis (3.4 miles)
Parque Zaragoza (1.9 miles)
Patterson (2.5 miles)
Ramsey (4.9 miles)
Rosewood (1.7 miles)
Shipe (3.6 miles)
West Austin (4.6 miles) Westenfield (5 miles) Neighborhood Pools
Civitan (3 miles)
Dottie Jordan (3.3 miles)
Govalle (1.4 miles)
Martin (3.6 miles)
Metz (2.7 miles)
Montopolis (3.4 miles)
Parque Zaragoza (1.9 miles)
Patterson (2.5 miles)
Ramsey (4.9 miles)
Rosewood (1.7 miles)
Shipe (3.6 miles)
West Austin (4.6 miles) Westenfield (5 miles) Neighborhood Pools
Civitan (3 miles)
Dottie Jordan (3.3 miles)
Govalle (1.4 miles)
Martin (3.6 miles)
Metz (2.7 miles)
Montopolis (3.4 miles)
Parque Zaragoza (1.9 miles)
Patterson (2.5 miles)
Ramsey (4.9 miles)
Rosewood (1.7 miles)
Shipe (3.6 miles)
West Austin (4.6 miles) Westenfield (5 miles)
Neishbor

Garrison Municipal (4.1 miles) Mabel Davis Municipal (2.4 miles)

$$
\begin{aligned}
& \text { Neighborhood Pools } \\
& \text { Little Stacy (} 1.6 \text { miles) } \\
& \text { Martin Pool (} 3.3 \text { miles) } \\
& \text { Metz (} 4.3 \text { miles) } \\
& \text { Montopolis (} 4.6 \text { miles) } \\
& \text { Parque Zaragoza (} 4.5 \text { mile } \\
& \text { Rosewood (} 4.5 \text { miles) } \\
& \text { West Austin (} 3.4 \text { miles) } \\
& \text { Westenfield (} 4.3 \text { miles) }
\end{aligned}
$$

Murchison (6.7 miles)
Patterson (6.7 miles)
Ramsey (6.3 miles)
Reed (6.1 miles)
Shipe (7 miles)

Pools 5 or less miles away
Bartholomew Municipal (7.9 miles)
Northwest Municipal (9.3 miles)
Neighborhood Pools Brentwood (10 miles) Civitan (5.3 miles)

Dittmar (6 miles)
Dottie Jordan (10 miles)
Dove Springs (5.3 miles)
Givens (7 miles)
Govalle (5.9 miles)
Govalle (5.9 miles)
$\frac{\text { Govalle }-5200 \text { Bolm Rd. } \mathbf{7 8 7 2 1}}{\text { Pools that are less than or equal to } 1 \text { mile away }}$ Pools that are less than or equal to 1 mile away

Pools that are less than or equal to 1 mile away	Pools 5 or less miles away	Pools 10 or less miles away	
	Bartholomew Municipal (3.7 miles)	Deep Eddy Municipal (5.7 miles) Garrison Municipal (9.8 miles) Mabel Davis Municipal (5.1 miles) Northwest Municipal (7.8 miles)	
	Neighborhood Pools	Neighborhood Pools	
	Big Stacy (4.9 miles)	Brentwood (6.8 miles)	
	Civitan (1.8 miles)	Dove Springs (6.7 miles)	
	Dottie Jordan (4.5 miles)	Gillis (5.9 miles)	
	Givens (1.4 miles)	Kennemer (8.5 miles)	
	Little Stacy (4.6 miles)	Murchison Pool (9.1 miles)	
	Martin (3 miles)	Ramsey (5.5 miles)	
	Metz (2 miles)	Reed (7 miles)	
	Montopolis (2.2 miles)	West Austin (5.2 miles)	
	Parque Zaragoza (1.4 miles)	Westenfield (5.6 miles)	
	Patterson (3.1 miles)		
	Rosewood (1.8 miles)		
	Shipe (4.2 miles)		
Kennemer - 1032 Payton Gin, 78758			
Pools that are less than or equal to 1 mile away	Pools 5 or less miles away	Pools	
	Northwest Municipal (2.9 miles)	Bartholomew Municipal (5.4 miles)	
	Walnut Creek Municipal (3.6 miles)	Deep Eddy Municipal (9.4 miles)	
	Neighborhood Pools	Neighborhood Pools	Neighborhood Pools
	Balcones (4.8 miles)	Canyon Vista (8.6 miles)	Parque Zaragoza (8.8 miles)
	Brentwood (3.2 miles)	Dottie Jordan (5.5 miles)	Patterson (5.8 miles)
	Murchison (4.6 miles)	Givens (7.6 miles)	Reed (7.3 miles)
	Ramsey (4.8 miles)	Govalle (8.2 miles)	Rosewood (7.7 miles)
	Shipe (4.8 miles)	Little Stacy (10 miles)	West Austin (7.8 miles)
		Martin (9.4 miles)	West Enfield (7.3 miles)
		Metz (9.7 miles)	

$\xrightarrow[\text { Little Stacy - } 1401 \text { Sunset Ln, } 78704]{\text { Pools that are less than or equal to } 1 \text { mile away }}$

Garrison (5.2 miles)
Bartholomew (6.3 miles)
Northwest (9.4 miles)

$$
\begin{aligned}
& \text { Neighborhood Pools } \\
& \text { Brentwood (} 8.4 \text { miles) } \\
& \text { Dick Nichols (9.9 miles) } \\
& \text { Dittmar (} 7.4 \text { miles) } \\
& \text { Dottie Jordan (} 8.7 \text { miles) } \\
& \text { Dove Springs (} 5.3 \text { miles) } \\
& \text { Givens (} 5.4 \text { miles } \\
& \text { Murchison (} 9.8 \text { miles) } \\
& \text { Patterson (} 5.1 \text { miles) } \\
& \text { Ramsey (} 6.2 \text { miles) } \\
& \text { Reed (} 6.1 \text { miles) } \\
& \text { Shipe (} 5.8 \text { miles) }
\end{aligned}
$$

Pools 5 or less miles away

Mabel Davis (2.4 miles)

Mabel Davis - 3427 Parker Ln. 78741

Neighborhood Pools
Big Stacy (0.6 miles)

Deep Eddy Municipal (5.9 miles)
Bartholomew Municipal (8 miles) Neighborhood Pools Dick Nichols (9.6 miles)
Dittmar (6.6 miles) Dittmar (6.6 miles)
Givens (7.1 miles) Govalle (5.1 miles) Patterson (7 miles) Reed (8 miles) Rosewood (5.1 miles)

Shipe (7.3 miles) West Austin (5.4 miles)

Martin - 1626 Nash Hernandez Sr. Rd. 78702 Pools that are less than or equal to 1 mile away

Deep Eddy Municipal (3.7 miles)
Mabel Davis Municipal (3.7 miles)

Neighborhood Pools Neighborhood Pools Big Stacy (2.7 miles)
 Civitan (3.6 miles) Gillis (3.7 miles)
 Givens (3.6 miles)
 Givens (3.6 miles) Govalle (2.9 miles)
 Little Stacy (2.4 miles)
 Montopolis (4 miles)
 . 9 miles)
 iles)
 sə!!w $\varepsilon^{\prime} \varepsilon$) u! ITSn \forall 7SəM
 (sə!!u I't) plə!子uәəsəM

Metz-2407 Canterbury, 78702
Pools that are less than or equal to 1 mile awa
Neighborhood Pools
Metz (1 mile)
Bartholomew Municipal (5.6 miles)
Garrison Municipal (7.2 miles)
Northwest Municipal (9.2 miles)

Neightwood (7.9 miles)

 Dove Springs (7.3 miles)
 (sə!!ய \dagger 6) дəшəииว〉
 Ramsey (5.5 miles)

 (samu 8't) əd!us
 Neighborhood Pools

Garrison Municipal (8.5 miles)
Neighborhood Pools
Brentwood (8.3 miles)
Dittmar (9.6 miles)
Dottie Jordan (6 miles)
Dove Springs (6.7 miles)
Kennemer (9.3 miles)
Murchison (9.8 miles)
Ramsey (5.7 miles)
Reed (6.1 miles)

Mabel Davis Municipal (3.7 miles)
Neighborhood Pools
Big Stacy (3.3 miles)
Big Stacy (3.3 miles)
Civitan (2.6 miles)
Gillis (4.3 miles)
Gillis (4.3 miles)
Givens (2.9 miles)
Givens (2.9 miles)
Govalle (1.9 miles)
Little Stacy (2.9 miles)
Montopolis (3 miles)
Rosewood (1.5 miles)
Rosewood (1.5 miles)
Shipe (5 miles)
West Austin (3.7 miles)
Westenfield (4.4)
Montopolis - 1200 Montopolis Dr. 78741
Pools that are less than or equal to 1 mile away Pools 5 or less miles away
Northwest -7000 Ardath, 78757
Pools 5 or less miles away

Parque Zaragoza - 741 Pedernales St. 78731 Bartholomew Municipal (4.2 miles) Deep Eddy Municipal (4 miles) Mabel Davis Municipal (4.4 miles)

Neighborhood Pools

Neighborhood Pools Brentwood (8.2 miles)
Dove Springs (7.7 miles) Kennemer (8.8 miles) Murchison (9.6 miles) Ramsey (5.1 miles) Reed (5.6 miles)
Pools that are less than or equal to 1 mile away
Pools that are less than or equal to 1 mile away Pools that are less than or equal to 1 mile away
Metz (0.8 mile)
Rosewood (0.7 miles)
Civitan (2.6 miles)
Gillis (4.5 miles)
Givens (1.9 miles) Govalle (1.4 miles)
Little Stacy (3.9 miles)
Martin (1.7 miles)
Montopolis (3 miles)
Patterson (2.9 miles)
West Austin (3.7 miles)
Westenfield (4.2 miles)
Pools $\mathbf{1 0}$ or less miles away
Deep Eddy Municipal (5.8 miles)
Mabel Davis Municipal (7 miles)
Walnut Creek Municipal (8.2 miles)
Neighborhood Pools
Balcones (10 miles)
Dove Springs (9.8 miles)
Gillis (6.9 miles)
Kennemer (5.3 miles)
Murchison (6.1 miles)
Pools 5 or less miles away
Bartholomew Municipal (1.6 miles)
Northwest Municipal (4.9 miles)
Neighborhood Pools
Shipe (1.3 miles)
Roseood (1.9 miles)
Givens (2.4 miles)
Ramsey (2.6)
Govalle (2.9 miles)
Parque Zaragoza (3.2 miles)
Brentwood (3.9 miles)
Metz (3.9 miles)
Dottie Jordan (4.3 miles)
West Austin (4.5 miles)
Civitan (4.6 miles)
Martin (4.8 miles)
Reed (4.9 miles)
Westenfield (4.9 miles) \quad Little Stacy (5.6 miles)
Montopolis (5 miles)

Patterson - 4200 Brookview Rd. 78722
Pools that are less than or equal to 1 mile away
Pools that are less than or equal to 1 mile away
Givens (2.4 miles)
Govalle (2.9 miles)
Parque Zaragoza (3.2 miles)
Brentwood (3.9 miles)
Metz (3.9 miles)
Dottie Jordan (4.3 miles)
West Austin $(4.5$ miles)
Civitan (4.6 miles)
Reed (4.9 miles)
Montopolis (5 miles)
Pools 5 or less miles away
Bartholomew Municipal (3.4 miles)
Bartholomew Municipal (3.4 miles)
Deep Eddy Municipal (4 miles)
Northwest Municipal (2.8 miles)
Neighborhood Pools
Brentwood (2.3 miles)
Givens (4.9 miles)
Murchison (3.9 miles) Parque Zaragoza (5 miles)
Patterson (2.6 miles) Patterson (2.6 miles)
Reed (2.8 miles) Rosewood (4.8 miles)
Shipe (1.3 miles)
Shipe (1.3 miles) West Austin (3.3 miles) Westenfield (3.3 miles)
Ramsey - 4201 Burnet Rd. 78756
Reed - 2600 Pecos St. 78703
Shipe - 4400 Avenue G, 78751

Pools that are less than or equal to 1 mile away	Pools 5 or less miles away	Pools 10 or less miles away
	Bartholomew (2.7 miles)	Deep Eddy Municipal (5.5 miles)
	Northwest Municipal (3.6 miles)	Mabel Davis Municipal (7.3 miles)
	Neighborhood Pools	Walnut Creek (7.8 miles)
	Big Stacy (6.3 miles)	Neighborhood Pools
	Brentwood (3 miles)	Balcones (9.4 miles)
	Dottie Jordan (5 miles)	Big Stacy (6.3 miles)
	Givens (3.6 miles)	Civitan (5.8 miles)
	Govalle (4.2 miles)	Dove Springs (10 miles)
	Kennemer (4.8 miles)	Gillis (7 miles)
	Little Stacy (5.8 miles	Montopolis (6.3 miles)
	Martin (4.8 miles)	
	Metz (5 miles)	
	Murchison (4.7 miles)	
	Parque Zaragoza (4.3 miles)	
	Patterson (1.3 miles)	
	Ramsey (1.3 miles)	
	Reed (3.8 miles) Rosewood (3.4 miles)	
	West Austin (4 miles)	
	Westenfield (4.3 miles)	
Springwoods - 13340 Lyndhurst St. 78729		
Pools that are less than or equal to 1 mile away	Pools 5 or less miles away	Pools 10 or less miles away
		Walnut Creek (9.1 miles)
		Neighborhood Pools
		Canyon Vista (5.5 miles)
		Balcones (7.6 miles)

Walnut Creek - 12138 N. Lamar, 78758 Neighborhood Pools
Balcones (3.6 miles)
Kennemer (3.6 miles)
Westenfield - 2008 Enfield Rd. 78703

West Austin Pool (1 mile)	Deep Eddy Municipal (1.1 miles)	Bartholomew (5.9 miles) Garrison Municipal (6.9 miles) Mabel Davis Municipal (6.2 miles)
	Neighborhood Pools	Northwest Municipal (5.7 miles)
	Big Stacy (4.6 miles)	
	Gillis (4.3 miles)	Neighborhood Pools
	Givens (5 miles)	Brentwood (5.6 miles)
	Martin (4.1 miles)	Civitan (6.6 miles)
	Metz (4.4 miles)	Dich Nichols (9.5 miles)
	Parque Zaragoza (4.2 miles)	Dittmar (9.7 miles)
	Patterson (4.9 miles)	Dottie Jordan (7.7 miles)
	Ramsey (3.3 miles)	Dove Springs (9.8 miles)
	Reed (1.7 miles)	Govalle (5.6 miles)
	Rosewood (3.4 miles)	Kennermer (7.3 miles)
	Shipe (4.1 miles)	Montopolis (7.1 miles)
	Stacy Wading (3.9 miles)	Murchison (5.1 miles)

$\frac{\text { West Austin - } 1317 \text { W. 10th St. } 78703}{\text { Pools that are less than or equal to } 1 \text { mile away }}$
Pools 10 or less miles away Mabel Davis Municipal (5.4 miles)
Bartholomew (5.6 miles)
Garrison Municipal (6 miles)
Northwest Municipal (6.3 miles) Neighborhood Pools
Brentwood (5.7 miles) Civitan (6.3 miles)
Dick Nichols (9.7 miles) Dick Nichols (9.7 miles)
Dittmar (9.2 miles) Dottie Jordan (7.5 miles) Dove Springs (9.1 miles)
Govalle (5.2 miles)
Kennemer (7.8 miles) Montopolis (6.1 miles)
Murchison (6.5 miles)
Neighborhood Pools
Big Stacy (3.7 miles)
Gillis (4.3 miles)
Givens (4.6 miles)
Martin (3.3 miles)
Metz (3.7 miles)
Parque Zaragoza (3.2 miles)
Patterson (4.5 miles)
Ramsey (3.3 miles)
Reed (2.5 miles)
Rosewood Pool (3.3)
Shipe (4.3 miles)
Stacy Wading (3.1 miles)
Deep Eddy Municipal (1.3 miles)

APPENDIX G

Appendix B4
 Presentation

Historic al and Cultural Importa nce
 1931 Acquisition of Parque
Zaragoza Zaragoza
Historic al and Cultural Importa nce
u! \ddagger Sn \forall łSəM pue əd!
Preservation Austin: - Secretary of Interior's National Criteria for Evaluation

- Designated Historic resources
- Barton Springs Pool
- Deep Eddy

- Historic Preservation: A Planning Tool - Additional Criteria merits designation

Attendance

POOL	2015	2016	2017
Neighborhood Pools			
Balcones Neighborhood Pool	14,774	14392	16863
Big Stacy Neighborhood Pool	57,737	32826	54660
Brentwood Neighborhood Pool	11,533	11405	13094
Canyon Vista Neighborhood Pool	8,960	6411	8704
Civitan Neighborhood Pool	2,508	782	2,832
Dick Nichols Neighborhood Pool	31,726	27142	33901
Dittmar Neighborhood Pool	27,401	23559	21777
Dottie Jordan Neighborhood Pool	7,391	10989	14036
Dove Springs Neighborhood Pool	28,278	16578	27495
Gillis Neighborhood Pool	4,051	2861	3326
Givens Neighborhood Pool	17,267	9770	Closed
Govalle Neighborhood Pool	4,243	2,396	Closed
Kennemer Neighborhood Pool	5,059	5404	5507
Martin Neighborhood Pool	12,703	8,672	11,731
Metz Neighborhood Pool	7,939	9,756	6,618
Montopolis Neighborhood Pool	7,756	7,340	11,142
Murchison Neighborhood Pool	4,262	9,523	11,502
Parque Zaragoza Neighborhood Pool	3,497	3,464	2,748
Patterson Neighborhood Pool	7,585	3,753	8,925
Ramsey Neighborhood Pool	17,178	16,326	19,565
Reed Neighborhood Pool	5,057	4,269	5,223
Rosewood Neighborhood Pool	18,505	15,182	14,446
Shipe Neighborhood Pool	19,429	13,866	Closed
West Enfield Neighborhood Pool	27,850	14,288	18,973

Pa rtnershíp Opportunities
Inc rea sed partnership opportunities would contribute to a
more susta ina ble aquatic system

Other Partnerships

Prioritization C riteria - Failing infrastructure system-wide

- Public safety/regula tory compliance
- Pla nning Documents
- PARD Long-Range Plan
- PARD CIP Strategic Plan
- Imagine Austin Comp Plan
- Imagine Austin Comp Plan
- Completed master plan/prelimina ry design
- Community engagement
- Shovel readiness
- Geographic Equity
- Partnerships/ leveraging opportunities
- 5-6 year implementa tion cycle
- Program flexibility vs project spec ific

Program Detail: Aquatics

Revenue Generation Opportunities
Increased revenue generation would contribute to a
more susta inable aquatic system - Fees and Charges
- Concessions
- Naming Rights a nd Sponsorships
- Partnerships
- Increased Programming
- PARD Aquatic Revenues
Funding Options -Bonds/Reserve Funding
-Land Sales
-Sweetened Beverage Tax
-Grants - Sponsorships (Naming Rights)
-HOTFunding

[^0]: ${ }^{1}$ City of Austin website, "Top Ten Demographic Trends in Austin, Texas," http://www.austintexas.gov/page/top-ten-demographic-trends-a ustin-texas

[^1]: 22017 City Park Facts. Retrieved August 14, 2017, from https://www.tpl.org/2017-city-park-facts

[^2]: To assist PARD Aquatic Division in meeting Lifeguard needs, the Austin Parks and Recreation Department, the YMCA of Austin, and the Austin Independent School District partnered to create the pilot program called SwimATX. Although the program did not result in a very large number of new recruits, it did assist PARD in reaching the 700-750 Lifeguards needed to accommodate the yearround and seasonal program. Featured in Parks \& Recreation Magazine in J une 2016, the City of Austin wascited as an example of an exceptional partnership in the recruitment and training of Lifeguards that would reflect the diverse community that uses Austin's pools.

 SwimATX offers a semester long swim class during the school day in which students can eam physical education class credit. Those involved receive free lifeguard certification classes, which upon completion, can lead to employment as lifeguards with the City or at the YMCA. Since 2015, SwimATX has met with some success with some students from the first class hired as lifeguards with the City in 2015 . More students have since completed, received certification, and applied for positions.

[^3]: 1. Data Source: Table of monthly water and wastewater bills from Austin Water, provided by PARD Aquatics Division
 2. Summer 2016 = Data from bills covering the months of May (when pools are filled) through August. Actual dates of meter readings vary.
 3. Includes wading pool
 4. Water paid by RRISD
[^4]: ${ }^{1}$ Walljasper, J. (2017, February). Welcome to the 20-Minute Village. Retrieved July 17, 2017, from http://www.aarp.org/livablec ommunities/liva ble-in-a ction/info-2017/20-minute-villa ge.htm

[^5]: 1. Facilities which are of appropriate minimum site size and are not in the 25 -year or 100-year flood plain. Ranked with 1 as the top or highest score. Community Pools must have a minimum size of 1.1 acres (2 acres minimum prefermed) and Regional Pools must
[^6]: ${ }^{1}$ Limbacher \& Godfrey Architects. (2008). Barton Springs Master Plan, Concepts for Preservation and Improvement. Austin, TX., 61.
 2 Barton Springs Pool. (2017, September 26). Retrieved August 14, 2017, from http://www.austintexas.gov/department/barton-springspool
 ${ }^{3}$ Deep Eddy Pool. Retrieved August 14, 2017, from http://www.deepeddy.org/pool/

[^7]: ${ }^{1}$ Woudenberg, Fred, "An Evaluation of Delphi," Technological Forecasting and Social Change, Sept. 1991.
 ${ }^{2}$ Gordon, Theodore J., "The Delphi Method," The Millennium Project, Future Research Methodology-V3.0, 1999.

[^8]: ${ }^{3}$ Aggregation Bias in Small Area polygon-based Forecasting. Dr. Ronald Mitchelson, Professor of Geography, University of Georgia, paper presented to the Association of American Geographers Annual Conference, 1986.

[^9]: Neighborhood Pools
 Montopolis (0.8 mile)

